Homotopy Type Theory Dedekind cut > history (Rev #2, changes)

Showing changes from revision #1 to #2: Added | Removed | Changed

Β Defintion

Given a type TT with a dense strict order <\lt, and a pair of subtypes (L,R):Sub 𝒰(T)Γ—Sub 𝒰(T)(L, R):Sub_\mathcal{U}(T) \times Sub_\mathcal{U}(T) in a universe 𝒰\mathcal{U} with monic functions i L:𝒯 𝒰(L)β†’Ti_L:\mathcal{T}_\mathcal{U}(L) \to T and i R:𝒯 𝒰(R)β†’Ti_R:\mathcal{T}_\mathcal{U}(R) \to T, let us define the following propositions:

Using the type of subsets in a universe

isInhabited 𝒰(L)≔[𝒯 𝒰(L)]isInhabited_\mathcal{U}(L) \coloneqq \left[\mathcal{T}_\mathcal{U}(L)\right]

Given a type TT with a dense strict order <\lt, and given a subtype P:Sub 𝒰(T)P:Sub_\mathcal{U}(T) with monic function i P:𝒯 𝒰(P)β†’Ti_P:\mathcal{T}_\mathcal{U}(P) \to T, let us define the following propositions:

isInhabited 𝒰(R)≔β R:[𝒯 𝒰(R)]isInhabited_\mathcal{U}(R) \coloneqq \beta_R:\left[\mathcal{T}_\mathcal{U}(R)\right]
isDownwardsClosed isInhabited 𝒰( L P)β‰”βˆ a:𝒯 𝒰(L)[𝒯 𝒰(P)]∏ b:T((b<a)β†’[βˆ‘ c:𝒯 𝒰(L)ΞΉ L(c)=b]) isDownwardsClosed_\mathcal{U}(L) isInhabited_\mathcal{U}(P) \coloneqq \prod_{a:\mathcal{T}_\mathcal{U}(L)} \left[\mathcal{T}_\mathcal{U}(P)\right] \prod_{b:T} \left((b \lt a) \to \left[\sum_{c:\mathcal{T}_\mathcal{U}(L)} \iota_L(c) = b\right]\right)
isUpwardsClosed isDownwardsClosed 𝒰( R P)β‰”βˆ a:𝒯 𝒰( R P)∏ b:T((a<b<a)β†’[βˆ‘ c:𝒯 𝒰(R)fiberΞΉ R(cΞΉ P ) ,=b)]) isUpwardsClosed_\mathcal{U}(R) isDownwardsClosed_\mathcal{U}(P) \coloneqq \prod_{a:\mathcal{T}_\mathcal{U}(R)} \prod_{a:\mathcal{T}_\mathcal{U}(P)} \prod_{b:T} \left((a \left((b \lt b) a) \to \left[\sum_{c:\mathcal{T}_\mathcal{U}(R)} \left[fiber(\iota_P,b)\right]\right) \iota_R(c) = b\right]\right)
isDownwardsOpen isUpwardsClosed 𝒰( L P)β‰”βˆ a:𝒯 𝒰( L P)[βˆ‘ b:𝒯 𝒰(L)a<b]∏ b:T((a<b)β†’[fiber(ΞΉ P,b)]) isDownwardsOpen_\mathcal{U}(L) isUpwardsClosed_\mathcal{U}(P) \coloneqq \prod_{a:\mathcal{T}_\mathcal{U}(L)} \prod_{a:\mathcal{T}_\mathcal{U}(P)} \left[\sum_{b:\mathcal{T}_\mathcal{U}(L)} \prod_{b:T} a \left((a \lt b\right] b) \to \left[\fiber(\iota_P,b)\right]\right)
isUpwardsOpen isDownwardsOpen 𝒰( R P)β‰”βˆ a:𝒯 𝒰( R P)[βˆ‘ b:𝒯 𝒰( R P)b<a<b] isUpwardsOpen_\mathcal{U}(R) isDownwardsOpen_\mathcal{U}(P) \coloneqq \prod_{a:\mathcal{T}_\mathcal{U}(R)} \prod_{a:\mathcal{T}_\mathcal{U}(P)} \left[\sum_{b:\mathcal{T}_\mathcal{U}(R)} \left[\sum_{b:\mathcal{T}_\mathcal{U}(P)} b a \lt a\right] b\right]
isLocated isUpwardsOpen 𝒰( L P,R)β‰”βˆ a:T𝒯 𝒰(P)∏ b:T[βˆ‘ b:𝒯 𝒰(P)b<a]((a<b)β†’[[βˆ‘ c:𝒯 𝒰(L)ΞΉ L(c)=a]+[βˆ‘ c:𝒯 𝒰(R)ΞΉ R(c)=b]]) isLocated_\mathcal{U}(L, isUpwardsOpen_\mathcal{U}(P) R) \coloneqq \prod_{a:T} \prod_{a:\mathcal{T}_\mathcal{U}(P)} \prod_{b:T} \left[\sum_{b:\mathcal{T}_\mathcal{U}(P)} \left((a b \lt b) \to \left[\left[\sum_{c:\mathcal{T}_\mathcal{U}(L)} \iota_L(c) = a\right] + \left[\sum_{c:\mathcal{T}_\mathcal{U}(R)} \iota_R(c) = b\right]\right]\right)
isTransitive 𝒰(L,R)β‰”βˆ a:𝒯 𝒰(L)∏ b:𝒯 𝒰(R)(i L(a)<i L(b))isTransitive_\mathcal{U}(L, R) \coloneqq \prod_{a:\mathcal{T}_\mathcal{U}(L)} \prod_{b:\mathcal{T}_\mathcal{U}(R)} (i_L(a) \lt i_L(b))
isBounded 𝒰(L,R)≔isInhabited 𝒰(L)Γ—isInhabited 𝒰(R)isBounded_\mathcal{U}(L, R) \coloneqq isInhabited_\mathcal{U}(L) \times isInhabited_\mathcal{U}(R)

Given a pair of subtypes (L,R):Sub 𝒰(T)Γ—Sub 𝒰(T)(L, R):Sub_\mathcal{U}(T) \times Sub_\mathcal{U}(T) in a universe 𝒰\mathcal{U} with monic functions i L:𝒯 𝒰(L)β†’Ti_L:\mathcal{T}_\mathcal{U}(L) \to T and i R:𝒯 𝒰(R)β†’Ti_R:\mathcal{T}_\mathcal{U}(R) \to T, let us define the following propositions:

isOpen 𝒰(L,R)≔isDownwardsOpen 𝒰(L)Γ—isUpwardsOpen 𝒰(R)isOpen_\mathcal{U}(L, R) \coloneqq isDownwardsOpen_\mathcal{U}(L) \times isUpwardsOpen_\mathcal{U}(R)
isRounded isLocated 𝒰(L,R)≔isDownwardsClosed π’°βˆ a:T(∏ b:TL((a<b)β†’[fiber(ΞΉ L,a)+fiber(ΞΉ R,b)]))Γ—isUpwardsClosed 𝒰(R) isRounded_\mathcal{U}(L, isLocated_\mathcal{U}(L, R) \coloneqq isDownwardsClosed_\mathcal{U}(L) \prod_{a:T} \times \prod_{b:T} isUpwardsClosed_\mathcal{U}(R) \left((a \lt b) \to \left[fiber(\iota_L,a) + fiber(\iota_R,b)\right]\right)
isDedekindCut isTransitive 𝒰(L,R)≔isBounded π’°βˆ a:𝒯 𝒰(L)∏ b:𝒯 𝒰(R)(Li L,R)Γ—isOpen 𝒰( L a,R) Γ— < isRounded i 𝒰 L( L b,R)Γ—isLocated 𝒰(L,R)Γ—isTransitive 𝒰(L,R) isDedekindCut_\mathcal{U}(L, R) \coloneqq isBounded_\mathcal{U}(L, R) \times isOpen_\mathcal{U}(L, R) \times isRounded_\mathcal{U}(L, R) \times isLocated_\mathcal{U}(L, R) \times isTransitive_\mathcal{U}(L, R) \coloneqq \prod_{a:\mathcal{T}_\mathcal{U}(L)} \prod_{b:\mathcal{T}_\mathcal{U}(R)} (i_L(a) \lt i_L(b))
isBounded 𝒰(L,R)≔isInhabited 𝒰(L)Γ—isInhabited 𝒰(R)isBounded_\mathcal{U}(L, R) \coloneqq isInhabited_\mathcal{U}(L) \times isInhabited_\mathcal{U}(R)

(L,R)(L, R) is a Dedekind cut if it comes with a term Ξ΄:isDedekindCut 𝒰(L,R)\delta:isDedekindCut_\mathcal{U}(L, R).

isOpen 𝒰(L,R)≔isDownwardsOpen 𝒰(L)Γ—isUpwardsOpen 𝒰(R)isOpen_\mathcal{U}(L, R) \coloneqq isDownwardsOpen_\mathcal{U}(L) \times isUpwardsOpen_\mathcal{U}(R)
isRounded 𝒰(L,R)≔isDownwardsClosed 𝒰(L)Γ—isUpwardsClosed 𝒰(R)isRounded_\mathcal{U}(L, R) \coloneqq isDownwardsClosed_\mathcal{U}(L) \times isUpwardsClosed_\mathcal{U}(R)

Β Type of Dedekind cuts

isDedekindCut 𝒰(L,R)≔isBounded 𝒰(L,R)Γ—isOpen 𝒰(L,R)Γ—isRounded 𝒰(L,R)Γ—isLocated 𝒰(L,R)Γ—isTransitive 𝒰(L,R)isDedekindCut_\mathcal{U}(L, R) \coloneqq isBounded_\mathcal{U}(L, R) \times isOpen_\mathcal{U}(L, R) \times isRounded_\mathcal{U}(L, R) \times isLocated_\mathcal{U}(L, R) \times isTransitive_\mathcal{U}(L, R)

The type of Dedekind cuts of (L,R)(L, R)TT is a in a universe 𝒰\mathcal{U}-Dedekind cut𝒰\mathcal{U} if it comes with a term is defined asΞ΄:isDedekindCut 𝒰(L,R)\delta:isDedekindCut_\mathcal{U}(L, R).

DedekindCut 𝒰(T)β‰”βˆ‘ (L,R):Sub 𝒰(T)Γ—Sub 𝒰(T)isDedekindCut 𝒰(L,R)DedekindCut_\mathcal{U}(T) \coloneqq \sum_{(L, R):Sub_\mathcal{U}(T) \times Sub_\mathcal{U}(T)} isDedekindCut_\mathcal{U}(L, R)

The type of 𝒰\mathcal{U}-Dedekind cuts of TT in a universe 𝒰\mathcal{U} is defined as

DedekindCut 𝒰(T)β‰”βˆ‘ (L,R):Sub 𝒰(T)Γ—Sub 𝒰(T)isDedekindCut 𝒰(L,R)DedekindCut_\mathcal{U}(T) \coloneqq \sum_{(L, R):Sub_\mathcal{U}(T) \times Sub_\mathcal{U}(T)} isDedekindCut_\mathcal{U}(L, R)

Using sigma-frames

Given a type TT with a dense strict order <\lt, and a $\sigma$-frame Σ\Sigma, an open subtype is a function P:T→ΣP:T \to \Sigma. Given an open subtype P:T→ΣP:T \to \Sigma, let us define the following propositions:

isInhabited Ξ£(P)≔[fiber(P,⊀)]isInhabited_\Sigma(P) \coloneqq \left[fiber(P,\top)\right]
isDownwardsClosed Ξ£(P)β‰”βˆ a:fiber(P,⊀)∏ b:T(b<a)β†’(P(b)=⊀)isDownwardsClosed_\Sigma(P) \coloneqq \prod_{a:fiber(P,\top)} \prod_{b:T} (b \lt a) \to (P(b) = \top)
isUpwardsClosed Ξ£(P)β‰”βˆ a:fiber(P,⊀)∏ b:T(a<b)β†’(P(b)=⊀)isUpwardsClosed_\Sigma(P) \coloneqq \prod_{a:fiber(P,\top)} \prod_{b:T} (a \lt b) \to (P(b) = \top)
isDownwardsOpen Ξ£(P)β‰”βˆ a:fiber(P,⊀)β†’[βˆ‘ b:fiber(P,⊀)(a<b)]isDownwardsOpen_\Sigma(P) \coloneqq \prod_{a:fiber(P,\top)} \to \left[\sum_{b:fiber(P,\top)} (a \lt b)\right]
isUpwardsOpen Ξ£(P)β‰”βˆ a:fiber(P,⊀)β†’[βˆ‘ b:fiber(P,⊀)(b<a)]isUpwardsOpen_\Sigma(P) \coloneqq \prod_{a:fiber(P,\top)} \to \left[\sum_{b:fiber(P,\top)} (b \lt a)\right]

Given a pair of open subtypes (L,R):(Tβ†’Ξ£)Γ—(Tβ†’Ξ£)(L, R):(T \to \Sigma) \times (T \to \Sigma) in a universe 𝒰\mathcal{U}, let us define the following propositions:

isLocated Ξ£(L,R)β‰”βˆ a:T∏ b:T((a<b)β†’[(L(a)=⊀)+(R(b)=⊀)])isLocated_\Sigma(L, R) \coloneqq \prod_{a:T} \prod_{b:T} \left((a \lt b) \to \left[(L(a) = \top) + (R(b) = \top)\right]\right)
isTransitive Ξ£(L,R)β‰”βˆ a:fiber(L,⊀)∏ b:fiber(R,⊀)(a<b)isTransitive_\Sigma(L, R) \coloneqq \prod_{a:fiber(L,\top)} \prod_{b:fiber(R,\top)} (a \lt b)
isBounded Ξ£(L,R)≔isInhabited Ξ£(L)Γ—isInhabited Ξ£(R)isBounded_\Sigma(L, R) \coloneqq isInhabited_\Sigma(L) \times isInhabited_\Sigma(R)
isOpen Ξ£(L,R)≔isDownwardsOpen Ξ£(L)Γ—isUpwardsOpen Ξ£(R)isOpen_\Sigma(L, R) \coloneqq isDownwardsOpen_\Sigma(L) \times isUpwardsOpen_\Sigma(R)
isRounded Ξ£(L,R)≔isDownwardsClosed Ξ£(L)Γ—isUpwardsClosed Ξ£(R)isRounded_\Sigma(L, R) \coloneqq isDownwardsClosed_\Sigma(L) \times isUpwardsClosed_\Sigma(R)
isDedekindCut Ξ£(L,R)≔isBounded Ξ£(L,R)Γ—isOpen Ξ£(L,R)Γ—isRounded Ξ£(L,R)Γ—isLocated Ξ£(L,R)Γ—isTransitive Ξ£(L,R)isDedekindCut_\Sigma(L, R) \coloneqq isBounded_\Sigma(L, R) \times isOpen_\Sigma(L, R) \times isRounded_\Sigma(L, R) \times isLocated_\Sigma(L, R) \times isTransitive_\Sigma(L, R)

(L,R)(L, R) is a Ξ£\Sigma-Dedekind cut if it comes with a term Ξ΄:isDedekindCut Ξ£(L,R)\delta:isDedekindCut_\Sigma(L, R).

The type of Ξ£\Sigma-Dedekind cuts of TT for a Οƒ\sigma-frame Ξ£\Sigma is defined as

DedekindCut Ξ£(T)β‰”βˆ‘ (L,R):(Tβ†’Ξ£)Γ—(Tβ†’Ξ£)isDedekindCut Ξ£(L,R)DedekindCut_\Sigma(T) \coloneqq \sum_{(L, R):(T \to \Sigma) \times (T \to \Sigma)} isDedekindCut_\Sigma(L, R)

Β See also

References

Revision on April 21, 2022 at 21:14:48 by Anonymous?. See the history of this page for a list of all contributions to it.