Homotopy Type Theory decidable strict order > history (Rev #1)

Definition

Given a decidable setoid (A,≡)(A, \equiv) with decidable universal quantifiers

∀a.(−)(a):(A→𝟚)→𝟚\forall a.(-)(a):(A \to \mathbb{2}) \to \mathbb{2}
∀(a,b).(−)(a,b):(A×A→𝟚)→𝟚\forall (a,b).(-)(a,b):(A \times A \to \mathbb{2}) \to \mathbb{2}
∀(a,b,c).(−)(a,b,c):(A×A×A→𝟚)→𝟚\forall (a,b,c).(-)(a,b,c):(A \times A \times A \to \mathbb{2}) \to \mathbb{2}

a function (−)<(−):A×A→𝟚(-)\lt(-):A \times A \to \mathbb{2} is a decidable strict order (also called decidable strict total order, decidable strict linear order, or decidable pseudo-order) if it comes with

  • an identity

    Îč:∀a∈A.P(a)=1\iota: \forall a \in A.P(a) = 1

    representing the irreflexivity condition for the decidable binary relation, where the decidable predicate

    P(a)≔¬(a<a)P(a) \coloneqq \neg(a \lt a)
  • an identity

    Îș:∀(a,b,c).Q(a,b,c)=1\kappa: \forall (a, b, c).Q(a,b,c) = 1

    representing the comparison condition for the binary relation, where the decidable predicate

    Q(a,b,c)≔(a<c)⇒((a<b)∹(b<c))Q(a,b,c) \coloneqq (a \lt c) \implies ((a \lt b) \vee (b \lt c))
  • an identity

    γ:∀(a,b).R(a,b)=1\gamma: \forall (a, b).R(a,b) = 1

    representing the connectedness condition for the binary relation, where the decidable predicate

    R(a,b)≔¬((a<b)∧(b<a))⇒(a≡b)R(a,b) \coloneqq \neg((a \lt b) \wedge (b \lt a)) \implies (a \equiv b)
  • an identity

    α:∀(a,b).S(a,b)=1\alpha: \forall (a, b).S(a,b) = 1

    representing the asymmetry condition for the binary relation, where the decidable predicate

    S(a,b)≔(a<b)⇒¬(b<a)S(a,b) \coloneqq (a \lt b) \implies \neg(b \lt a)

AA is called a decidable strictly ordered type.

See also

Revision on April 28, 2022 at 04:12:10 by Anonymous?. See the history of this page for a list of all contributions to it.