Homotopy Type Theory compact closed dagger category > history (Rev #1)

Contents

Definition

A compact closed dagger category is a symmetric monoidal dagger category CC with

  • an object A *A^* called the dual for every object A:Ob(C)A:Ob(C)

  • for every object A:Ob(C)A:Ob(C), a morphism ι A R:ΙAA *\iota^R_A: \Iota \to A \otimes A^* called the right unit

  • for every object A:Ob(C)A:Ob(C), a morphism ι A L:ΙA *A\iota^L_A: \Iota \to A^* \otimes A called the left unit

  • for every object A:Ob(C)A:Ob(C), a morphism η A L:AA *Ι\eta^L_A: A \otimes A^* \to \Iota called the left counit

  • for every object A:Ob(C)A:Ob(C), a morphism η A R:A *AΙ\eta^R_A: A^* \otimes A \to \Iota called the right counit

  • a type family r:ι () R =η () Lr: {\iota^R_{(-)}}^\dagger = \eta^L_{(-)} with dependent terms r A:ι A R =η A Lr_A: {\iota^R_A}^\dagger = \eta^L_A for A:CA:C

  • a type family l:ι () L =η () Rl: {\iota^L_{(-)}}^\dagger = \eta^R_{(-)} with dependent terms l A:ι A L =η A Rl_A: {\iota^L_A}^\dagger = \eta^R_A for A:CA:C

  • a type family τ 1:ι () L()()η () L\tau^1:\iota^L_{(-)}(-) \circ (-)\eta^L_{(-)} with dependent terms τ A 1:ι A LAAη A L\tau^1_A:\iota^L_{A}A \circ A\eta^L_{A} for A:CA:C

  • a type family τ 2:ι () * R() *() *η () * R\tau^2:\iota^R_{(-)^*}(-)^* \circ (-)^*\eta^R_{(-)^*} with dependent terms τ A 2:ι A * RA *Aη A * R\tau^2_A:\iota^R_{A^*}A^* \circ A\eta^R_{A^*} for A:CA:C

  • a type family τ 3:()ι () Rη () R()\tau^3:(-)\iota^R_{(-)} \circ \eta^R_{(-)}(-) with dependent terms τ A 3:Aι A Rη A RA\tau^3_A:A\iota^R_{A} \circ \eta^R_{A}A for A:CA:C

  • a type family τ 4:() *ι () * Rη () * R() *\tau^4:(-)^*\iota^R_{(-)^*} \circ \eta^R_{(-)^*}(-)^* with dependent terms τ A 4:A *ι A * Rη A * RA *\tau^4_A:A^*\iota^R_{A^*} \circ \eta^R_{A^*}A^* for A:CA:C

Examples

(…)

See also

Revision on February 14, 2022 at 16:18:59 by Anonymous?. See the history of this page for a list of all contributions to it.