A coherent dagger 2-poset is a dagger 2-poset whose category of maps is a coherent category.
A coherent dagger 2-poset is a dagger 2-poset $C$ such that
There is an object $0:Ob(C)$ such that for each object $A:Ob(C)$, there is a functional dagger monomorphism $i_{0,A}:Hom(0,A)$ such that for each object $B:Ob(C)$ with a functional dagger monomorphism $i_{B,A}:Hom(B,A)$, there is a functional dagger monomorphism $i_{0,B}:Hom(0,B)$.
For each object $A:Ob(C)$, $B:Ob(C)$, $E:Ob(C)$ with functional dagger monomorphisms $i_{B,A}:Hom(B,A)$, $i_{E,A}:Hom(E,A)$, there is an object $B \cup E:Ob(C)$ with functional dagger monomorphisms $i_{B \cup E,A}:Hom(B \cup E,A)$, $i_{B,B \cup E}:Hom(B,B \cup E)$, $i_{E,B \cup E}:Hom(E,B \cup E)$, such that for every object $D:Ob(C)$ with functional dagger monomorphisms $i_{D,A}:Hom(D,A)$ $i_{B,D}:Hom(B,D)$, $i_{E,D}:Hom(E,D)$, there is a functional dagger monomorphism $i_{B \cup E,D}:Hom(B \cup E,D)$.
For each object $A:Ob(C)$, the identity function $1_A:Hom(A,A)$ is a functional dagger monomorphism, and for each object $B:Ob(C)$ with a functional dagger monomorphism $i_{B,A}:Hom(B,A)$, there is trivially the same functional dagger monomorphism $i_{B,A}:Hom(B,A)$.
For each object $A:Ob(C)$, $B:Ob(C)$, $E:Ob(C)$ with functional dagger monomorphisms $i_{B,A}:Hom(B,A)$, $i_{E,A}:Hom(E,A)$, there is an object $B \cap E:Ob(C)$ with functional dagger monomorphisms $i_{A,B \cap E}:Hom(A,B \cap E)$, $i_{B \cap E,B}:Hom(B \cap E,B)$, $i_{B \cap E,E}:Hom(B \cap E,E)$, such that for every object $D:Ob(C)$ with functional dagger monomorphisms $i_{D,A}:Hom(D,A)$ $i_{D,B}:Hom(D,B)$, $i_{D,E}:Hom(D,E)$, there is a functional dagger monomorphism $i_{D,B \cup E}:Hom(D,B \cup E)$.
For each object $A:Ob(C)$, $B:Ob(C)$, $D:Ob(C)$, $E:Ob(C)$ with functional dagger monomorphisms $i_{B,A}:Hom(B,A)$, $i_{D,A}:Hom(D,A)$, $i_{E,A}:Hom(E,A)$, there is a unitary isomorphism
The dagger 2-poset of sets and relations is a coherent dagger 2-poset.