Homotopy Type Theory Hausdorff ring > history (Rev #1)

Contents

Idea

Limits in the real numbers satisfy certain algebraic properties, while the usual notion of convergence space, Hausdorff space, and topological space are purely analytic.

 Definition

Let RR be a ring and a Hausdorff space.

Let II be a directed type and x:IRx:I \to R and y:IRy:I \to R be nets which converges to a:Ra:R and b:Rb:R respectively. By the definition of a function algebra, one could define pointwise the nets 00, x+yx + y, 11, x-x, xyx \cdot y for natural number nn. Let us denote the limit of a net as the partial function

lim i:I,i()(i):(IR)R\lim_{i:I, i \to \infty} (-)(i): (I \to R) \to R

RR is a Hausdorff ring if the limit of a net partial function preserves the ring operations, provided the limit exists:

p 0:lim i:I,i0(i)=0p_{0}:\lim_{i:I, i \to \infty} 0(i) = 0
x:IR,y:IR,lim i:I,ix(i):R,lim i:I,iy(i):Rp +(x,y):lim i:I,i(x+y)(i)=lim i:I,ix(i)+lim i:I,iy(i)x: I\to R, y:I \to R, \lim_{i:I, i \to \infty} x(i):R, \lim_{i:I, i \to \infty} y(i):R \vdash p_{+}(x, y):\lim_{i:I, i \to \infty} (x + y)(i) = \lim_{i:I, i \to \infty} x(i) + \lim_{i:I, i \to \infty} y(i)
x:IR,lim i:I,ix(i):Rp (x):lim i:I,i(x)(i)=lim i:I,ix(i)x: I\to R, \lim_{i:I, i \to \infty} x(i):R \vdash p_{-}(x):\lim_{i:I, i \to \infty} (-x)(i) = -\lim_{i:I, i \to \infty} x(i)
p 1:lim i:I,i1(i)=1p_{1}:\lim_{i:I, i \to \infty} 1(i) = 1
x:IR,y:IR,lim i:I,ix(i):R,lim i:I,iy(i):Rp (x,y):lim i:I,i(xy)(i)=lim i:I,ix(i)lim i:I,iy(i)x: I\to R, y:I \to R, \lim_{i:I, i \to \infty} x(i):R, \lim_{i:I, i \to \infty} y(i):R \vdash p_{\cdot}(x, y):\lim_{i:I, i \to \infty} (x \cdot y)(i) = \lim_{i:I, i \to \infty} x(i) \cdot \lim_{i:I, i \to \infty} y(i)

See also

Revision on April 15, 2022 at 01:38:19 by Anonymous?. See the history of this page for a list of all contributions to it.