Homotopy Type Theory Eudoxus real numbers > history (Rev #1)

Definition

Let the proposition that an endofunction f:f:\mathbb{Z} \to \mathbb{Z} over the integers is bounded be defined as follows:

isBounded(f) C: m:|f(m)|<CisBounded(f) \coloneqq \left\Vert \sum_{C:\mathbb{Z}} \prod_{m:\mathbb{Z}} \vert f(m) \vert \lt C \ \right\Vert

and let the proposition that ff is almost linear be defined as follows:

isAlmostLinear(f) C: m: n:|f(m+n)f(m)f(n)|<CisAlmostLinear(f) \coloneqq \left\Vert \sum_{C:\mathbb{Z}} \prod_{m:\mathbb{Z}} \prod_{n:\mathbb{Z}} \vert f(m + n) - f(m) - f(n) \vert \lt C \ \right\Vert

Let the type of almost linear endofunctions over the integers be defined as

AL() f:isAlmostLinear(f)AL(\mathbb{Z}) \coloneqq \sum_{f:\mathbb{Z} \to \mathbb{Z}} isAlmostLinear(f)

The type of Eudoxus real numbers, denoted as \mathbb{R}, is a higher inductive type generated by:

  • a function inj:AL()inj: AL(\mathbb{Z}) \to \mathbb{R}

  • a dependent product of functions from propositions to identities:

η: f:AL() g:AL()isBounded(fg)(inj(f)=inj(g)) \eta : \prod_{f:AL(\mathbb{Z})} \prod_{g:AL(\mathbb{Z})} isBounded(f - g) \to (inj(f) = inj(g))
  • A set-truncator
    τ 0: a: b:isProp(a=b)\tau_0: \prod_{a:\mathbb{R}} \prod_{b:\mathbb{R}} isProp(a=b)

See also

References

Revision on February 26, 2022 at 21:56:26 by Anonymous?. See the history of this page for a list of all contributions to it.