Homotopy Type Theory Dedekind cut structure > history (Rev #2)

Defintion

Using the type of subsets in a universe

Given a type TT with a dense strict order <\lt and a pair of subtypes (L,R):Sub 𝒰(T)×Sub 𝒰(T)(L, R):Sub_\mathcal{U}(T) \times Sub_\mathcal{U}(T) in a universe 𝒰\mathcal{U} with monic functions i L:𝒯 𝒰(L)Ti_L:\mathcal{T}_\mathcal{U}(L) \to T and i R:𝒯 𝒰(R)Ti_R:\mathcal{T}_\mathcal{U}(R) \to T, let us define the following propositions:

DownwardsCloser 𝒰(L) a:𝒯 𝒰(L) b:T((b<a) c:𝒯 𝒰(L)ι L(c)=b)DownwardsCloser_\mathcal{U}(L) \coloneqq \prod_{a:\mathcal{T}_\mathcal{U}(L)} \prod_{b:T} \left((b \lt a) \to \sum_{c:\mathcal{T}_\mathcal{U}(L)} \iota_L(c) = b\right)
UpwardsCloser 𝒰(R) a:𝒯 𝒰(R) b:T((a<b) c:𝒯 𝒰(R)ι R(c)=b)UpwardsCloser_\mathcal{U}(R) \coloneqq \prod_{a:\mathcal{T}_\mathcal{U}(R)} \prod_{b:T} \left((a \lt b) \to \sum_{c:\mathcal{T}_\mathcal{U}(R)} \iota_R(c) = b\right)
DownwardsOpener 𝒰(L) a:𝒯 𝒰(L) b:𝒯 𝒰(L)a<bDownwardsOpener_\mathcal{U}(L) \coloneqq \prod_{a:\mathcal{T}_\mathcal{U}(L)} \sum_{b:\mathcal{T}_\mathcal{U}(L)} a \lt b
UpwardsOpener 𝒰(R) a:𝒯 𝒰(R) b:𝒯 𝒰(R)b<aUpwardsOpener_\mathcal{U}(R) \coloneqq \prod_{a:\mathcal{T}_\mathcal{U}(R)} \sum_{b:\mathcal{T}_\mathcal{U}(R)} b \lt a
Locator 𝒰(L,R) a:T b:T((a<b) c:𝒯 𝒰(L)ι L(c)=a+ c:𝒯 𝒰(R)ι R(c)=b)Locator_\mathcal{U}(L, R) \coloneqq \prod_{a:T} \prod_{b:T} \left((a \lt b) \to \sum_{c:\mathcal{T}_\mathcal{U}(L)} \iota_L(c) = a + \sum_{c:\mathcal{T}_\mathcal{U}(R)} \iota_R(c) = b\right)
isTransitive 𝒰(L,R) a:𝒯 𝒰(L) b:𝒯 𝒰(R)(i L(a)<i L(b))isTransitive_\mathcal{U}(L, R) \coloneqq \prod_{a:\mathcal{T}_\mathcal{U}(L)} \prod_{b:\mathcal{T}_\mathcal{U}(R)} (i_L(a) \lt i_L(b))
Bounder 𝒰(L,R)𝒯 𝒰(L)×𝒯 𝒰(R)Bounder_\mathcal{U}(L, R) \coloneqq \mathcal{T}_\mathcal{U}(L) \times \mathcal{T}_\mathcal{U}(R)
Rounder 𝒰(L,R)DownwardsCloser 𝒰(L)×UpwardsCloser 𝒰(R)Rounder_\mathcal{U}(L, R) \coloneqq DownwardsCloser_\mathcal{U}(L) \times UpwardsCloser_\mathcal{U}(R)
Opener 𝒰(L,R)DownwardsOpener 𝒰(L)×UpwardsOpener 𝒰(R)Opener_\mathcal{U}(L, R) \coloneqq DownwardsOpener_\mathcal{U}(L) \times UpwardsOpener_\mathcal{U}(R)

Using sigma-frames

Type of Dedekind cut structures

The type of Dedekind cut structures on (L,R)(L, R) is defined as

DedekindCutStructure 𝒰(L,R)Bounder 𝒰(L,R)×Rounder 𝒰(L,R)×Opener 𝒰(L,R)×Locator 𝒰(L,R)×isTransitive 𝒰(L,R)DedekindCutStructure_\mathcal{U}(L, R) \coloneqq Bounder_\mathcal{U}(L, R) \times Rounder_\mathcal{U}(L, R) \times Opener_\mathcal{U}(L, R) \times Locator_\mathcal{U}(L, R) \times isTransitive_\mathcal{U}(L, R)

A Dedekind cut structure on (L,R)(L, R) is simply a term Δ:DedekindCutStructure 𝒰(L,R)\Delta:DedekindCutStructure_\mathcal{U}(L, R).

(L,R)(L, R) is said to have a Dedekind cut structure if there is a term δ:[DedekindCutStructure 𝒰(L,R)]\delta:\left[DedekindCutStructure_\mathcal{U}(L, R)\right].

See also

Revision on April 21, 2022 at 19:46:24 by Anonymous?. See the history of this page for a list of all contributions to it.