Homotopy Type Theory Cauchy structure > history (Rev #12)

Contents

Whenever editing is allowed on the nLab again, this article should be ported over there.

Definition

In set theory

A Cauchy structure is a premetric space SS with a function ratS +rat \in S^{\mathbb{Q}_{+}} and a function limS C(S)lim \in S^{C(S)} such that

aS.bS.((ϵ +.a ϵb)a=b)\forall a \in S.\forall b \in S.((\forall \epsilon \in \mathbb{Q}_{+}.a \sim_\epsilon b) \implies a = b)
a.b.ϵ +.(|ab|<ϵrat(a) ϵrat(b))\forall a \in \mathbb{Q}.\forall b \in \mathbb{Q}.\forall \epsilon \in \mathbb{Q}_{+}.(\vert a - b \vert \lt \epsilon \implies rat(a) \sim_\epsilon rat(b))
a.bC(S).ϵ +.η +.(rat(a) ϵb(η)rat(a) ϵ+ηlim(b))\forall a \in \mathbb{Q}.\forall b \in C(S).\forall \epsilon \in \mathbb{Q}_{+}.\forall \eta \in \mathbb{Q}_{+}.(rat(a) \sim_\epsilon b(\eta) \implies rat(a) \sim_{\epsilon + \eta} lim(b))
aC(S).b.ϵ +.δ +.(a(δ) ϵrat(b)lim(a) δ+ϵrat(b))\forall a \in C(S).\forall b \in \mathbb{Q}.\forall \epsilon \in \mathbb{Q}_{+}.\forall \delta \in \mathbb{Q}_{+}.(a(\delta) \sim_\epsilon rat(b) \implies lim(a) \sim_{\delta + \epsilon} rat(b))
aC(S).bC(S).ϵ +.δ +.η +.(a(δ) ϵb(η)lim(a) δ+ϵ+ηlim(b))\forall a \in C(S).\forall b \in C(S).\forall \epsilon \in \mathbb{Q}_{+}.\forall \delta \in \mathbb{Q}_{+}.\forall \eta \in \mathbb{Q}_{+}.(a(\delta) \sim_\epsilon b(\eta) \implies lim(a) \sim_{\delta + \epsilon + \eta} lim(b))

For two Cauchy structures SS and TT, a Cauchy structure homomorphism is a function fT Sf\in T^S such that

aS.bS.ϵ +.(a ϵb)(f(a) ϵf(b))\forall a \in S.\forall b \in S.\forall \epsilon \in \mathbb{Q}_{+}.(a \sim_{\epsilon} b) \to (f(a) \sim_{\epsilon} f(b))
r.f(rat(r))=rat(r)\forall r\in \mathbb{Q}.f(rat(r)) = rat(r)
rC(S).f(lim(r))=lim(fr)\forall r\in C(S).f(lim(r)) = lim(f \circ r)
aS.bS.(((ϵ +.a ϵb)a=b)((ϵ +.f(a) ϵf(b))f(a)=f(b))\forall a \in S.\forall b \in S.(((\forall \epsilon \in \mathbb{Q}_{+}.a \sim_\epsilon b) \implies a = b) \implies ((\forall \epsilon \in \mathbb{Q}_{+}.f(a) \sim_\epsilon f(b)) \implies f(a) = f(b))

In homotopy type theory

Let RR be a dense integral subdomain of the rational numbers \mathbb{Q} and let R +R_{+} be the positive terms of RR.

An R +R_{+}-Cauchy structure is a R +R_{+}-premetric space SS with

  • a function inj:RSinj: R \to S

  • a function lim:C(S,R +)Slim: C(S, R_{+}) \to S, where C(S,R +)C(S, R_{+}) is the type of R +R_{+}-Cauchy approximations in SS

  • dependent families of terms

a:S,b:Seq(a,b): ϵ:R +(a ϵb)(a= Sb)a:S, b:S \vdash eq(a, b): \Vert \prod_{\epsilon:R_{+}} (a \sim_{\epsilon} b) \Vert \to (a =_S b)
a:R,b:R,ϵ:R +μ R,R(a,b,ϵ):(|ab|<ϵ)(inj(a) ϵinj(b))a:R, b:R, \epsilon:R_{+} \vdash \mu_{R, R}(a, b, \epsilon): (\vert a - b \vert \lt \epsilon) \to (inj(a) \sim_{\epsilon} inj(b))
a:R,b:C S(R +),ϵ:R +,η:R +μ R,C(S,R +)(a,b,ϵ,η):(inj(a) ϵb η)(inj(a) ϵ+ηlim(b))a:R, b:C_{S}(R_{+}), \epsilon:R_{+}, \eta:R_{+} \vdash \mu_{R, C(S, R_{+})}(a, b, \epsilon, \eta): (inj(a) \sim_{\epsilon} b_{\eta}) \to (inj(a) \sim_{\epsilon + \eta} lim(b))
a:C(S,R +),b:R,δ:R +,ϵ:R +μ C(S,R +),R(a,b,δ,ϵ):(a δ ϵinj(b))(lim(a) δ+ϵinj(b))a:C(S, R_{+}), b:R, \delta:R_{+}, \epsilon:R_{+} \vdash \mu_{C(S, R_{+}), R}(a, b, \delta, \epsilon): (a_{\delta} \sim_{\epsilon} inj(b) ) \to (lim(a) \sim_{\delta + \epsilon} inj(b))
a:C(S,R +),b:C(S,R +),δ:R +,ϵ:R +,η:R +μ C(S,R +),C(S,R +)(a,b,δ,ϵ,η):(a δ ϵb η)(lim(a) δ+ϵ+ηlim(b))a:C(S, R_{+}), b:C(S, R_{+}), \delta:R_{+}, \epsilon:R_{+}, \eta:R_{+} \vdash \mu_{C(S, R_{+}), C(S, R_{+})}(a, b, \delta, \epsilon, \eta): (a_{\delta} \sim_{\epsilon} b_{\eta} ) \to (lim(a) \sim_{\delta + \epsilon + \eta} lim(b))

For two R +R_{+}-Cauchy structures SS and TT, a R +R_{+}-Cauchy structure homomorphism consists of

  • a function f:STf:S \to T

  • a dependent family of functions

    a:S,b:S,ϵ:R +π(a,b,ϵ):(a Sϵb)(f(a) Tϵf(b))a:S, b:S, \epsilon:R_{+} \vdash \pi(a, b, \epsilon): (a \sim_{S\epsilon} b) \to (f(a) \sim_{T\epsilon} f(b))
  • a dependent family of types

    r:Rι(r):f(inj S(r))=inj T(r)r:R \vdash \iota(r): f(inj_S(r)) = inj_T(r)
  • a dependent family of types

    r:C(S,R +)λ(r):f(lim S(r))=lim T(fr)r:C(S, R_{+}) \vdash \lambda(r): f(lim_S(r)) = lim_T(f \circ r)
  • a dependent family of types

    a:S,b:S,c: ϵ:R +(a ϵb)η(a,b,c):f(eq S(a,b,c))=eq T(f(a),f(b),f(c))a:S, b:S, c:\Vert \prod_{\epsilon:R_{+}} (a \sim_{\epsilon} b) \Vert \vdash \eta(a, b, c): f(eq_S(a, b, c)) = eq_T(f(a), f(b), f(c))

See also

References

  • Auke B. Booij, Analysis in univalent type theory (pdf)

Revision on April 13, 2022 at 22:00:44 by Anonymous?. See the history of this page for a list of all contributions to it.