Homotopy Type Theory Cauchy net > history (Rev #8)

Contents

Definition

In premetric spaces

Let TT be a directed type, and let SS be a TT-premetric space. Given a directed type II, a net x:ISx: I \to S is a Cauchy net if

x:ISc(x): ϵ:T N:I i:I j:I(iN)×(jN)×(x i ϵx j)x:I \to S \vdash c(x):\prod_{\epsilon:T} \Vert \sum_{N:I} \prod_{i:I} \prod_{j:I} (i \geq N) \times (j \geq N) \times (x_i \sim_{\epsilon} x_j) \Vert

Cauchy approximations

Let AA be a dense Archimedean ordered abelian group with a point 1:A1:A and a term ζ:0<1\zeta: 0 \lt 1. Let A + a:A(0<a)A_{+} \coloneqq \sum_{a:A} (0 \lt a) be the positive cone? of AA.

A net x:A +Sx: A_{+} \to S is a A +A_{+}-Cauchy approximation if

x:R +Sc(x): δ:R + η:R +x δ δ+ηx ηx:R_{+} \to S \vdash c(x):\prod_{\delta:R_{+}} \prod_{\eta:R_{+}} x_\delta \sim_{\delta + \eta} x_\eta

Every A +A_{+}-Cauchy approximation is a Cauchy net indexed by A +A_{+}. This is because A +A_{+} is a strictly ordered type, and thus a directed type and a strictly codirected type, with N:A +N:A_{+} defined as NδηN \coloneqq \delta \otimes \eta for δ:A +\delta:A_{+} and η:A +\eta:A_{+}. ϵ:R +\epsilon:R_{+} is defined as ϵ+δ+η\epsilon + \delta + \eta.

In Cauchy spaces

Cauchy sequences

A Cauchy sequence is a Cauchy net whose index type is the natural numbers \mathbb{N}.

See also

Revision on March 12, 2022 at 22:10:31 by Anonymous?. See the history of this page for a list of all contributions to it.