Regular logic and regular fibrations*

Finn Lawler
flawler@cs.tcd.ie

April 26, 2011

1 Regular fibrations

A regular fibration is a bifibration with fibred finite products, or equivalently a pseudofunctor $R: B^{\text {op }} \rightarrow \mathbf{C a t}$, out of a category with finite products, that takes values in categories with finite products and where each $f^{*}=R f$ has a left adjoint \exists_{f} and (hence) preserves finite products. The latter condition is vacuous because the f^{*} are right adjoints, but we may also want to deal with those nearly-regular bifibrations where the base category has finite products but the fibres are merely monoidal, and in this case it is important to require that the f^{*} are strong monoidal (of course, they are automatically lax monoidal by virtue of being right adjoints).

A morphism of regular fibrations is the obvious thing: a product-preserving morphism of fibrations.

Our regular fibrations are those of [Pav96]. A very similar definition is given in [Jac99], the only difference being that the latter sort of regular fibration is required to have all fibres preordered.

The connection with regular categories is that a category \mathbf{C} is regular if and only if the projection cod: Mon $\mathbf{C} \rightarrow \mathbf{C}$ that sends $S \hookrightarrow X$ to X is a regular fibration. For our purposes, a regular category is one that has finite limits and pullback-stable images.

If \mathbf{C} is a regular category, then the adjunctions $\exists_{f} \dashv f^{*}$ come from pullbacks and images in \mathbf{C} [Joh02, lemma 1.3.1] as does the Frobenius property [op. cit., lemma 1.3.3]. The terminal object of $\operatorname{Sub}(X)=\operatorname{Mon}(\mathbf{C})_{X}$ is the identity 1_{X} on X, and binary products in the fibres $\operatorname{Sub}(X)$ are given by pullback. The products are preserved by reindexing functors f^{*} because (the f^{*} are right adjoints but also because) a cone over the diagram for $f^{*}\left(S \wedge S^{\prime}\right)$ can be rearranged into a cone over that for $f^{*} S \wedge f^{*} S^{\prime}$, giving the two the same universal property. The projection cod clearly preserves these products. The Beck-Chevalley condition follows from pullback-stability of images in \mathbf{C}.

Conversely, suppose Mon $\mathbf{C} \rightarrow \mathbf{C}$ is a regular fibration. We need to show that \mathbf{C} has equalizers (to get finite limits) and pullback-stable images. But the equalizer of $f, g: A \rightrightarrows B$ is $(f, g)^{*} \Delta$. For images, let $\operatorname{im} f=\exists_{f} 1$ as in [Joh02, lemma 1.3.1]. Pullback-stability follows from the Beck-Chevalley condition.

* Draft notes - please do not cite.

2 Regular logic

Regular logic is the fragment of first-order predicate logic that uses only the connectives \top for truth, \wedge for conjunction and \exists for existential quantification. We will mostly follow [See83].

2.1 Language

A (regular) signature is a collection X, Y, \ldots of sorts, together with a collection of typed predicate and function symbols. A type is a finite sequence X_{1}, X_{2}, \ldots of sorts, and types will also be denoted X, Y, \ldots. If P is a predicate of type X we may write $P: X$, and similarly $f: X \rightarrow Y$ indicates the type of f. Every signature contains at least the equality predicate $=_{X}: X, X$.

We assume given an inexhaustible supply of free variables $x, x^{\prime}, y, y^{\prime} \ldots$ and bound variables $\xi, \xi^{\prime}, v, v^{\prime} \ldots$ of each sort, with the notation extended to types so that a variable of type X, Y is the same as a pair x, y of variables of sorts X and Y. A context is a finite list $x: X, y: Y, \ldots$ of sorted variables, or equivalently a single variable $z: X, Y, \ldots$.

A term is either a variable, a tuple of terms or a function symbol f applied to a term, all with the obvious well-typedness constraints. Every term lives in a context, which is assumed to contain every variable in the term, perhaps together with 'dummy' variables that don't. We write $t[x]$ to indicate that x is the context of t, and $t[s]$ to denote the obvious substitution.

A formula is either the constant \top, a predicate symbol $P(t)$ applied to a term, the conjunction $\phi \wedge \psi$ of two formulas, a quantified formula $\exists \xi . \phi$ or the substitution $\phi[t]$ of the term t into the formula ϕ, defined in the usual way. Every formula lives in a context, which we assume contains (perhaps strictly) all of its free variables, and we write $\phi[x]$ for this.

2.2 Logic

We will use the usual natural-deduction rules. Conjunction is governed by

$$
\frac{\phi \quad \psi}{\phi \wedge \psi} \quad \frac{\phi \wedge \psi}{\phi} \quad \frac{\phi \wedge \psi}{\psi}
$$

truth by

$$
\frac{\phi}{T}
$$

existentials by

where on the right x is not free in ψ, and equality by

$$
\overline{t=t} \quad \frac{t=s \quad \phi[t]}{\phi[s]}
$$

The notion of context is easily extended to derivations. Observe that the rules for \exists are the only rules that do not preserve the contexts of formulas.

Derivations using these rules may be composed:

			ϕ	
ϕ		ψ		\vdots
\vdots	,	\vdots	\mapsto	ψ
ψ		χ		\vdots
			χ	

as long as both derivations have the same context, and this composition is clearly associative, with units the identity derivations ϕ. We may write $p: \phi \xlongequal{x} \psi$ to indicate that p is a derivation of ψ from the assumption ϕ with context x, and thus arrive at the rules

$$
\frac{p: \phi \xlongequal{1_{\phi}: \phi} \neq \psi \xrightarrow[\Longrightarrow]{\Longrightarrow} \phi}{q \circ p: \phi \xlongequal{\Longrightarrow} \chi}
$$

The substitution $p[t]$ of a term $t: Y \rightarrow X$ into a derivation $p[x]$ with x free is defined in the obvious way, and an induction over the structure of derivations shows that the 'substitute t ' mapping t^{*} is a functor from the category of derivations in the context x to derivations in the context y that commutes with the finite-product structure given by the following.

If $p_{i}: \phi \xrightarrow{x} \psi_{i}$ for $i=1,2$, then we may use the \wedge-introduction rule to form a derivation $\left\langle p_{1}, p_{2}\right\rangle: \phi \xlongequal{x} \psi_{1} \wedge \psi_{2}$, and conversely given a derivation p of the latter type the elimination rules give $\pi_{i} \circ p: \phi \stackrel{x}{\Longrightarrow} \psi_{i}$. Imposing the (β - and η-)equalities

$$
\pi_{i}\left\langle p_{1}, p_{2}\right\rangle=p_{i} \quad\left\langle\pi_{1} p, \pi_{2} p\right\rangle=p
$$

then gives a 'bijective' rule

$$
\xlongequal[{\left\langle p_{1}, p_{2}\right\rangle: \phi \xlongequal{p_{1}: \phi \stackrel{x}{\Longrightarrow} \psi_{1} \quad p_{1} \wedge \phi \not \psi_{2}} \xlongequal{x} \psi_{2}}]{\xlongequal{\Longrightarrow}}
$$

where to move from bottom to top we compose with π_{i}, and this gives binary products in each category of derivations. As for T, we will say that any derivation $p: \phi \xrightarrow{x} \top$ is equal to the canonical $!_{\phi}: \phi \xrightarrow{x} \top$, making \top the terminal object in each category of derivations.

Similarly, there is a β rule for equality:

$$
\begin{array}{cc}
& \vdots \\
\frac{t=t}{t=[t]} & \phi[t] \\
& = \\
\phi[t]
\end{array}
$$

and an η rule:

$$
\begin{gathered}
p \vdots \\
t=t^{\prime} \\
q\left[t, t^{\prime}\right] \vdots \\
\phi\left[t, t^{\prime}\right]
\end{gathered} \quad=\begin{array}{cc}
\overline{t=t} \\
\vdots & \\
\frac{t=t^{\prime}}{} \quad \phi[t, t] \vdots \\
\phi\left[t, t^{\prime}\right]
\end{array}
$$

and these set up a bijection

$$
\begin{equation*}
\frac{\phi, x=x^{\prime} \xrightarrow{\underline{x, x^{\prime}}} \psi\left[x, x^{\prime}\right]}{\phi \xrightarrow{x} \psi[x, x]} \tag{*}
\end{equation*}
$$

between derivations of the indicated types [Jac99]. There is also a 'coherence' rule

$$
\begin{array}{cc}
\vdots \\
\frac{t=t}{\frac{T}{t=t}}
\end{array}=\quad \begin{gathered}
\vdots \\
t=t
\end{gathered}
$$

which makes sure that $\top_{X} \equiv x=x$, so that $x=x$ is the terminal object in the category of derivations over X.

A (regular) theory over a signature is given by a collection of axioms (derivation constants) together with a collection of equations between derivations built from those axioms and the above rules. The terms of a signature, together with the equational axioms $t=t^{\prime}$ of a theory over that signature, give rise to a category B_{T} with finite products - the 'multisorted Lawvere theory' associated to the theory. In this category an object is a type $X_{1}, X_{2}, \ldots, X_{n}$, and a morphism from $X_{1}, X_{2}, \ldots, X_{n}$ to $Y_{1}, Y_{2}, \ldots, Y_{m}$ is given by an m-tuple $\left\langle t_{1}, t_{2}, \ldots, t_{m}\right\rangle$ of terms, where each $t_{i}: X_{1}, X_{2}, \ldots, X_{n} \rightarrow Y_{i}$. Thus a theory T gives rise to a pseudofunctor $T: B_{T}{ }^{\text {op }} \rightarrow$ Cat, which takes a type to the finite-product category of formulas and terms whose context is of that type, and takes a term $t: X \rightarrow Y$ to the substitution functor $t^{*}: T_{Y} \rightarrow T_{X}$.

We want to show that a regular theory T gives rise to a bifibration $E_{T} \rightarrow B_{T}$, that is, that for each term $t: X \rightarrow Y$, the functor t^{*} has a left adjoint \exists_{t}. Define the latter on formulas as

$$
\exists_{t} \phi=\exists \xi \cdot(t[\xi]=y \wedge \phi[\xi])
$$

Let $t: X \rightarrow Y$ be any term; it suffices to show that for any $\phi[x]$ of type X there is a universal $\eta_{\phi}^{t}: \phi \xlongequal{x} t^{*} \exists_{t} \phi$; that is, for any equivalence class of proofs $p: \phi \xrightarrow{x} t^{*} \psi$, there is a unique $\hat{p}: \exists_{t} \phi \xrightarrow{y} \psi$ such that $t^{*} \hat{p} \circ \eta_{\phi}^{t}$ is equal to p. The derivation η_{ϕ}^{t} is obtained by forming the derivation

$$
\frac{x=x^{\prime} \quad \overline{t[x]=t[x]}}{\frac{t\left[x^{\prime}\right]=t[x]}{\frac{t\left[x^{\prime}\right]=t[x] \wedge \phi\left[x^{\prime}\right]}{\exists \xi \cdot(t[\xi]=t[x] \wedge \phi[\xi])}} \frac{\phi\left[x^{\prime}\right]}{\phi[x]}}
$$

of type $\phi[x], x=x^{\prime} \stackrel{x, x^{\prime}}{\Longrightarrow} t^{*} \exists_{t} \phi$ and using the bijection $(*)$ above to get rid of the hypothesis $x=x^{\prime}$. Given $p: \phi \xlongequal{x} t^{*} \psi$, let \hat{p} be

$$
\begin{aligned}
& \frac{\overline{t[x]=y \wedge \phi[x]}}{\phi[x]} \\
& \frac{\exists \xi \cdot(t[\xi]=y \wedge \phi[\xi])}{\psi} \begin{array}{cc}
\frac{t[x]=y \wedge \phi[x]}{t[x]=y} & \vdots \\
\psi[y] & \psi[t[x]] \\
\hline
\end{array}
\end{aligned}
$$

The β and η equalities given above show that the composite $t^{*} \hat{p} \circ \eta_{\phi}^{t}$ is equal to p, and uniqueness of \hat{p} follows from the normal form theorem for natural deduction [Pra06]. So we have another bijection

$$
\frac{\exists_{t} \phi \xlongequal{y} \psi}{\phi \xlongequal{x} t^{*} \psi}
$$

In particular, we have the usual rewriting rules, as given in [See83]:

\bar{p}	$\overline{\phi[x]}$		$p \vdots$
$\frac{\phi[t]}{\exists \xi \cdot \phi[\xi]}$	$\vdots q[x]$	$=$	$\phi[t]$
$\frac{\psi}{\psi}$		$q[t] \vdots$	
			ψ

and

For $E_{T} \rightarrow B_{T}$ to be a regular fibration, it must satisfy the Frobenius and Beck-Chevalley conditions. The former means that for any term t the canonical $\operatorname{map} \exists_{t}\left(\phi \wedge t^{*} \psi\right) \xrightarrow{y}\left(\exists_{t} \phi\right) \wedge \psi$ is an isomorphism. This canonical map is given [Joh02, definition D1.3.1(i)] by

$$
\begin{aligned}
\frac{\phi \wedge t^{*} \psi \xlongequal{x} t^{*} \psi}{\exists_{t}\left(\phi \wedge t^{*} \psi\right) \xlongequal{y} \psi} & \stackrel{\phi \wedge t^{*} \psi \xlongequal{x} \phi}{\nmid} \begin{array}{l}
\exists_{t} \phi \xlongequal{y} \exists_{t} \phi \\
\exists_{t}\left(\phi \wedge t^{*} \psi\right) \\
t^{*} \exists_{t} \phi \\
\Longrightarrow \\
\exists_{t}\left(\phi \wedge t^{*} \psi\right) \xlongequal{x}\left(\exists_{t} \phi\right) \wedge \psi
\end{array} \exists_{t} \phi
\end{aligned}
$$

So we must insist that in B_{T} the above proof, call it f, have a formal inverse $f^{-1}:\left(\exists_{t} \phi\right) \wedge \psi \xlongequal{x} \exists_{t}\left(\phi \wedge t^{*} \psi\right)$, adding to the equations above $f^{-1} f=1$ and $f f^{-1}=1$.

The Beck-Chevalley condition asks that for any pullback $t u=s v$ in B_{T}, the mate of the isomorphism $u^{*} t^{*} \cong v^{*} s^{*}$ in Cat is again invertible. Now B_{T} need
not have all pullbacks, but there are some that it must have by virtue of having finite products:

and

$$
\begin{aligned}
& Y^{\prime} \times X \xrightarrow[Y^{\prime} \times t]{ } Y^{\prime} \times Y
\end{aligned}
$$

Also, if $t u=s v$ is a pullback, then so is its product with any object:

By [See83, Theorem, §8], if a hyperdoctrine satisfies Beck-Chevalley for these types of pullback, then it satisfies the condition for any pullback $t u=s v$ if and only if it proves

$$
t[m]=s\left[m^{\prime}\right] \Longrightarrow \exists \xi \cdot\left(u[\xi]=m \wedge v[\xi]=m^{\prime}\right)
$$

and

$$
u[p]=u\left[p^{\prime}\right], v[p]=v\left[p^{\prime}\right] \Longrightarrow p=p^{\prime}
$$

that is, if the hyperdoctrine 'knows' that the diagram is a pullback. Seely's proof goes through unchanged for a bifibration with fibred finite products, like our T.

The Beck-Chevalley condition for (B) asks that η^{Δ} be invertible. An inverse is given by

That this derivation is a left inverse for η_{ϕ}^{Δ} is easy to show, using the β reductions given above, and conversely that it is a right inverse follows from the η-reductions for \wedge, \exists and $=$.

As for the other types of pullback, the Beck-Chevalley condition for these is shown as in [See83, §4]. So in order to prove that the syntactic model $T: B_{T}{ }^{\mathrm{op}} \rightarrow$ Cat satisfies the full condition, it suffices to show that T recognizes pullbacks in the sense above. But this is practically trivial: for a pullback $t u=s v$ in B_{T},
the mediating morphism automatically exists for any commuting square over t and s, while the second sequent follows from its uniqueness.

We can now perform the usual rites of categorical logic: a model of a regular theory T in a regular fibration $E \rightarrow B$ is a morphism of regular fibrations from $E_{T} \rightarrow B_{T}$ to $E \rightarrow B$, and it is easy to see that this is equivalent to the traditional notion. Soundness is automatic, as is completeness, because if a sequent is true in every model then it is true in the syntactic model and thence provable.

References

[Jac99] Bart Jacobs. Categorical Logic and Type Theory. Elsevier, 1999.
[Joh02] Peter Johnstone. Sketches of an Elephant: A Topos Theory Compendium. Oxford University Press, 2002.
[Pav96] Duško Pavlović. Maps II: Chasing diagrams in categorical proof theory. Logic Journal of the IGPL, 4(2):159-194, 1996.
[Pra06] Dag Prawitz. Natural Deduction: A Proof-Theoretical Study. Dover, 2006. Reprint of 1965 Almqvist \& Wiksell edition.
[See83] R. A. G. Seely. Hyperdoctrines, natural deduction and the Beck condition. Zeit. für math. Logik und Grundlagen der Math., 1983.

