Baez-Muniain Exercise 1: This is just basic vector calculus: Since \mathbf{E}, \mathbf{k} are constant, and $\mathbf{E} \cdot \mathbf{k}=0$, we have

$$
\nabla \cdot \mathbf{E} e^{-i(\omega t-\mathbf{k} \cdot \mathbf{x})}=\mathbf{E} \cdot \nabla e^{-i(\omega t-\mathbf{k} \cdot \mathbf{x})}=i(\mathbf{E} \cdot \mathbf{k}) e^{-i(\omega t-\mathbf{k} \cdot \mathbf{x})}=0
$$

Further, wasting some time, then checking out the errata at http://math.ucr.edu/home/baez/errata.html, and using $i \mathbf{k} \times \mathbf{E}=\omega \mathbf{E}$ instead the relation stated in Exercise 1,
$\nabla \times\left(e^{-i(\omega t-\mathbf{k} \cdot \mathbf{x})} \mathbf{E}\right)=\left(\nabla e^{-i(\omega t-\mathbf{k} \cdot \mathbf{x})}\right) \times \mathbf{E}=i \mathbf{k} e^{-i(\omega t-\mathbf{k} \cdot \mathbf{x})} \times \mathbf{E}=\omega \mathbf{E} e^{-i(\omega t-\mathbf{k} \cdot \mathbf{x})}=i \frac{\partial \mathbf{E} e^{-i(\omega t-\mathbf{k} \cdot \mathbf{x})}}{\partial t}$
We haven't use the condition $\omega=|\mathbf{k}|$. However, it follows easily from the stated relations

$$
\mathbf{k} \cdot \mathbf{E}=0 \quad i \mathbf{k} \times \mathbf{E}=\omega \mathbf{E}
$$

that $\omega^{2}=|\mathbf{k}|^{2}$.

