Exercise 11

We just have to show that $(\rho\oplus\rho')$ is associative using that ρ and ρ' are associative.

Let $g_1, g_2 \in G$. Then for all $v \in V, v' \in V'$,

$$\begin{aligned} (\rho \oplus \rho')(g_1g_2)(v,v') &= (\rho(g_1g_2)v, \rho'(g_1g_2)v') \\ &= (\rho(g_1)v\rho(g_2)v, \rho'(g_1)v'\rho'(g_2)v') \\ &= (\rho(g_1)v, \rho'(g_1)v')(\rho(g_2)v, \rho'(g_2)v') \\ &= (\rho \oplus \rho')(g_1)(v,v')(\rho \oplus \rho')(g_2)(v,v') \end{aligned}$$

 \mathbf{SO}

$$(
ho \oplus
ho')(g_1g_2) = (
ho \oplus
ho')(g_1)(
ho \oplus
ho')(g_2)$$

Exercise 12

Pick a basis $\{e_i\}$ for V and $\{e'_j\}$ for V' as in the text. Then define F from $V\otimes V'$ to W by requiring that

$$F(e_i \otimes e'_i) = f(e_i, e'_i)$$

and extending to the entire $V \otimes V'$ through linearity. This is possible and does not require any assumptions on $f(e_i, e'_j)$ since $\{e_i \otimes e'_j\}$ forms a basis. But then the following holds:

$$F(\nu \otimes \nu') = F(\nu^{i}\nu'^{j}e_{i} \otimes e'_{j})$$

$$= \nu^{i}\nu'^{j}F(e_{i} \otimes e'_{j})$$

$$= \nu^{i}\nu'^{j}f(e_{i}, e'_{j})$$

$$= f(\nu^{i}e_{i}, \nu'^{j}e'_{j})$$

$$= f(\nu, \nu')$$

Since the function f is fixed, it shows that F is unique.

Exercise 13

Well-definedness follows from the following

$$\rho(g)\nu \otimes \rho'(g)\nu' = \rho(g)\nu^{i}e_{i} \otimes \rho'(g)\nu'^{j}e'_{j}$$
$$= \nu^{i}\nu'^{j}\rho(g)e_{i} \otimes \rho'(g)e'_{i}$$

since every element of $V \otimes V'$ can be uniquely expressed as $\nu^i \nu'^j e_i \otimes e'_j$. The image of g is also clearly linear. And the fact that $\rho \otimes \rho'$ is a group homomorphism can also be shown using that ρ and ρ' are homomorphisms.

Exercise 14

Identify V with the subspace $\{\nu \oplus 0 : \nu \in V\}$ of $V \oplus V'$. Then V is an invariant subspace of the representation $\rho \oplus \rho'$ of G on $V \oplus V'$:

$$\begin{aligned} (\rho \oplus \rho')g(\nu \oplus 0) &= \rho(g)\nu \oplus \rho'(g)0 \\ &= \rho(g)\nu \oplus 0 \end{aligned}$$

Thus we can define a subrepresentation of $\rho \oplus \rho'$ on V by letting $g \in G$ map to the transformation of V taking $\nu \oplus 0$ to $\rho(g)\nu \oplus 0$. But under the identification of V, this is just the original representation ρ .

The claim for ρ' follows by symmetry.

Exercise 15

For any $\theta \in \mathbb{R}$, $e^{in\theta}$ is just a complex number, and multiplying by a fixed complex number is a linearly transformation of \mathbb{C} . The following shows that the map from U(1) to $GL(\mathbb{C})$ is a group homomorphism:

$$\rho_n(e^{i\theta_1}e^{i\theta_2})\nu = \rho_n(e^{i(\theta_1+\theta_2)})\nu$$
$$= e^{in(\theta_1+\theta_2)}\nu$$
$$= \rho_n(e^{i\theta_1})\rho_n(e^{i\theta_2})\nu$$

Exercise 16

Let $\rho: U(1) \to \mathbb{C}^*$ be a one-dimensional representation of U(1). Consider the set $\rho^{-1}(1)$. We claim that this set is either the entire U(1), or it is discrete, and hence finite (since U(1) is compact). If it is not discrete, then we can find $\theta \in \mathbb{R}$ with $|\theta|$ arbitrarily small, but not 0, such that $\rho(e^{i\theta}) = 1$. But since ρ is a homomorphism this implies that the set of points in U(1) mapping to the identity is dense in U(1), and since ρ is continuous, it is the entire U(1).

So assume that ρ is not the trivial representation, and choose x such that |x| is as small as possible but not 0, such that $e^{i2\pi x} \in \rho^{-1}(1)$. There should be two possible choices for x (x or -x).

We claim that x is rational. Otherwise the set $\{e^{i2\pi xn}|n \in \mathbb{Z}\}$ has infinite cardinality and lies in $\rho^{-1}(1)$, which contradicts the fact that the latter set is finite.

Next, let $x = \frac{p}{q}$. We can assume the fraction is irreducible, and proper. Thus the gcd of p and q is 1, so we can find m and n such that

$$pm + qn = 1$$

or equivalently

$$\frac{pm}{q} + n = \frac{1}{q}$$

But then

$$\rho(e^{i2\pi/q}) = \rho(e^{i2\pi p/q})^m \rho(e^{i2\pi})^n = 1$$

And since $\frac{1}{q} \leq \frac{p}{q}$, x must be of the form $\frac{1}{q}$. Now we want to show that ρ maps $e^{i\theta}$ to multiplication by $\pm e^{iq\theta}$. We know that

$$\rho(e^{i2\pi/q}) = 1$$

This implies that

$$\rho(e^{i2\pi/2q}) = -1$$

(it has to be a square root of 1, but cannot be 1 since $\frac{1}{2q} < x$). Next

$$\rho(e^{i2\pi/4q}) = \pm i$$

Both signs are compatible with what we're trying to prove. So suppose it's i(the proof would just go slightly different otherwise). But now

 $\rho(e^{i2\pi/8q})$

must be a primitive 8-th root of unity, and using the continuity of ρ we can determine which one. Namely, if it does not lie between 1 and i, then there must be some 0 < k < 1 such that

$$\rho(e^{i2\pi k/4q}) = i$$

and thus

$$\rho(e^{i2\pi k/q}) = 1$$

but $\frac{k}{q} < x$ gives the contradiction. Actually, the second-last equation could also equal -1 instead of i, it depends if we go clockwise or anti-clockwise from 1 to *i*. But we would get a similar contradiction.

So

$$\rho(e^{i2\pi/8q}) = e^{i2\pi/8}$$

We could continue in the same manner to show that

$$\rho(e^{i2\pi/(2^k)q}) = e^{i2\pi/(2^k)}$$

for all k > 0.

This shows that ρ agrees with the representation that maps $e^{i\theta}$ to multiplication by $e^{iq\theta}$ on a sequence of points converging to $1 \in SU(1)$. This is enough to show that they agree on a dense set, and by continuity, on the whole set. Thus ρ is equivalent to one of the desired representations.

Exercise 20

Applying the definitions gives the described 2x2 matrix as

$$\left(\begin{array}{cc} (a-\imath d) & (-c-\imath b) \\ (c-\imath b) & (a+\imath d) \end{array}\right)$$

Call it U. Calculating the determinant gives 1. And multiplying by the conjugate transpose, assuming a, b, c and d are real, gives the identity.