
Exerise 90Let {(Uα, φα)} be a olletion of harts suh that the open sets Uα over S andsuh that
S ∩ Uα = φ−1

α (Rk)holds for eah α. (This is possible given the de�nition of a sub-manifold in thetext.)Let Vα = S ∩ Uα, and let ψα = φα|Vα
. Then the Vα's are open subsets of

S, and the funtions ψβ ◦ ψ−1
α go from R

k to itself. Hene {(Vα, ψα)} forms anatlas for S.Exerise 91As a topologial spae, it is ompat sine it is losed (being the pre-image ofthe losed set {1} under the norm funtion) and bounded (all points have normless than 2).To show that it's a submanifold, the same funtion as used in exerise 84will work:De�ne
U+

1 = {x ∈ R
n : x1 > 0}and de�ne the map

φ+

1 : U+

1 → R
nby mapping (x1, . . . , xn) to

‖x‖

x1

(x1, . . . , xn)

(U+

1 , φ
+

1 ) is a hart on R
n that maps Sn−1 ∩ U+

1 bijetively to the hyperplane
{x ∈ R

n : xn = 1}whih is R
n−1. The olletion of open sets U±

i (with U−

i de�ned as expeted)over Sn−1.Exerise 92Let V ⊂ M be an open subset, and let {(Uα, φα)}be an atlas for M . Then thefamily of open sets Uα∩V together with the harts φα|V forms a suitable familyto meet the requirements of the de�nition of a submanifold.Exerise 93This is exatly the same as exerise 90 exept that R
k should be replaed ev-erywhere by (Rk or H

k), roughly speaking.1



Exerise 94Again, this is almost the same as exerise 91, using the same map.Exerise 95Let
ω = ωxdx+ ωydybe an arbitrary 1-form on S. Then

dω = ∂xωy − ∂yωxdx ∧ dyso Stokes' theorem,
ˆ

S

dω =

ˆ

∂S

ωbeomes
ˆ

S

∂xωy − ∂yωxdxdy =

ˆ

∂S

(ωxdx+ ωydy)Exerise 96Let S ∈ R
3 be a 2-dimensional ompat orientable submanifold with boundary.Choose an atlas for S as a submanifold. It should be possible to subdivide S intoa �nite number of smaller 2-dimensional ompat orientable submanifolds withboundary, suh the S is the union of these smaller parts, and the intersetionof any two parts is either empty, or a 1-dimensional manifold.Then the sum of integrating over all the boundaries of these smaller parts isthe same as integrating over the boundary of S sine opposite integrals anelout. Also, the sum of integrating over the surfaes of all the smaller parts yieldsthe same answer as integrating over the whole of S. It follows that we only needto prove the given statement for one of the smaller parts, i.e. we an assume Sis suh a smaller part.Then we an hoose oordinates suh that S lies in the plane z = 0. Let

ω = ωxdx+ ωydybe a 1-form on S. Then
dω = (∂xωy − ∂yωx)dx ∧ dyand Stokes' theorom implies that

ˆ

S

(∂xωy − ∂yωx)dx ∧ dy =

ˆ

∂S

ωNow let F = (Fx, Fy, Fz) be a vetor �eld (on an open subset of R
3 ontaining

S). Aording to the usual Stokes' theorem,
ˆ

S

(∇× F ) · dS =

ˆ

∂S

F · dr2



Let
ω = Fxdx+ Fydy + Fzdzbe a 1-form de�ned using the omponents of F . Given the orientation of S, thenormal dS always points in the z-diretion. Thus

(∇× F ) · dSorresponds to the z-omponent of dω, whih is
∂xFy − ∂yFxThus the left-hand sides of the lassi version and the more general version ofStokes' theorem, agree. For the right-hand side, note that dr will always beorthogonal to the z-diretion, so the z-omponent of F an be ignored here aswell. The right-hand sides then also agree.Exerise 97In this ase, let

ω = ωxdy ∧ dz + ωydz ∧ dx+ ωzdx ∧ dybe the 2-form orresponding to the vetor �eld F = (ωx, ωy, ωz). Then integrat-ing the divergene of F over the volume is learly the same as integrating
dω = (∂xωx + ∂yωy + ∂zωz)dx ∧ dy ∧ dzover the volume. To show that integrating the normal of F over the surfae (theboundary of the volume) is the same as integrating ω over the surfae, hooseloal oordinates suh that the surfae lies in the plane z = 0. Then the normalomponent of F is just ωz, and restrited to the surfae, the 2-form ω beomes

ωzdx ∧ dy, and integrating the two gives the same result.Exerise 98Let φ be a map from M to N , and let ω be a p-form on N .Suppose ω is losed, i.e. dω = 0. Then
d(φ∗ω) = φ∗(dω)

= φ∗(0)

= 0so φ∗ω is also losed.Suppose that ω is exat, i.e. ω = dν, where ν is a p− 1-form on N . Then
φ∗(ω) = φ∗(dν)

= dφ∗(ν)so φ∗ω is also exat. 3



Exerise 99Firstly, the linear map on p-forms from Ωp(M ′) to Ωp(M) has been de�nedearlier. The previous exerise shows that if we restrit this map to the losedforms Zp(M ′), then the image lies in Zp(M). So we get a map from Zp(M ′) to
Zp(M). The previous exerise also shows that the kernel of this map ontainsthe exat forms Bp(M ′), hene it indues a map on the equivalene lasses, from
Hp(M ′) to Hp(M), as desired.For the seond part, showing that the map on the ohomology groups om-mutes with omposition of maps follows from the fat that the pull-bak mapon p-forms ommutes with omposition of maps between manifolds.
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