Exercise 80

FE is closed:

1
= 0

To calculate the integrals, note that the path lies on a 1-dimensional space which
can be reparametrised with

r = cosf

= sinf

The 1-form then becomes

cos ) cos § — sin §(— sin 6)

cos? 6 + sin? 0 -

0
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™

and the integrals are:

and

Exercise 81

Let vy and y1be two paths from p to g. Define the homotopy ~ as

v(s,t) = (1 = s)v0(t) + s71(t)

Then

7(0,) = 0(t)
and

v(1,t) = ()
Also

V(s,0) =1 —s)p+sp=p
and similarly (s, 1) = ¢. Finally, « is smooth.



Exercise 82

Suppose the 1-form F is exact. Then there is a function ¢ on M such that
E = d¢. Let v be any loop on M. Denote v(0) = (1) by p € M. Then

[7 =]

¢(v(1)) — ¢(7(0))

o(p) — ¢(p)
= 0

Conversely, suppose f,y E =0 for all loops v on M. This implies that

=17
Yo Y1

for any two paths 9 and~y; both starting at p € M and ending at ¢ € M:

/E—/EZ/ E=0
Y1 Yo Yoyt

since vwfl is a loop on M.
But this means that we can follow the exact same steps as on p109 to con-
struct a function ¢ on M such that F = —d¢, showing that E is exact.

Exercise 83

Parametrize S* by 6 € [0,1] C R such that 6(0) = 6(1). Choose any two charts,
say V1 = (—0.1,0.6) and Va = (0.4,1.1). Then construct a 1-form on S which
is df on either of the charts.

If {U;} is an atlas of charts on M, then {V; x U;} U{V5 x U;} is an atlas for
S1 x M and on each chart, df is still a 1-form. Integrating it around the loop
St x {m} gives a non-zero value.

Exercise 84
Consider the open subset Ufr C D™, where
Uf ={xeD":2; >0}
Let ¢ : U — R™ map (x1,...,7,) to

[

x—l(fﬂl,. .’I]n)

The image of ¢ is
{reR":0<x <1}



with points with norm 1 mapping to points with z; = 1. We can compose with
another mapping from R™ to itself that maps z1 to (1 —x1). This gives a chart
which maps U;" to H" with the boundary points being exactly the ones with
norm 1.

Finally, charts of the form U;"and U;” cover D", hence forming an atlas.

Exercise 85

In chapter 3, tangent vectors at p € M were defined as functions from C*° (M)
to R satisfying three properties. Let Cp°(M) be the germ of smooth functions
at p, and consider the surjective mapping from C>°(M) to Cp°(M). The ker-
nel consists of functions defined on a neighbourhood of p that vanish on this
neighbourhood. From the second property (v,(af) = av,(f)) it follows that
tangent vectors vanish on this kernel. Hence we can consider them as functions
on Cp°(M), and could also have defined them like that.

Now let p be on the boundary of M. We can assume p € H". Let H be
the manifold without boundary defined like H” but with 2™ > —e instead of
2™ > 0. Then the tangent space defined at p € H using Cp°(HY) is the usual
n-dimensional vector space. And the tangent space at p € H™ defined using
Cp°(H™) is the space that we are interested in (for which we must show that
the dimension is also n).

But again there is a surjective map from Cp°(HY) to Cp°(H"). The kernel
consists of smooth functions defined on a neighbourhood of p € R™ that vanish
for ™ > 0. Such functions do not necessarily vanish on a neighbourhood of p,
but the tangent vector does vanish on such functions. This is essentially because
at least one side of any small straight line through p must lie in H”.

Therefore this last map induces a map between the two tangent spaces which
is an isomorphism.

Exercise 86

(T googled this and found p226 of 'Introduction to manifolds’ on Google books
which gave most of the proof.)

Let {U,} be the original atlas with { f,} the corresponding partition of unity.
Let {V3} be another atlas where all the charts have the same orientation as in
the original atlas, with {gg} a subordinate (i.e. support(gg) C V) partition of
unity. Then

%:/Ua faw = %:/Ua fa(zﬁjgﬁw)
;; /U fagp
XY,

UaNVp



By symmetry,
> s
g Vs

is equal to the same expression, and so the two different ways of defining the
integral [ o W give the same value. Interchanging the summation and integration
signs above is allowed due to the second property of partitions of unity, namely
that for any point p € M there is a neighbourhood where only finitely many of
the partition functions f, do not vanish.

I think the orientations of the charts being the same is used implicitely above
when writing integrals without coordinates.

Exercise 87

Using the same charts as defined in exercise 84, we saw that 0D" is precisely
fwe D" |af = 1)

This is the same set of points as can be used to define S*~1.

Exercise 88

Let x be the implied local coordinate on M. Then using Stokes theorem with
w = f, a function, gives the required result. The different signs follow from the
induced orientation on the boundary points, though I don’t know how to make
this precise.

Perhaps by considering two maps: one from a neighbourhood of 0 to 0 € H?,
the other from 1 to 0 € H'. In the latter case the map would be orientation-
reversing. This should imply that the signs of f(0) and f(1) are different, but
does not show why f(1) is the positive one.

Exercise 89

Let
f(x) =é*.

/000 f(x)de = /000 e*dx

is not defined, or is co. But if we had applied Stoke’s theorem, it should be
equal to

Then

~1(0)=-1.



