
Exerise 80
E is losed:

dE =
1

x2 + y2
(dx ∧ dy − dy ∧ dx)

= 0To alulate the integrals, note that the path lies on a 1-dimensional spae whihan be reparametrised with
x = cos θ

y = sin θThe 1-form then beomes
cos θ cos θ − sin θ(− sin θ)

cos2 θ + sin2 θ
= 1and the integrals are:

ˆ

γ0

E =

ˆ 0

π

1dθ

= −πand
ˆ

γ1

E =

ˆ 0

−π

1dθ

= πExerise 81Let γ0 and γ1be two paths from p to q. De�ne the homotopy γ as
γ(s, t) = (1 − s)γ0(t) + sγ1(t)Then

γ(0, t) = γ0(t)and
γ(1, t) = γ1(t)Also

γ(s, 0) = (1 − s)p + sp = pand similarly γ(s, 1) = q. Finally, γ is smooth.1



Exerise 82Suppose the 1-form E is exat. Then there is a funtion φ on M suh that
E = dφ. Let γ be any loop on M . Denote γ(0) = γ(1) by p ∈ M . Then

ˆ

γ

E =

ˆ

γ

dφ

= φ(γ(1)) − φ(γ(0))

= φ(p) − φ(p)

= 0Conversely, suppose ´
γ

E = 0 for all loops γ on M . This implies that
ˆ

γ0

E =

ˆ

γ1

Efor any two paths γ0 andγ1 both starting at p ∈ M and ending at q ∈ M :
ˆ

γ1

E −

ˆ

γ0

E =

ˆ

γ0γ
−1

1

E = 0sine γ0γ
−1

1 is a loop on M .But this means that we an follow the exat same steps as on p109 to on-strut a funtion φ on M suh that E = −dφ, showing that E is exat.Exerise 83Parametrize S1 by θ ∈ [0, 1] ⊂ R suh that θ(0) = θ(1). Choose any two harts,say V1 = (−0.1, 0.6) and V2 = (0.4, 1.1). Then onstrut a 1-form on S1 whihis dθ on either of the harts.If {Ui} is an atlas of harts on M , then {V1 ×Ui}∪ {V2 ×Ui} is an atlas for
S1 × M and on eah hart, dθ is still a 1-form. Integrating it around the loop
S1 × {m} gives a non-zero value.Exerise 84Consider the open subset U+

1 ⊂ Dn, where
U+

1
= {x ∈ Dn : x1 > 0}Let φ : U+

1 → R
n map (x1, . . . , xn) to

‖x‖

x1

(x1, . . . xn)The image of φ is
{x ∈ R

n : 0 < x1 ≤ 1}2



with points with norm 1 mapping to points with x1 = 1. We an ompose withanother mapping from R
n to itself that maps x1 to (1− x1). This gives a hartwhih maps U+

1 to H
n with the boundary points being exatly the ones withnorm 1.Finally, harts of the form U+

i and U−

i over Dn, hene forming an atlas.Exerise 85In hapter 3, tangent vetors at p ∈ M were de�ned as funtions from C∞(M)to R satisfying three properties. Let C∞

p (M) be the germ of smooth funtionsat p, and onsider the surjetive mapping from C∞(M) to C∞

p (M). The ker-nel onsists of funtions de�ned on a neighbourhood of p that vanish on thisneighbourhood. From the seond property (vp(αf) = αvp(f)) it follows thattangent vetors vanish on this kernel. Hene we an onsider them as funtionson C∞

p (M), and ould also have de�ned them like that.Now let p be on the boundary of M . We an assume p ∈ H
n. Let H

n
ǫ bethe manifold without boundary de�ned like H

n but with xn > −ǫ instead of
xn ≥ 0. Then the tangent spae de�ned at p ∈ H

n
ǫ using C∞

p (Hn
ǫ ) is the usual

n-dimensional vetor spae. And the tangent spae at p ∈ H
n de�ned using

C∞

p (Hn) is the spae that we are interested in (for whih we must show thatthe dimension is also n).But again there is a surjetive map from C∞

p (Hn
ǫ ) to C∞

p (Hn). The kernelonsists of smooth funtions de�ned on a neighbourhood of p ∈ R
n that vanishfor xn ≥ 0. Suh funtions do not neessarily vanish on a neighbourhood of p,but the tangent vetor does vanish on suh funtions. This is essentially beauseat least one side of any small straight line through p must lie in H
n.Therefore this last map indues a map between the two tangent spaes whihis an isomorphism.Exerise 86(I googled this and found p226 of 'Introdution to manifolds' on Google bookswhih gave most of the proof.)Let {Uα} be the original atlas with {fα} the orresponding partition of unity.Let {Vβ} be another atlas where all the harts have the same orientation as inthe original atlas, with {gβ} a subordinate (i.e. support(gβ) ⊂ Vβ) partition ofunity. Then

∑

α

ˆ

Uα

fαω =
∑

α

ˆ

Uα

fα(
∑

β

gβω)

=
∑

α

∑

β

ˆ

Uα

fαgβω

=
∑

α

∑

β

ˆ

Uα∩Vβ

fαgβω3



By symmetry,
∑

β

ˆ

Vβ

gβωis equal to the same expression, and so the two di�erent ways of de�ning theintegral ´
M

ω give the same value. Interhanging the summation and integrationsigns above is allowed due to the seond property of partitions of unity, namelythat for any point p ∈ M there is a neighbourhood where only �nitely many ofthe partition funtions fα do not vanish.I think the orientations of the harts being the same is used impliitely abovewhen writing integrals without oordinates.Exerise 87Using the same harts as de�ned in exerise 84, we saw that ∂Dn is preisely
{x ∈ Dn : ‖x‖ = 1}This is the same set of points as an be used to de�ne Sn−1.Exerise 88Let x be the implied loal oordinate on M . Then using Stokes theorem with

ω = f , a funtion, gives the required result. The di�erent signs follow from theindued orientation on the boundary points, though I don't know how to makethis preise.Perhaps by onsidering two maps: one from a neighbourhood of 0 to 0 ∈ H1,the other from 1 to 0 ∈ H1. In the latter ase the map would be orientation-reversing. This should imply that the signs of f(0) and f(1) are di�erent, butdoes not show why f(1) is the positive one.Exerise 89Let
f(x) = ex.Then

ˆ

∞

0

f ′(x)dx =

ˆ

∞

0

exdxis not de�ned, or is ∞. But if we had applied Stoke's theorem, it should beequal to
−f(0) = −1.
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