Exercise 72

For F_{+}:

$$
\begin{aligned}
F_{+} & =\frac{1}{2}(F+\star F) \\
\star F_{+} & =\frac{1}{2}\left(\star F+\star^{2} F\right) \\
& =\frac{1}{2}(\star F+F) \\
& =F_{+}
\end{aligned}
$$

and F_{-}is similar:

$$
\begin{aligned}
F_{-} & =\frac{1}{2}(F-\star F) \\
\star F_{-} & =\frac{1}{2}\left(\star F-\star^{2} F\right) \\
& =\frac{1}{2}(\star F-F) \\
& =-F_{-}
\end{aligned}
$$

Exercise 73

Trial and error shows that if we define F_{+}as

$$
F_{+}=\frac{1}{2}(F-\imath \star F)
$$

then

$$
\begin{aligned}
\star F_{+} & =\frac{1}{2}(\star F+\imath F) \\
& =\imath F_{+}
\end{aligned}
$$

and defining F_{-}as

$$
F_{-}=\frac{1}{2}(F+\imath \star F)
$$

gives

$$
\begin{aligned}
\star F_{-} & =\frac{1}{2}(\star F-\imath F) \\
& =-\imath F_{-}
\end{aligned}
$$

and

$$
F=F_{+}+F_{-} .
$$

Exercise 74

In the first equation, $\star_{S} E=\imath B$:

$$
\begin{aligned}
\star_{S} E & =E_{1} d x^{2} \wedge d x^{3}+E_{2} d x^{3} \wedge d x^{1}+E_{3} d x^{1} \wedge d x^{2} \\
\imath B & =\imath\left(B_{1} d x^{2} \wedge d x^{3}+B_{2} d x^{3} \wedge d x^{1}+B_{3} d x^{1} \wedge d x^{2}\right)
\end{aligned}
$$

So equating coefficients gives

$$
\imath B_{i}=E_{i}
$$

or

$$
B_{i}=-\imath E_{i}
$$

which is equivalent to the given equations.
In the second equation, $\star_{S} B=-\imath E$:

$$
\begin{aligned}
\star_{S} B & =B_{1} d x^{1}+B_{2} d x^{2}+B_{3} d x^{3} \\
-\imath E & =-\imath\left(E_{1} d x^{1}+E_{2} d x^{2}+E_{3} d x^{3}\right)
\end{aligned}
$$

So equating coefficients again gives

$$
B_{i}=\imath E_{i}
$$

showing that the second equation is equivalent to the first and to the given equations.

Exercise 75

Using

$$
B=\mathbf{B} e^{\imath k_{\mu} x^{\mu}}
$$

and

$$
E=\mathbf{E} e^{\imath k_{\mu} x^{\mu}}
$$

gives

$$
\begin{aligned}
\partial_{t} B+d_{S} E & =\mathbf{B} \imath k_{0} e^{\imath k_{\mu} x^{\mu}}+d_{S} e^{\imath k_{\mu} x^{\mu}} \wedge \mathbf{E} \\
& =\imath e^{\imath k_{\mu} x^{\mu}} k_{0} \mathbf{B}+\imath e^{\imath k_{\mu} x^{\mu}} 3 \wedge \wedge \mathbf{E} \\
& =\left(\imath e^{\imath k_{\mu} x^{\mu}}\right)\left(k_{0} \mathbf{B}+{ }^{3} k \wedge \mathbf{E}\right)
\end{aligned}
$$

So

$$
\partial_{t} B+d_{S} E=0
$$

is equivalent to

$$
k_{0} \mathbf{B}+{ }^{3} k \wedge \mathbf{E}=0
$$

or

$$
{ }^{3} k \wedge \mathbf{E}=-k_{0} \mathbf{B}
$$

Which is what we're supposed to get, except for the sign.

Exercise 76

Expanding both sides gives

$$
\begin{aligned}
{ }^{3} k \wedge E= & k_{\mu} d x^{\mu} \wedge E_{\nu} d x^{\nu} \\
= & \left(k_{2} E_{3}-k_{3} E_{2}\right) d x^{2} \wedge d x^{3}+ \\
& \left(k_{3} E_{1}-k_{1} E_{3}\right) d x^{3} \wedge d x^{1}+ \\
& \left(k_{1} E_{2}-k_{2} E_{1}\right) d x^{1} \wedge d x^{2}
\end{aligned}
$$

and

$$
-\imath k_{0} \star_{S} E=-\imath k_{0}\left(E_{1} d x^{2} \wedge d x^{3}+E_{2} d x^{3} \wedge d x^{1}+E_{3} d x^{1} \wedge d x^{2}\right)
$$

Setting coefficients equal, and writing it all as a matrix, gives

$$
A \cdot\left[\begin{array}{l}
E_{1} \\
E_{2} \\
E_{3}
\end{array}\right]=0
$$

where

$$
A=\left[\begin{array}{ccc}
\imath k_{0} & -k_{3} & k_{2} \\
k_{3} & \imath k_{0} & -k_{1} \\
-k_{2} & k_{1} & \imath k_{0}
\end{array}\right]
$$

Since A is skew-symmetric and has odd dimension, its determinant is 0 . Calculating the determinant, and setting it to 0 gives

$$
-k_{0}^{2}+k_{1}^{2}+k_{2}^{2}+k_{3}^{2}=0
$$

which is the same as

$$
k_{\mu} k^{\mu}=0 .
$$

Exercise 77

Firstly,

$$
k=t-x=k_{\mu} x^{\mu}
$$

Then, $\mathbf{E}=d y-\imath d z$ written in the old notation is

$$
(0,1,-\imath)
$$

and

$$
\begin{aligned}
\mathbf{B} & =-\imath \star_{S} E \\
& =-\imath(d z \wedge d x-\imath d x \wedge d y) \\
& =-\imath d z \wedge d x-d x \wedge d y
\end{aligned}
$$

which is

$$
(0,-\imath,-1)
$$

in the old notation. Thus

$$
\begin{aligned}
E & =e^{\imath k_{\mu} x^{\mu}} \mathbf{E} \\
& =e^{\imath(t-x)}(0,1,-\imath) \\
& =\left(0, e^{\imath(t-x)},-\imath e^{\imath(t-x)}\right)
\end{aligned}
$$

and similarly for B.

Exercise 78

I get stuck with the following approach: consider the real part of the 1-form E at a single point as a function of time. This can be seen as a vector rotating in a plane containing the point. Using just E, find the normal to this plane, and find a direction of the normal describing the rotation. The cross product of the vector with its derivative should give such a normal vector. But its hard to find the general expression for this vector.

If this could be done, then the rest should follow somehow using the equation just above exercise 76 .

Exercise 79

It was shown previously that $F=B+E \wedge d t$ is self-dual if either (and hence both) of the following hold:

$$
\begin{aligned}
\star_{S} E & =\imath B \\
\star_{S} B & =-\imath E
\end{aligned}
$$

Similarly, from $\star F=-\imath F$ it follows that F is anti-self-dual if

$$
\begin{aligned}
\star_{S} E & =-\imath B \\
\star_{S} B & =\imath E
\end{aligned}
$$

Now

$$
P^{*} F=P^{*} B+\left(P^{*} E\right) \wedge d t
$$

so we must show that if (B, E) satisfies the first pair of equations, then $\left(P^{*} B, P^{*} E\right)$ satisfies the second pair. The converse follows from $P \circ P=i d$. In other words, assume F is self-dual. Then

$$
\begin{aligned}
\star_{S} P^{*} B & =\star_{S} B \\
& =-\imath E \\
& =\imath P^{*} E
\end{aligned}
$$

and

$$
\begin{aligned}
{ }_{S} P^{*} E & =-\star_{S} E \\
& =-\imath B \\
& =-\imath P^{*} B
\end{aligned}
$$

shows that $P^{*} F$ is anti-self-dual.

