
Exer
ise 60The parity of the permutation is determined by the number of transpositions:the parity is even if the number of transpositions is even, and the parity isodd if the number of transpositions is odd. Thus it is enough to show thatany transposition reverses the orientation (be
ause reversing it twi
e gives theoriginal orientation).But the matrix of the linear transformation mapping a basis to the same basisbut with a single transposition di�ers from the identity matrix only in that tworows (or two 
olumns) are swapped. But as an elementary row operation, thee�e
t of swapping two rows is to 
hange the sign of the determinant. Sin
ethe determinant of the identity matrix is positive, the determinant of the lineartransformation must be negative, and hen
e making a transposition reverses theorientation.Exer
ise 61Let ω be a positively oriented volume form on M . Consider a spe
i�
 
hart
(Uα, φα). In lo
al 
oordinates on this 
hart, ω is of the form f dx1 ∧ · · · ∧ dxn,or equivalently,

ω = φ−1
α (f dx1 ∧ · · · ∧ dxn).Sin
e ω is a volume form, f 6= 0 on φα(Uα). But f is 
ontinuous and itsdomain is 
onne
ted, so either f > 0 or f < 0. If f > 0, then de�ne φ̃α = φα,otherwise de�ne φ̃α by

φ̃α(x1, . . . , xn−1, xn) = φα(x1, . . . , xn−1,−xn)In terms of this new 
hart
ω = φ−1

α (−f dx1 ∧ · · · ∧ dxn)and −f > 0. So the new atlas with 
harts (Uα, φ̃α) has the required property:pulling ba
k dx1 ∧ · · · ∧ dxn gives 1
g
ω where g = ±f ◦ φα > 0.Exer
ise 62Let {(Uα, φα)} be an atlas of 
harts on M su
h that the transition fun
tionsare orientation-preserving. Let ψ = φα ◦φ−1

β be the transition fun
tion from Uβto Uα. The indu
ed map on di�erential forms 
an be applied to the 
anoni
alvolume form on Uα, mapping it to a multiple of the volume form on Uβ:
ψ−1(dx1 ∧ · · · ∧ dxn) = fαβdx

1′ ∧ · · · dxn′Here fαβ is a smooth fun
tion on Uα∩Uβ , whi
h is also positive everywhere,sin
e ψ is orientation-preserving. Note that fαα = 1 and fαβ = fβα. If we
onsider a third 
hart, Uγ , and use the fa
t that on Uα ∩ Uβ ∩ Uγ the transi-tion fun
tion from Uβ to Uα is the same as going via Uγ , then it follows that
fαβfβγfγα = 1. These fa
ts will be needed later on.1



The idea is now to introdu
e a positive fun
tion gα on ea
h Uα su
h thatthe lo
al volume forms
gαdx

1 ∧ · · · ∧ dxn
an be pat
hed together to give a volume form on M (whi
h is the goal of theexer
ise). Sin
e
ψ−1(gαdx

1 ∧ · · · ∧ dxn) = fαβgαdx
1′ ∧ · · · dxn′must equal

gβdx
1′ ∧ · · · dxn′for the pat
hing to work, the gα's should satisfy

fαβgα = gβi.e.
fαβ =

gβ

gαSin
e all these fun
tions are stri
tly positive, we 
an take logarithms. De�ne
cα = log gα and dαβ = log fαβ. Then the previous equation be
omes

dαβ = cβ − cαTo be pre
ise: we obtain the fun
tions fαβ from the given atlas. Then weobtain dαβ . Below we show how the cα's are obtained from these, and then�nally we apply the exponential fun
tion to get the gα's, whi
h would 
ompletethe exer
ise.Note that the properties of the fαβ's given above translate into the followingproperties for the gαβ 's:
gαα = 0

gαβ = −gαβ

gαβ + gβγ + gγα = 0Let λαbe a partition of unity for the atlas on M . Consider the smoothfun
tion dαγλγde�ned on Uα ∩ Uγ . Extend it to a fun
tion on Uα by setting itto 0 outside Uγ . Sin
e the support of λγ is 
ontained in Uγ , it follows that theextended fun
tion is still smooth. (To see this, 
onsider x ∈ Uα. If x is in thesupport of λγ , then it has a neighbourhood inside Uγwhere the fun
tion mustbe smooth. Otherwise it vanishes on a neighbourhood, hen
e also smooth.)Now on Uα de�ne
cα = −

∑

γ

dαγλγNote that only �nitely many of the λγ 's do not vanish on Uα, so the sumexists. 2



Then on Uα ∩ Uβ:
cβ − cα = −

∑

γ

dβγλγ +
∑

γ

dαγλγ

=
∑

γ

(dαγ − dβγ)λγ

=
∑

γ

dαβλγ

= dαβwhi
h is what we needed to show.Exer
ise 63Denote the oriented orthonormal basis of 
otangent ve
tors at p ∈ M by {eµ}(i.e. use supers
ripts). Let x1, . . . , xn be lo
al 
oordinates on a 
hart 
ontaining
p. De�ne the metri
 
omponents

gµν = g(∂µ, ∂ν).Then the volume form asso
iated to the metri
 isvol = √

| det gµν |dx
1 ∧ · · · ∧ dxn,and its value at p isvolp =

√

| det(gµν)p|(dx
1)p ∧ · · · ∧ (dxn)p∈ ∧n T ∗

pM .Furthermore,
〈(dxµ)p, (dx

ν)p〉 = (gµν)pwhere
det(gµν)p · det(gµν)p = 1.De�ne the invertible matrix to transform between the two bases of ∧nT ∗

pM :
(dxµ)p = T

µ
λ e

λ.Using this, the inner produ
t 
an also be 
al
ulated as
〈(dxµ)p, (dx

ν)p〉 = 〈T µ
λ e

λ, T ν
λ e

λ〉

= ǫ(λ)T µ
λ T

λ
νwhere ǫ(λ) = 〈eλ, eλ〉. Note that if g is a
tually a Riemannian metri
, so that

ǫ(λ) = 1 for all λ, then this last expression is just the matrix T µ
λ multiplied byits transpose. In this more general situation, it is of the form T

µ
λ · (ǫ(λ)T µ

λ )T .Taking the determinant gives
ǫ(detT µ

λ )23



where
ǫ =

∏

λ

ǫ(λ) = ±1Taking the determinant of the other expression of the inner produ
t yields:
det(gµν)p = det(gµν)−1

= ǫ| det(gµν)|−1Setting the two expressions equal to one another yields
detT µ

λ =
1

√

| det(gµν)|Finally: volp =
√

| det(gµν)p|(dx
1)p ∧ · · · ∧ (dxn)p

=
√

| det(gµν)p|T
1
λe

λ ∧ · · · ∧ T n
λ e

λ

=
√

| det(gµν)p| detT µ
λ e

1 ∧ · · · ∧ en

= e1 ∧ · · · ∧ enExer
ise 64We 
an assume µ = ei1 ∧· · ·∧eip , sin
e su
h elements span the spa
e of p-forms,and the result would follow by linearity of the wedge produ
t and bi-linearity ofthe inner produ
t. Changing the order of the exponents would not 
ause well-de�nedness problems due to the sign(i1, . . . , ip) fa
tor used in the de�nition.For similar linearity reasons, it is enough to assume ω = ej1 ∧ · · · ∧ ejp . So
ω ∧ ⋆µ = ej1 ∧ · · · ∧ ejp ∧ eip+1 ∧ · · · ∧ einIf jk = il for some k and l, then ω ∧ ⋆µ = 0, and also

〈ω, µ〉 = det〈ejk , eil〉

= 0sin
e one of the rows (and one of the 
olumns) 
ontains only 0's. So the propertyis satis�ed in this 
ase, and we 
an assume that the jk's and il's are all di�erent(l > p). Thus
ω = ±ei1 ∧ · · · ∧ eipwhere ± 
orresponds to the sign of the permutation mapping (j1, . . . jp) to

(i1, . . . , ip). Then
ω ∧ ⋆µ = ±ei1 ∧ · · · ∧ ein

= ±e1 ∧ · · · ∧ en

= ±vol4



where ± now 
orresponds to the produ
t of what it was before and the sign ofthe permutation mapping (1, . . . , n) to (i1, . . . , in). The right-hand side of theequation is ±1, where the sign is the same (sin
e swapping two rows of a matrix
hanges the sign of the determinant, and the total number of swaps is equal tothe sum of the number of transpositions of the two mentioned permutations).Exer
ise 65Let
ω = ωxdx+ ωydy + ωzdz.Then

dω = (∂yωz − ∂zωy)dy ∧ dz +

(∂zωx − ∂xωz)dz ∧ dx+

(∂xωy − ∂yωx)dx ∧ dyand �nally
⋆dω = (∂yωz − ∂zωy)dx +

(∂zωx − ∂xωz)dy +

(∂xωy − ∂yωx)dzExer
ise 66
⋆ω = ωxdy ∧ dz + ωydz ∧ dx+ ωzdx ∧ dy

d ⋆ ω = (∂xωx + ∂yωy + ∂zωz)dx ∧ dy ∧ dz

⋆d ⋆ ω = ∂xωx + ∂yωy + ∂zωzExer
ise 67For the 0-form and the volume form we should get ⋆2 = −1:
⋆1 = dt ∧ dx ∧ dy ∧ dz

⋆dt ∧ dx ∧ dy ∧ dz = −1For 1-forms and 3-forms we should get ⋆2 = 1 :

5



⋆dt = −dx ∧ dy ∧ dz

⋆dx ∧ dy ∧ dz = −dt

⋆dx = −dt ∧ dy ∧ dz

⋆dt ∧ dy ∧ dz = −dx

⋆dy = dt ∧ dx ∧ dz

⋆dt ∧ dx ∧ dz = dy

⋆dz = −dt ∧ dx ∧ dy

⋆dt ∧ dx ∧ dy = −dzFinally for 2-forms we should get ⋆2 = −1:
⋆dt ∧ dx = −dy ∧ dz

⋆dy ∧ dz = dt ∧ dx

⋆dt ∧ dy = dx ∧ dz

⋆dx ∧ dz = −dt ∧ dy

⋆dt ∧ dz = −dx ∧ dy

⋆dx ∧ dy = dt ∧ dzExer
ise 68Applying the de�nition on p89 twi
e gives
⋆ ⋆ (ei1 ∧ · · · ∧ eip) = ⋆(±eip+1 ∧ · · · ∧ ein)

= ±ei1 ∧ · · · ∧ eipThe sign is given bysign(i1, . . . , in)sign(ip+1, . . . , in, i1, . . . , ip)ǫ(i1) · · · ǫ(ip)ǫ(ip+1) · · · ǫ(in)For the part with the ǫ's, the sign is (−1)s. Permuting (ip+1, . . . , in, i1, . . . , ip)to get (i1, . . . , in) requires p(n − p) transpositions, so the 
ontribution to thesign is (−1)p(n−p). The remaining permutation from (i1, . . . , in) is performedtwi
e, so if it is negative, it 
an
els. Putting the two parts together gives therequired formula.Exer
ise 69Assume that the 
oe�
ient in the �nal equation is 1
p!(n−p)! instead of 1

p! .Note that
ǫ
i1...ip

j1...jn−p
= gi1k1gi2k2 . . . gipkpǫk1k2...kpj1...jn−p

= ǫ(i1)ǫ(i2) · · · ǫ(ip)ǫi1...ipj1...jn−p

=

{

ǫ(i1) · · · ǫ(ip)sign(i1, . . . , ip, j1, . . . , jn−p) if {j1, . . . , jn−p} = {ip+1, . . . , in}

0 otherwise6



First 
onsider the 
ase where ω only 
onsists of one term. Let {j′1, . . . , j′n−p}be the indi
es distin
t from {i1, . . . , ip} in a spe
i�
, �xed order. Then
⋆ω =

1

p!
ωi1...ip

⋆ (ei1 ∧ · · · ∧ eip)

=
1

p!
ωi1...ip

ǫ(i1) · · · ǫ(ip)sign(i1, . . . , ip, j
′

1, . . . , j
′

n−p) e
j′1 ∧ · · · ∧ ej′n−p

=
1

p!(n− p)!
ωi1...ip

ǫ
i1...ip

j1...jn−p
ej1 ∧ · · · ∧ ejn−pIn the last line, the �xed set of indi
es j′k is repla
ed by a summation overall possible sets of indi
es jk. There are only (n− p)! 
ases where the 
oe�
ient

ǫ is not 0, and in all these 
ases
ǫ
i1...ip

j1...jn−p
ej1∧· · ·∧ejn−p = ǫ(i1) · · · ǫ(ip)sign(i1, . . . , ip, j

′

1, . . . , j
′

n−p) e
j′1∧· · ·∧ej′n−pNext 
onsider the 
ase where ω 
onsists of several terms, but all with thesame set of indi
es {i1, . . . , ip}, just with di�erent permutations applied. Thenea
h term will produ
e an expression as above with �xed ik's, and adding themup will yield the same expression where we sum over the ik's.Finally, in
luding more terms in ω with di�erent sets of indi
es, and applyingthe ⋆ gives a 
ompletely di�erent set of terms, so the result still holds.Exer
ise 70For the �rst equation,

∇ ·
−→
E = ρis the same as

∂xEx + ∂yEy + ∂zEz = ρBut if
E = Exdx ∧ Eydy ∧ Ezdzthen

⋆SE = Exdy ∧ dz + Eydz ∧ dx+ Ezdx ∧ dy

dS ⋆S E = (∂xEx + ∂yEy + ∂zEz)dx ∧ dy ∧ dz

⋆SdS ⋆S E = ∂xEx + ∂yEy + ∂zEzso the two formulations are the same.For the se
ond equation, the 
oe�
ients for the 
urrent on the right-handside already 
orrespond, so we just 
he
k the left-hand side. Using the olderformulation,
∇×

−→
B = (∂yBz − ∂zBy, ∂zBx − ∂xBz, ∂xBy − ∂yBx)

∂
−→
E

∂t
= (∂tEx, ∂tEy , ∂tEz)7



and using the new formulation,
∂tE = ∂tExdx+ ∂tEydy + ∂tEzdz

B = Bxdy ∧ dz +Bydz ∧ dx+Bzdx ∧ dy

⋆SB = Bxdx+Bydy +Bzdz

dS ⋆S B = (∂yBz − ∂zBy)dy ∧ dz +

= (∂zBx − ∂xBz)dz ∧ dx+

= (∂xBy − ∂yBx)dx ∧ dy

⋆SdS ⋆S B = (∂yBz − ∂zBy)dx+ (∂zBx − ∂xBz)dy + (∂xBy − ∂yBx)dzso again the 
oe�
ients agree.Exer
ise 71First 
he
k that
⋆B = (− ⋆S B) ∧ dtThis 
an be 
he
ked for ea
h 
omponent individually. For instan
e, if B =

dx ∧ dy, then
⋆(dx ∧ dy) = −dz ∧ dt

⋆Sdx ∧ dy = dzand similarly for the other. Next 
he
k that
⋆(E ∧ dt) = ⋆SEin a similar way, using for instan
e that

⋆(dx ∧ dt) = dy ∧ dz = ⋆SdxUsing these, it follows that if
F = B + E ∧ dtthen

⋆F = ⋆B + ⋆(E ∧ dt)

= (− ⋆S B) ∧ dt+ ⋆SENext apply d:
d(− ⋆S B ∧ dt) = −dS ⋆S B ∧ dt− ∂t ⋆S B ∧ dt ∧ dt

= −dS ⋆S B ∧ dt

d(⋆SE) = dS ⋆S E + ∂t ⋆S E ∧ dt

= dS ⋆S E + ⋆S∂tE ∧ dt8



Combining these gives the required expression for d ⋆ F :
d ⋆ F = ⋆S∂tE ∧ dt+ dS ⋆S E − dS ⋆S B ∧ dtFor �nding ⋆d ⋆ F , we 
an again 
he
k the individual terms. If E = Exdx,then
⋆(⋆S∂tE ∧ dt) = ⋆(⋆S∂tExdx ∧ dt)

= ⋆(∂tExdy ∧ dz ∧ dt)

= −∂tExdx

= −∂tEand this 
an be 
he
ked for general E as well.For the se
ond term,
dS ⋆S E = k dx ∧ dy ∧ dzwhere k is a fun
tion. So

⋆dS ⋆S E = k dt

= k ∧ dt

= ⋆S(k dx ∧ dy ∧ dz) ∧ dt

= ⋆SdS ⋆S E ∧ dtand the third term 
an be 
he
ked similarly. This gives the expression for ⋆d⋆F .The last step follows dire
tly as des
ribed there.
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