
Exerise 60The parity of the permutation is determined by the number of transpositions:the parity is even if the number of transpositions is even, and the parity isodd if the number of transpositions is odd. Thus it is enough to show thatany transposition reverses the orientation (beause reversing it twie gives theoriginal orientation).But the matrix of the linear transformation mapping a basis to the same basisbut with a single transposition di�ers from the identity matrix only in that tworows (or two olumns) are swapped. But as an elementary row operation, thee�et of swapping two rows is to hange the sign of the determinant. Sinethe determinant of the identity matrix is positive, the determinant of the lineartransformation must be negative, and hene making a transposition reverses theorientation.Exerise 61Let ω be a positively oriented volume form on M . Consider a spei� hart
(Uα, φα). In loal oordinates on this hart, ω is of the form f dx1 ∧ · · · ∧ dxn,or equivalently,

ω = φ−1
α (f dx1 ∧ · · · ∧ dxn).Sine ω is a volume form, f 6= 0 on φα(Uα). But f is ontinuous and itsdomain is onneted, so either f > 0 or f < 0. If f > 0, then de�ne φ̃α = φα,otherwise de�ne φ̃α by

φ̃α(x1, . . . , xn−1, xn) = φα(x1, . . . , xn−1,−xn)In terms of this new hart
ω = φ−1

α (−f dx1 ∧ · · · ∧ dxn)and −f > 0. So the new atlas with harts (Uα, φ̃α) has the required property:pulling bak dx1 ∧ · · · ∧ dxn gives 1
g
ω where g = ±f ◦ φα > 0.Exerise 62Let {(Uα, φα)} be an atlas of harts on M suh that the transition funtionsare orientation-preserving. Let ψ = φα ◦φ−1

β be the transition funtion from Uβto Uα. The indued map on di�erential forms an be applied to the anonialvolume form on Uα, mapping it to a multiple of the volume form on Uβ:
ψ−1(dx1 ∧ · · · ∧ dxn) = fαβdx

1′ ∧ · · · dxn′Here fαβ is a smooth funtion on Uα∩Uβ , whih is also positive everywhere,sine ψ is orientation-preserving. Note that fαα = 1 and fαβ = fβα. If weonsider a third hart, Uγ , and use the fat that on Uα ∩ Uβ ∩ Uγ the transi-tion funtion from Uβ to Uα is the same as going via Uγ , then it follows that
fαβfβγfγα = 1. These fats will be needed later on.1



The idea is now to introdue a positive funtion gα on eah Uα suh thatthe loal volume forms
gαdx

1 ∧ · · · ∧ dxnan be pathed together to give a volume form on M (whih is the goal of theexerise). Sine
ψ−1(gαdx

1 ∧ · · · ∧ dxn) = fαβgαdx
1′ ∧ · · · dxn′must equal

gβdx
1′ ∧ · · · dxn′for the pathing to work, the gα's should satisfy

fαβgα = gβi.e.
fαβ =

gβ

gαSine all these funtions are stritly positive, we an take logarithms. De�ne
cα = log gα and dαβ = log fαβ. Then the previous equation beomes

dαβ = cβ − cαTo be preise: we obtain the funtions fαβ from the given atlas. Then weobtain dαβ . Below we show how the cα's are obtained from these, and then�nally we apply the exponential funtion to get the gα's, whih would ompletethe exerise.Note that the properties of the fαβ's given above translate into the followingproperties for the gαβ 's:
gαα = 0

gαβ = −gαβ

gαβ + gβγ + gγα = 0Let λαbe a partition of unity for the atlas on M . Consider the smoothfuntion dαγλγde�ned on Uα ∩ Uγ . Extend it to a funtion on Uα by setting itto 0 outside Uγ . Sine the support of λγ is ontained in Uγ , it follows that theextended funtion is still smooth. (To see this, onsider x ∈ Uα. If x is in thesupport of λγ , then it has a neighbourhood inside Uγwhere the funtion mustbe smooth. Otherwise it vanishes on a neighbourhood, hene also smooth.)Now on Uα de�ne
cα = −

∑

γ

dαγλγNote that only �nitely many of the λγ 's do not vanish on Uα, so the sumexists. 2



Then on Uα ∩ Uβ:
cβ − cα = −

∑

γ

dβγλγ +
∑

γ

dαγλγ

=
∑

γ

(dαγ − dβγ)λγ

=
∑

γ

dαβλγ

= dαβwhih is what we needed to show.Exerise 63Denote the oriented orthonormal basis of otangent vetors at p ∈ M by {eµ}(i.e. use supersripts). Let x1, . . . , xn be loal oordinates on a hart ontaining
p. De�ne the metri omponents

gµν = g(∂µ, ∂ν).Then the volume form assoiated to the metri isvol = √

| det gµν |dx
1 ∧ · · · ∧ dxn,and its value at p isvolp =

√

| det(gµν)p|(dx
1)p ∧ · · · ∧ (dxn)p∈ ∧n T ∗

pM .Furthermore,
〈(dxµ)p, (dx

ν)p〉 = (gµν)pwhere
det(gµν)p · det(gµν)p = 1.De�ne the invertible matrix to transform between the two bases of ∧nT ∗

pM :
(dxµ)p = T

µ
λ e

λ.Using this, the inner produt an also be alulated as
〈(dxµ)p, (dx

ν)p〉 = 〈T µ
λ e

λ, T ν
λ e

λ〉

= ǫ(λ)T µ
λ T

λ
νwhere ǫ(λ) = 〈eλ, eλ〉. Note that if g is atually a Riemannian metri, so that

ǫ(λ) = 1 for all λ, then this last expression is just the matrix T µ
λ multiplied byits transpose. In this more general situation, it is of the form T

µ
λ · (ǫ(λ)T µ

λ )T .Taking the determinant gives
ǫ(detT µ

λ )23



where
ǫ =

∏

λ

ǫ(λ) = ±1Taking the determinant of the other expression of the inner produt yields:
det(gµν)p = det(gµν)−1

= ǫ| det(gµν)|−1Setting the two expressions equal to one another yields
detT µ

λ =
1

√

| det(gµν)|Finally: volp =
√

| det(gµν)p|(dx
1)p ∧ · · · ∧ (dxn)p

=
√

| det(gµν)p|T
1
λe

λ ∧ · · · ∧ T n
λ e

λ

=
√

| det(gµν)p| detT µ
λ e

1 ∧ · · · ∧ en

= e1 ∧ · · · ∧ enExerise 64We an assume µ = ei1 ∧· · ·∧eip , sine suh elements span the spae of p-forms,and the result would follow by linearity of the wedge produt and bi-linearity ofthe inner produt. Changing the order of the exponents would not ause well-de�nedness problems due to the sign(i1, . . . , ip) fator used in the de�nition.For similar linearity reasons, it is enough to assume ω = ej1 ∧ · · · ∧ ejp . So
ω ∧ ⋆µ = ej1 ∧ · · · ∧ ejp ∧ eip+1 ∧ · · · ∧ einIf jk = il for some k and l, then ω ∧ ⋆µ = 0, and also

〈ω, µ〉 = det〈ejk , eil〉

= 0sine one of the rows (and one of the olumns) ontains only 0's. So the propertyis satis�ed in this ase, and we an assume that the jk's and il's are all di�erent(l > p). Thus
ω = ±ei1 ∧ · · · ∧ eipwhere ± orresponds to the sign of the permutation mapping (j1, . . . jp) to

(i1, . . . , ip). Then
ω ∧ ⋆µ = ±ei1 ∧ · · · ∧ ein

= ±e1 ∧ · · · ∧ en

= ±vol4



where ± now orresponds to the produt of what it was before and the sign ofthe permutation mapping (1, . . . , n) to (i1, . . . , in). The right-hand side of theequation is ±1, where the sign is the same (sine swapping two rows of a matrixhanges the sign of the determinant, and the total number of swaps is equal tothe sum of the number of transpositions of the two mentioned permutations).Exerise 65Let
ω = ωxdx+ ωydy + ωzdz.Then

dω = (∂yωz − ∂zωy)dy ∧ dz +

(∂zωx − ∂xωz)dz ∧ dx+

(∂xωy − ∂yωx)dx ∧ dyand �nally
⋆dω = (∂yωz − ∂zωy)dx +

(∂zωx − ∂xωz)dy +

(∂xωy − ∂yωx)dzExerise 66
⋆ω = ωxdy ∧ dz + ωydz ∧ dx+ ωzdx ∧ dy

d ⋆ ω = (∂xωx + ∂yωy + ∂zωz)dx ∧ dy ∧ dz

⋆d ⋆ ω = ∂xωx + ∂yωy + ∂zωzExerise 67For the 0-form and the volume form we should get ⋆2 = −1:
⋆1 = dt ∧ dx ∧ dy ∧ dz

⋆dt ∧ dx ∧ dy ∧ dz = −1For 1-forms and 3-forms we should get ⋆2 = 1 :
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⋆dt = −dx ∧ dy ∧ dz

⋆dx ∧ dy ∧ dz = −dt

⋆dx = −dt ∧ dy ∧ dz

⋆dt ∧ dy ∧ dz = −dx

⋆dy = dt ∧ dx ∧ dz

⋆dt ∧ dx ∧ dz = dy

⋆dz = −dt ∧ dx ∧ dy

⋆dt ∧ dx ∧ dy = −dzFinally for 2-forms we should get ⋆2 = −1:
⋆dt ∧ dx = −dy ∧ dz

⋆dy ∧ dz = dt ∧ dx

⋆dt ∧ dy = dx ∧ dz

⋆dx ∧ dz = −dt ∧ dy

⋆dt ∧ dz = −dx ∧ dy

⋆dx ∧ dy = dt ∧ dzExerise 68Applying the de�nition on p89 twie gives
⋆ ⋆ (ei1 ∧ · · · ∧ eip) = ⋆(±eip+1 ∧ · · · ∧ ein)

= ±ei1 ∧ · · · ∧ eipThe sign is given bysign(i1, . . . , in)sign(ip+1, . . . , in, i1, . . . , ip)ǫ(i1) · · · ǫ(ip)ǫ(ip+1) · · · ǫ(in)For the part with the ǫ's, the sign is (−1)s. Permuting (ip+1, . . . , in, i1, . . . , ip)to get (i1, . . . , in) requires p(n − p) transpositions, so the ontribution to thesign is (−1)p(n−p). The remaining permutation from (i1, . . . , in) is performedtwie, so if it is negative, it anels. Putting the two parts together gives therequired formula.Exerise 69Assume that the oe�ient in the �nal equation is 1
p!(n−p)! instead of 1

p! .Note that
ǫ
i1...ip

j1...jn−p
= gi1k1gi2k2 . . . gipkpǫk1k2...kpj1...jn−p

= ǫ(i1)ǫ(i2) · · · ǫ(ip)ǫi1...ipj1...jn−p

=

{

ǫ(i1) · · · ǫ(ip)sign(i1, . . . , ip, j1, . . . , jn−p) if {j1, . . . , jn−p} = {ip+1, . . . , in}

0 otherwise6



First onsider the ase where ω only onsists of one term. Let {j′1, . . . , j′n−p}be the indies distint from {i1, . . . , ip} in a spei�, �xed order. Then
⋆ω =

1

p!
ωi1...ip

⋆ (ei1 ∧ · · · ∧ eip)

=
1

p!
ωi1...ip

ǫ(i1) · · · ǫ(ip)sign(i1, . . . , ip, j
′

1, . . . , j
′

n−p) e
j′1 ∧ · · · ∧ ej′n−p

=
1

p!(n− p)!
ωi1...ip

ǫ
i1...ip

j1...jn−p
ej1 ∧ · · · ∧ ejn−pIn the last line, the �xed set of indies j′k is replaed by a summation overall possible sets of indies jk. There are only (n− p)! ases where the oe�ient

ǫ is not 0, and in all these ases
ǫ
i1...ip

j1...jn−p
ej1∧· · ·∧ejn−p = ǫ(i1) · · · ǫ(ip)sign(i1, . . . , ip, j

′

1, . . . , j
′

n−p) e
j′1∧· · ·∧ej′n−pNext onsider the ase where ω onsists of several terms, but all with thesame set of indies {i1, . . . , ip}, just with di�erent permutations applied. Theneah term will produe an expression as above with �xed ik's, and adding themup will yield the same expression where we sum over the ik's.Finally, inluding more terms in ω with di�erent sets of indies, and applyingthe ⋆ gives a ompletely di�erent set of terms, so the result still holds.Exerise 70For the �rst equation,

∇ ·
−→
E = ρis the same as

∂xEx + ∂yEy + ∂zEz = ρBut if
E = Exdx ∧ Eydy ∧ Ezdzthen

⋆SE = Exdy ∧ dz + Eydz ∧ dx+ Ezdx ∧ dy

dS ⋆S E = (∂xEx + ∂yEy + ∂zEz)dx ∧ dy ∧ dz

⋆SdS ⋆S E = ∂xEx + ∂yEy + ∂zEzso the two formulations are the same.For the seond equation, the oe�ients for the urrent on the right-handside already orrespond, so we just hek the left-hand side. Using the olderformulation,
∇×

−→
B = (∂yBz − ∂zBy, ∂zBx − ∂xBz, ∂xBy − ∂yBx)

∂
−→
E

∂t
= (∂tEx, ∂tEy , ∂tEz)7



and using the new formulation,
∂tE = ∂tExdx+ ∂tEydy + ∂tEzdz

B = Bxdy ∧ dz +Bydz ∧ dx+Bzdx ∧ dy

⋆SB = Bxdx+Bydy +Bzdz

dS ⋆S B = (∂yBz − ∂zBy)dy ∧ dz +

= (∂zBx − ∂xBz)dz ∧ dx+

= (∂xBy − ∂yBx)dx ∧ dy

⋆SdS ⋆S B = (∂yBz − ∂zBy)dx+ (∂zBx − ∂xBz)dy + (∂xBy − ∂yBx)dzso again the oe�ients agree.Exerise 71First hek that
⋆B = (− ⋆S B) ∧ dtThis an be heked for eah omponent individually. For instane, if B =

dx ∧ dy, then
⋆(dx ∧ dy) = −dz ∧ dt

⋆Sdx ∧ dy = dzand similarly for the other. Next hek that
⋆(E ∧ dt) = ⋆SEin a similar way, using for instane that

⋆(dx ∧ dt) = dy ∧ dz = ⋆SdxUsing these, it follows that if
F = B + E ∧ dtthen

⋆F = ⋆B + ⋆(E ∧ dt)

= (− ⋆S B) ∧ dt+ ⋆SENext apply d:
d(− ⋆S B ∧ dt) = −dS ⋆S B ∧ dt− ∂t ⋆S B ∧ dt ∧ dt

= −dS ⋆S B ∧ dt

d(⋆SE) = dS ⋆S E + ∂t ⋆S E ∧ dt

= dS ⋆S E + ⋆S∂tE ∧ dt8



Combining these gives the required expression for d ⋆ F :
d ⋆ F = ⋆S∂tE ∧ dt+ dS ⋆S E − dS ⋆S B ∧ dtFor �nding ⋆d ⋆ F , we an again hek the individual terms. If E = Exdx,then
⋆(⋆S∂tE ∧ dt) = ⋆(⋆S∂tExdx ∧ dt)

= ⋆(∂tExdy ∧ dz ∧ dt)

= −∂tExdx

= −∂tEand this an be heked for general E as well.For the seond term,
dS ⋆S E = k dx ∧ dy ∧ dzwhere k is a funtion. So

⋆dS ⋆S E = k dt

= k ∧ dt

= ⋆S(k dx ∧ dy ∧ dz) ∧ dt

= ⋆SdS ⋆S E ∧ dtand the third term an be heked similarly. This gives the expression for ⋆d⋆F .The last step follows diretly as desribed there.
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