Exercise 60

The parity of the permutation is determined by the number of transpositions: the parity is even if the number of transpositions is even, and the parity is odd if the number of transpositions is odd. Thus it is enough to show that any transposition reverses the orientation (because reversing it twice gives the original orientation).

But the matrix of the linear transformation mapping a basis to the same basis but with a single transposition differs from the identity matrix only in that two rows (or two columns) are swapped. But as an elementary row operation, the effect of swapping two rows is to change the sign of the determinant. Since the determinant of the identity matrix is positive, the determinant of the linear transformation must be negative, and hence making a transposition reverses the orientation.

Exercise 61

Let ω be a positively oriented volume form on M. Consider a specific chart $\left(U_{\alpha}, \phi_{\alpha}\right)$. In local coordinates on this chart, ω is of the form $f d x^{1} \wedge \cdots \wedge d x^{n}$, or equivalently,

$$
\omega=\phi_{\alpha}^{-1}\left(f d x^{1} \wedge \cdots \wedge d x^{n}\right)
$$

Since ω is a volume form, $f \neq 0$ on $\phi_{\alpha}\left(U_{\alpha}\right)$. But f is continuous and its domain is connected, so either $f>0$ or $f<0$. If $f>0$, then define $\tilde{\phi}_{\alpha}=\phi_{\alpha}$, otherwise define $\tilde{\phi}_{\alpha}$ by

$$
\tilde{\phi}_{\alpha}\left(x^{1}, \ldots, x^{n-1}, x^{n}\right)=\phi_{\alpha}\left(x^{1}, \ldots, x^{n-1},-x^{n}\right)
$$

In terms of this new chart

$$
\omega=\phi_{\alpha}^{-1}\left(-f d x^{1} \wedge \cdots \wedge d x^{n}\right)
$$

and $-f>0$. So the new atlas with charts $\left(U_{\alpha}, \tilde{\phi}_{\alpha}\right)$ has the required property: pulling back $d x^{1} \wedge \cdots \wedge d x^{n}$ gives $\frac{1}{g} \omega$ where $g= \pm f \circ \phi_{\alpha}>0$.

Exercise 62

Let $\left\{\left(U_{\alpha}, \phi_{\alpha}\right)\right\}$ be an atlas of charts on M such that the transition functions are orientation-preserving. Let $\psi=\phi_{\alpha} \circ \phi_{\beta}^{-1}$ be the transition function from U_{β} to U_{α}. The induced map on differential forms can be applied to the canonical volume form on U_{α}, mapping it to a multiple of the volume form on U_{β} :

$$
\psi^{-1}\left(d x^{1} \wedge \cdots \wedge d x^{n}\right)=f_{\alpha \beta} d x^{1 \prime} \wedge \cdots d x^{n \prime}
$$

Here $f_{\alpha \beta}$ is a smooth function on $U_{\alpha} \cap U_{\beta}$, which is also positive everywhere, since ψ is orientation-preserving. Note that $f_{\alpha \alpha}=1$ and $f_{\alpha \beta}=f_{\beta \alpha}$. If we consider a third chart, U_{γ}, and use the fact that on $U_{\alpha} \cap U_{\beta} \cap U_{\gamma}$ the transition function from U_{β} to U_{α} is the same as going via U_{γ}, then it follows that $f_{\alpha \beta} f_{\beta \gamma} f_{\gamma \alpha}=1$. These facts will be needed later on.

The idea is now to introduce a positive function g_{α} on each U_{α} such that the local volume forms

$$
g_{\alpha} d x^{1} \wedge \cdots \wedge d x^{n}
$$

can be patched together to give a volume form on M (which is the goal of the exercise). Since

$$
\psi^{-1}\left(g_{\alpha} d x^{1} \wedge \cdots \wedge d x^{n}\right)=f_{\alpha \beta} g_{\alpha} d x^{1 \prime} \wedge \cdots d x^{n \prime}
$$

must equal

$$
g_{\beta} d x^{1 \prime} \wedge \cdots d x^{n \prime}
$$

for the patching to work, the g_{α} 's should satisfy

$$
f_{\alpha \beta} g_{\alpha}=g_{\beta}
$$

i.e.

$$
f_{\alpha \beta}=\frac{g_{\beta}}{g_{\alpha}}
$$

Since all these functions are strictly positive, we can take logarithms. Define $c_{\alpha}=\log g_{\alpha}$ and $d_{\alpha \beta}=\log f_{\alpha \beta}$. Then the previous equation becomes

$$
d_{\alpha \beta}=c_{\beta}-c_{\alpha}
$$

To be precise: we obtain the functions $f_{\alpha \beta}$ from the given atlas. Then we obtain $d_{\alpha \beta}$. Below we show how the c_{α} 's are obtained from these, and then finally we apply the exponential function to get the g_{α} 's, which would complete the exercise.

Note that the properties of the $f_{\alpha \beta}$'s given above translate into the following properties for the $g_{\alpha \beta}$'s:

$$
\begin{aligned}
g_{\alpha \alpha} & =0 \\
g_{\alpha \beta} & =-g_{\alpha \beta} \\
g_{\alpha \beta}+g_{\beta \gamma}+g_{\gamma \alpha} & =0
\end{aligned}
$$

Let λ_{α} be a partition of unity for the atlas on M. Consider the smooth function $d_{\alpha \gamma} \lambda_{\gamma}$ defined on $U_{\alpha} \cap U_{\gamma}$. Extend it to a function on U_{α} by setting it to 0 outside U_{γ}. Since the support of λ_{γ} is contained in U_{γ}, it follows that the extended function is still smooth. (To see this, consider $x \in U_{\alpha}$. If x is in the support of λ_{γ}, then it has a neighbourhood inside U_{γ} where the function must be smooth. Otherwise it vanishes on a neighbourhood, hence also smooth.)

Now on U_{α} define

$$
c_{\alpha}=-\sum_{\gamma} d_{\alpha \gamma} \lambda_{\gamma}
$$

Note that only finitely many of the λ_{γ} 's do not vanish on U_{α}, so the sum exists.

Then on $U_{\alpha} \cap U_{\beta}$:

$$
\begin{aligned}
c_{\beta}-c_{\alpha} & =-\sum_{\gamma} d_{\beta \gamma} \lambda_{\gamma}+\sum_{\gamma} d_{\alpha \gamma} \lambda_{\gamma} \\
& =\sum_{\gamma}\left(d_{\alpha \gamma}-d_{\beta \gamma}\right) \lambda_{\gamma} \\
& =\sum_{\gamma} d_{\alpha \beta} \lambda_{\gamma} \\
& =d_{\alpha \beta}
\end{aligned}
$$

which is what we needed to show.

Exercise 63

Denote the oriented orthonormal basis of cotangent vectors at $p \in M$ by $\left\{e^{\mu}\right\}$ (i.e. use superscripts). Let x^{1}, \ldots, x^{n} be local coordinates on a chart containing p. Define the metric components

$$
g_{\mu \nu}=g\left(\partial_{\mu}, \partial_{\nu}\right)
$$

Then the volume form associated to the metric is

$$
\mathrm{vol}=\sqrt{\left|\operatorname{det} g_{\mu \nu}\right|} d x^{1} \wedge \cdots \wedge d x^{n}
$$

and its value at p is

$$
\operatorname{vol}_{p}=\sqrt{\left|\operatorname{det}\left(g_{\mu \nu}\right)_{p}\right|}\left(d x^{1}\right)_{p} \wedge \cdots \wedge\left(d x^{n}\right)_{p} \in \wedge^{n} T_{p}^{*} M
$$

Furthermore,

$$
\left\langle\left(d x^{\mu}\right)_{p},\left(d x^{\nu}\right)_{p}\right\rangle=\left(g^{\mu \nu}\right)_{p}
$$

where

$$
\operatorname{det}\left(g_{\mu \nu}\right)_{p} \cdot \operatorname{det}\left(g^{\mu \nu}\right)_{p}=1
$$

Define the invertible matrix to transform between the two bases of $\wedge^{n} T_{p}^{*} M$:

$$
\left(d x^{\mu}\right)_{p}=T_{\lambda}^{\mu} e^{\lambda}
$$

Using this, the inner product can also be calculated as

$$
\begin{aligned}
\left\langle\left(d x^{\mu}\right)_{p},\left(d x^{\nu}\right)_{p}\right\rangle & =\left\langle T_{\lambda}^{\mu} e^{\lambda}, T_{\lambda}^{\nu} e^{\lambda}\right\rangle \\
& =\epsilon(\lambda) T_{\lambda}^{\mu} T_{\nu}^{\lambda}
\end{aligned}
$$

where $\epsilon(\lambda)=\left\langle e^{\lambda}, e^{\lambda}\right\rangle$. Note that if g is actually a Riemannian metric, so that $\epsilon(\lambda)=1$ for all λ, then this last expression is just the matrix T_{λ}^{μ} multiplied by its transpose. In this more general situation, it is of the form $T_{\lambda}^{\mu} \cdot\left(\epsilon(\lambda) T_{\lambda}^{\mu}\right)^{T}$. Taking the determinant gives

$$
\epsilon\left(\operatorname{det} T_{\lambda}^{\mu}\right)^{2}
$$

where

$$
\epsilon=\prod_{\lambda} \epsilon(\lambda)= \pm 1
$$

Taking the determinant of the other expression of the inner product yields:

$$
\begin{aligned}
\operatorname{det}\left(g^{\mu \nu}\right)_{p} & =\operatorname{det}\left(g_{\mu \nu}\right)^{-1} \\
& =\epsilon\left|\operatorname{det}\left(g_{\mu \nu}\right)\right|^{-1}
\end{aligned}
$$

Setting the two expressions equal to one another yields

$$
\operatorname{det} T_{\lambda}^{\mu}=\frac{1}{\sqrt{\left|\operatorname{det}\left(g_{\mu \nu}\right)\right|}}
$$

Finally:

$$
\begin{aligned}
\operatorname{vol}_{p} & =\sqrt{\left|\operatorname{det}\left(g_{\mu \nu}\right)_{p}\right|}\left(d x^{1}\right)_{p} \wedge \cdots \wedge\left(d x^{n}\right)_{p} \\
& =\sqrt{\left|\operatorname{det}\left(g_{\mu \nu}\right)_{p}\right|} T_{\lambda}^{1} e^{\lambda} \wedge \cdots \wedge T_{\lambda}^{n} e^{\lambda} \\
& =\sqrt{\left|\operatorname{det}\left(g_{\mu \nu}\right)_{p}\right|} \operatorname{det} T_{\lambda}^{\mu} e^{1} \wedge \cdots \wedge e^{n} \\
& =e^{1} \wedge \cdots \wedge e^{n}
\end{aligned}
$$

Exercise 64

We can assume $\mu=e^{i_{1}} \wedge \cdots \wedge e^{i_{p}}$, since such elements span the space of p-forms, and the result would follow by linearity of the wedge product and bi-linearity of the inner product. Changing the order of the exponents would not cause welldefinedness problems due to the $\operatorname{sign}\left(i_{1}, \ldots, i_{p}\right)$ factor used in the definition.

For similar linearity reasons, it is enough to assume $\omega=e^{j_{1}} \wedge \cdots \wedge e^{j_{p}}$. So

$$
\omega \wedge \star \mu=e^{j_{1}} \wedge \cdots \wedge e^{j_{p}} \wedge e^{i_{p+1}} \wedge \cdots \wedge e^{i_{n}}
$$

If $j_{k}=i_{l}$ for some k and l, then $\omega \wedge \star \mu=0$, and also

$$
\begin{aligned}
\langle\omega, \mu\rangle & =\operatorname{det}\left\langle e^{j_{k}}, e^{i_{l}}\right\rangle \\
& =0
\end{aligned}
$$

since one of the rows (and one of the columns) contains only 0 's. So the property is satisfied in this case, and we can assume that the j_{k} 's and i_{l} 's are all different $(l>p)$. Thus

$$
\omega= \pm e^{i_{1}} \wedge \cdots \wedge e^{i_{p}}
$$

where \pm corresponds to the sign of the permutation mapping $\left(j_{1}, \ldots j_{p}\right)$ to $\left(i_{1}, \ldots, i_{p}\right)$. Then

$$
\begin{aligned}
\omega \wedge \star \mu & = \pm e^{i_{1}} \wedge \cdots \wedge e^{i_{n}} \\
& = \pm e^{1} \wedge \cdots \wedge e^{n} \\
& = \pm \mathrm{vol}
\end{aligned}
$$

where \pm now corresponds to the product of what it was before and the sign of the permutation mapping $(1, \ldots, n)$ to $\left(i_{1}, \ldots, i_{n}\right)$. The right-hand side of the equation is ± 1, where the sign is the same (since swapping two rows of a matrix changes the sign of the determinant, and the total number of swaps is equal to the sum of the number of transpositions of the two mentioned permutations).

Exercise 65

Let

$$
\omega=\omega_{x} d x+\omega_{y} d y+\omega_{z} d z
$$

Then

$$
\begin{aligned}
d \omega= & \left(\partial_{y} \omega_{z}-\partial_{z} \omega_{y}\right) d y \wedge d z+ \\
& \left(\partial_{z} \omega_{x}-\partial_{x} \omega_{z}\right) d z \wedge d x+ \\
& \left(\partial_{x} \omega_{y}-\partial_{y} \omega_{x}\right) d x \wedge d y
\end{aligned}
$$

and finally

$$
\begin{aligned}
\star d \omega= & \left(\partial_{y} \omega_{z}-\partial_{z} \omega_{y}\right) d x+ \\
& \left(\partial_{z} \omega_{x}-\partial_{x} \omega_{z}\right) d y+ \\
& \left(\partial_{x} \omega_{y}-\partial_{y} \omega_{x}\right) d z
\end{aligned}
$$

Exercise 66

$$
\begin{aligned}
\star \omega & =\omega_{x} d y \wedge d z+\omega_{y} d z \wedge d x+\omega_{z} d x \wedge d y \\
d \star \omega & =\left(\partial_{x} \omega_{x}+\partial_{y} \omega_{y}+\partial_{z} \omega_{z}\right) d x \wedge d y \wedge d z \\
\star d \star \omega & =\partial_{x} \omega_{x}+\partial_{y} \omega_{y}+\partial_{z} \omega_{z}
\end{aligned}
$$

Exercise 67

For the 0 -form and the volume form we should get $\star^{2}=-1$:

$$
\begin{aligned}
\star 1 & =d t \wedge d x \wedge d y \wedge d z \\
\star d t \wedge d x \wedge d y \wedge d z & =-1
\end{aligned}
$$

For 1 -forms and 3 -forms we should get $\star^{2}=1$:

$$
\begin{aligned}
\star d t & =-d x \wedge d y \wedge d z \\
\star d x \wedge d y \wedge d z & =-d t \\
\star d x & =-d t \wedge d y \wedge d z \\
\star d t \wedge d y \wedge d z & =-d x \\
\star d y & =d t \wedge d x \wedge d z \\
\star d t \wedge d x \wedge d z & =d y \\
\star d z & =-d t \wedge d x \wedge d y \\
\star d t \wedge d x \wedge d y & =-d z
\end{aligned}
$$

Finally for 2 -forms we should get $\star^{2}=-1$:

$$
\begin{aligned}
\star d t \wedge d x & =-d y \wedge d z \\
\star d y \wedge d z & =d t \wedge d x \\
\star d t \wedge d y & =d x \wedge d z \\
\star d x \wedge d z & =-d t \wedge d y \\
\star d t \wedge d z & =-d x \wedge d y \\
\star d x \wedge d y & =d t \wedge d z
\end{aligned}
$$

Exercise 68

Applying the definition on p89 twice gives

$$
\begin{aligned}
\star \star\left(e^{i_{1}} \wedge \cdots \wedge e^{i_{p}}\right) & =\star\left(\pm e^{i_{p+1}} \wedge \cdots \wedge e^{i_{n}}\right) \\
& = \pm e^{i_{1}} \wedge \cdots \wedge e^{i_{p}}
\end{aligned}
$$

The sign is given by

$$
\operatorname{sign}\left(i_{1}, \ldots, i_{n}\right) \operatorname{sign}\left(i_{p+1}, \ldots, i_{n}, i_{1}, \ldots, i_{p}\right) \epsilon\left(i_{1}\right) \cdots \epsilon\left(i_{p}\right) \epsilon\left(i_{p+1}\right) \cdots \epsilon\left(i_{n}\right)
$$

For the part with the ϵ 's, the sign is $(-1)^{s}$. Permuting $\left(i_{p+1}, \ldots, i_{n}, i_{1}, \ldots, i_{p}\right)$ to get $\left(i_{1}, \ldots, i_{n}\right)$ requires $p(n-p)$ transpositions, so the contribution to the sign is $(-1)^{p(n-p)}$. The remaining permutation from $\left(i_{1}, \ldots, i_{n}\right)$ is performed twice, so if it is negative, it cancels. Putting the two parts together gives the required formula.

Exercise 69

Assume that the coefficient in the final equation is $\frac{1}{p!(n-p)!}$ instead of $\frac{1}{p!}$.
Note that

$$
\begin{aligned}
\epsilon_{j_{1} \ldots j_{n-p}}^{i_{1} \ldots i_{p}} & =g^{i_{1} k_{1}} g^{i_{2} k_{2}} \ldots g^{i_{p} k_{p}} \epsilon_{k_{1} k_{2} \ldots k_{p} j_{1} \ldots j_{n-p}} \\
& =\epsilon\left(i_{1}\right) \epsilon\left(i_{2}\right) \cdots \epsilon\left(i_{p}\right) \epsilon_{i_{1} \ldots i_{p} j_{1} \ldots j_{n-p}} \\
& = \begin{cases}\epsilon\left(i_{1}\right) \cdots \epsilon\left(i_{p}\right) \operatorname{sign}\left(i_{1}, \ldots, i_{p}, j_{1}, \ldots, j_{n-p}\right) & \text { if }\left\{j_{1}, \ldots, j_{n-p}\right\}=\left\{i_{p+1}, \ldots, i_{n}\right\} \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

First consider the case where ω only consists of one term. Let $\left\{j_{1}^{\prime}, \ldots, j_{n-p}^{\prime}\right\}$ be the indices distinct from $\left\{i_{1}, \ldots, i_{p}\right\}$ in a specific, fixed order. Then

$$
\begin{aligned}
\star \omega & =\frac{1}{p!} \omega_{i_{1} \ldots i_{p}} \star\left(e^{i_{1}} \wedge \cdots \wedge e^{i_{p}}\right) \\
& =\frac{1}{p!} \omega_{i_{1} \ldots i_{p}} \epsilon\left(i_{1}\right) \cdots \epsilon\left(i_{p}\right) \operatorname{sign}\left(i_{1}, \ldots, i_{p}, j_{1}^{\prime}, \ldots, j_{n-p}^{\prime}\right) e^{j_{1}^{\prime}} \wedge \cdots \wedge e^{j_{n-p}^{\prime}} \\
& =\frac{1}{p!(n-p)!} \omega_{i_{1} \ldots i_{p}} \epsilon^{i_{1} \ldots i_{p}}{ }_{j_{1} \ldots j_{n-p}} e^{j_{1}} \wedge \cdots \wedge e^{j_{n-p}}
\end{aligned}
$$

In the last line, the fixed set of indices j_{k}^{\prime} is replaced by a summation over all possible sets of indices j_{k}. There are only $(n-p)$! cases where the coefficient ϵ is not 0 , and in all these cases

$$
\epsilon_{j_{1} \ldots i_{p} \ldots j_{n-p}}^{i_{1}} e^{j_{1}} \wedge \cdots \wedge e^{j_{n-p}}=\epsilon\left(i_{1}\right) \cdots \epsilon\left(i_{p}\right) \operatorname{sign}\left(i_{1}, \ldots, i_{p}, j_{1}^{\prime}, \ldots, j_{n-p}^{\prime}\right) e^{j_{1}^{\prime}} \wedge \cdots \wedge e^{j_{n-p}^{\prime}}
$$

Next consider the case where ω consists of several terms, but all with the same set of indices $\left\{i_{1}, \ldots, i_{p}\right\}$, just with different permutations applied. Then each term will produce an expression as above with fixed i_{k} 's, and adding them up will yield the same expression where we sum over the i_{k} 's.

Finally, including more terms in ω with different sets of indices, and applying the \star gives a completely different set of terms, so the result still holds.

Exercise 70

For the first equation,

$$
\nabla \cdot \vec{E}=\rho
$$

is the same as

$$
\partial_{x} E_{x}+\partial_{y} E_{y}+\partial_{z} E_{z}=\rho
$$

But if

$$
E=E_{x} d x \wedge E_{y} d y \wedge E_{z} d z
$$

then

$$
\begin{aligned}
\star_{S} E & =E_{x} d y \wedge d z+E_{y} d z \wedge d x+E_{z} d x \wedge d y \\
d_{S} \star_{S} E & =\left(\partial_{x} E_{x}+\partial_{y} E_{y}+\partial_{z} E_{z}\right) d x \wedge d y \wedge d z \\
\star_{S} d_{S} \star_{S} E & =\partial_{x} E_{x}+\partial_{y} E_{y}+\partial_{z} E_{z}
\end{aligned}
$$

so the two formulations are the same.
For the second equation, the coefficients for the current on the right-hand side already correspond, so we just check the left-hand side. Using the older formulation,

$$
\begin{aligned}
\nabla \times \vec{B} & =\left(\partial_{y} B_{z}-\partial_{z} B_{y}, \partial_{z} B_{x}-\partial_{x} B_{z}, \partial_{x} B_{y}-\partial_{y} B_{x}\right) \\
\frac{\partial \vec{E}}{\partial t} & =\left(\partial_{t} E_{x}, \partial_{t} E_{y}, \partial_{t} E_{z}\right)
\end{aligned}
$$

and using the new formulation,

$$
\begin{aligned}
\partial_{t} E & =\partial_{t} E_{x} d x+\partial_{t} E_{y} d y+\partial_{t} E_{z} d z \\
B & =B_{x} d y \wedge d z+B_{y} d z \wedge d x+B_{z} d x \wedge d y \\
\star_{S} B & =B_{x} d x+B_{y} d y+B_{z} d z \\
d_{S} \star_{S} B & =\left(\partial_{y} B_{z}-\partial_{z} B_{y}\right) d y \wedge d z+ \\
& =\left(\partial_{z} B_{x}-\partial_{x} B_{z}\right) d z \wedge d x+ \\
& =\left(\partial_{x} B_{y}-\partial_{y} B_{x}\right) d x \wedge d y \\
\star_{S} d_{S} \star_{S} B & =\left(\partial_{y} B_{z}-\partial_{z} B_{y}\right) d x+\left(\partial_{z} B_{x}-\partial_{x} B_{z}\right) d y+\left(\partial_{x} B_{y}-\partial_{y} B_{x}\right) d z
\end{aligned}
$$

so again the coefficients agree.

Exercise 71

First check that

$$
\star B=\left(-\star_{S} B\right) \wedge d t
$$

This can be checked for each component individually. For instance, if $B=$ $d x \wedge d y$, then

$$
\begin{aligned}
\star(d x \wedge d y) & =-d z \wedge d t \\
\star_{S} d x \wedge d y & =d z
\end{aligned}
$$

and similarly for the other. Next check that

$$
\star(E \wedge d t)=\star_{S} E
$$

in a similar way, using for instance that

$$
\star(d x \wedge d t)=d y \wedge d z=\star_{S} d x
$$

Using these, it follows that if

$$
F=B+E \wedge d t
$$

then

$$
\begin{aligned}
\star F & =\star B+\star(E \wedge d t) \\
& =\left(-\star_{S} B\right) \wedge d t+\star_{S} E
\end{aligned}
$$

Next apply d :

$$
\begin{aligned}
d\left(-\star_{S} B \wedge d t\right) & =-d_{S} \star_{S} B \wedge d t-\partial_{t} \star_{S} B \wedge d t \wedge d t \\
& =-d_{S} \star_{S} B \wedge d t \\
d\left(\star_{S} E\right) & =d_{S} \star_{S} E+\partial_{t} \star_{S} E \wedge d t \\
& =d_{S} \star_{S} E+\star_{S} \partial_{t} E \wedge d t
\end{aligned}
$$

Combining these gives the required expression for $d \star F$:

$$
d \star F=\star_{S} \partial_{t} E \wedge d t+d_{S} \star_{S} E-d_{S} \star_{S} B \wedge d t
$$

For finding $\star d \star F$, we can again check the individual terms. If $E=E_{x} d x$, then

$$
\begin{aligned}
\star\left(\star_{S} \partial_{t} E \wedge d t\right) & =\star\left(\star_{S} \partial_{t} E_{x} d x \wedge d t\right) \\
& =\star\left(\partial_{t} E_{x} d y \wedge d z \wedge d t\right) \\
& =-\partial_{t} E_{x} d x \\
& =-\partial_{t} E
\end{aligned}
$$

and this can be checked for general E as well.
For the second term,

$$
d_{S} \star_{S} E=k d x \wedge d y \wedge d z
$$

where k is a function. So

$$
\begin{aligned}
\star d_{S} \star_{S} E & =k d t \\
& =k \wedge d t \\
& =\star_{S}(k d x \wedge d y \wedge d z) \wedge d t \\
& =\star_{S} d_{S} \star_{S} E \wedge d t
\end{aligned}
$$

and the third term can be checked similarly. This gives the expression for $\star d \star F$. The last step follows directly as described there.

