Exercise 60

The parity of the permutation is determined by the number of transpositions:
the parity is even if the number of transpositions is even, and the parity is
odd if the number of transpositions is odd. Thus it is enough to show that
any transposition reverses the orientation (because reversing it twice gives the
original orientation).

But the matrix of the linear transformation mapping a basis to the same basis
but with a single transposition differs from the identity matrix only in that two
rows (or two columns) are swapped. But as an elementary row operation, the
effect of swapping two rows is to change the sign of the determinant. Since
the determinant of the identity matrix is positive, the determinant of the linear
transformation must be negative, and hence making a transposition reverses the
orientation.

Exercise 61

Let w be a positively oriented volume form on M. Consider a specific chart
(Ua, ¢o)- In local coordinates on this chart, w is of the form fdz! A--- A da™,
or equivalently,
w=¢ (fdx' Ao Ada™).
Since w is a volume form, f # 0 on ¢, (U,). But f is continuous and its
domain is connected, so either f > 0 or f < 0. If f > 0, then define ¢o = Pa,
otherwise define ¢, by

éa(xl, R D I N C e L
In terms of this new chart
w=o¢ (~fdz" Ao Ada™)
and —f > 0. So the new atlas with charts (U,, q}a) has the required property:
pulling back dz' A --- A da™ gives éw where g = +f 0 ¢ > 0.
Exercise 62

Let {(Uq, ¢a)} be an atlas of charts on M such that the transition functions
are orientation-preserving. Let 1) = ¢, o qﬁ[}l be the transition function from Ug
to U,. The induced map on differential forms can be applied to the canonical
volume form on U,, mapping it to a multiple of the volume form on Ug:

Y dxt A Nda™) = fapdat A da™

Here f,p is a smooth function on U, NUg, which is also positive everywhere,
since v is orientation-preserving. Note that foo = 1 and fog = fze. If we
consider a third chart, U,, and use the fact that on U, N Ug N U, the transi-
tion function from Ug to U, is the same as going via U, then it follows that
fapfayfya = 1. These facts will be needed later on.



The idea is now to introduce a positive function g, on each U, such that
the local volume forms
Gadz! A - A dz™

can be patched together to give a volume form on M (which is the goal of the
exercise). Since

w_l(gadxl VARERIAN dl‘n) = faﬁgadxll A-de™

must equal
gpdz" A ---dz™

for the patching to work, the g,’s should satisfy

fasga = 9p

ie. 95
fap==—
oy

[e3%

Since all these functions are strictly positive, we can take logarithms. Define
co = log g, and dnp = log fos. Then the previous equation becomes

dap =C3 — Ca

To be precise: we obtain the functions f,g from the given atlas. Then we
obtain d,g. Below we show how the c,’s are obtained from these, and then
finally we apply the exponential function to get the g,’s, which would complete
the exercise.

Note that the properties of the f,3’s given above translate into the following
properties for the g, g’s:

Joa = 0
9aB = —YGapB
JaB T 98y + Grva = 0

Let A\, be a partition of unity for the atlas on M. Consider the smooth
function dnAydefined on U, NU,. Extend it to a function on U, by setting it
to 0 outside U,. Since the support of A\, is contained in U,, it follows that the
extended function is still smooth. (To see this, consider « € U,. If z is in the
support of A,, then it has a neighbourhood inside U,where the function must
be smooth. Otherwise it vanishes on a neighbourhood, hence also smooth.)

Now on U, define
Co = — g day Ay
¥

Note that only finitely many of the A,’s do not vanish on Uy, so the sum
exists.



Then on U, N Ug:
cg—C = — ng»yx\»y + ZdD"Y)\’Y
g g
= Z(da'y —dgy) Ay
S
= Y daphy
5

= daﬁ

which is what we needed to show.

Exercise 63

Denote the oriented orthonormal basis of cotangent vectors at p € M by {e*}
(i.e. use superscripts). Let 2!, ..., 2™ be local coordinates on a chart containing
p. Define the metric components

Juv = g(a,u; av)

Then the volume form associated to the metric is

vol = /| det g |dzt A -+ A da",

and its value at p is
vol, = \/| det(guw)p|(da')p A -+ A (da™)p€ A T M.
Furthermore,
((dz")p, (dx")p) = (9")p

where
det (g )p - det(g"”)p = 1.

Define the invertible matrix to transform between the two bases of A"T,7M:
(dz*), = Ti'e .
Using this, the inner product can also be calculated as
((dz")p, (dz")p) = <T/<Le>\’ T/l\le)\>
= eNT{T)
where €(\) = (e}, e*). Note that if g is actually a Riemannian metric, so that
€(A) =1 for all A, then this last expression is just the matrix 7%  multiplied by

its transpose. In this more general situation, it is of the form T - (e(\)T%)7.

Taking the determinant gives
e(det T{)?



where

e:He(/\) =1

A
Taking the determinant of the other expression of the inner product yields:
det(¢"), = det(guw)”"

e[ det(g,u)| ™"

Setting the two expressions equal to one another yields

1
det T} = ———=
| det(guw )]
Finally:
vol, = | det(guV)pdel)p Ao A (da™)y

det (g, TLeA A oo A TR
Guv)plL X 7
|det(gu1/)p| det T;\Lel A---ANe”

= elA-one?

Exercise 64

We can assume p = e’ A---Ae’r, since such elements span the space of p-forms,
and the result would follow by linearity of the wedge product and bi-linearity of
the inner product. Changing the order of the exponents would not cause well-
definedness problems due to the sign(i, ..., ;) factor used in the definition.
For similar linearity reasons, it is enough to assume w = e/t A--- Aelr. So

WAKp =LA NedP Nertt Ao Aein
If jx = i; for some k and [, then w A % = 0, and also
(wop) = det(e*, et
= 0
since one of the rows (and one of the columns) contains only 0’s. So the property
is satisfied in this case, and we can assume that the j,’s and 4;’s are all different

(I > p). Thus ' .
w==xe"" A---Ne'

where + corresponds to the sign of the permutation mapping (j1,...jp) to
(¢1,...,4p). Then

WA = FelA---Aein
tel A nem
= 4vol



where + now corresponds to the product of what it was before and the sign of
the permutation mapping (1,...,n) to (i1,...,%,). The right-hand side of the
equation is 1, where the sign is the same (since swapping two rows of a matrix
changes the sign of the determinant, and the total number of swaps is equal to
the sum of the number of transpositions of the two mentioned permutations).

Exercise 65

Let
W = wedr + wydy + w.dz.
Then
dw = (Oyw, — Owy)dy Ndz +
(0rwy — Opw;)dz A dx +
(Opwy — Oywg)dz A dy
and finally

*dw = (Oyw, — Owy)dx +
(O,wy — Opw,)dy +
(Opwy — Oywy)dz

Exercise 66

*w = wedy Ndz 4+ wydz A dx +w.dr A dy
dxw = (Ozwy+ Oywy + O.w;)dx Ady Adz
*dxw = Opwy + Oywy + 0w,
Exercise 67
For the 0-form and the volume form we should get x? = —1:
*1 = dtAdexANdyANdz
*xdt Nde NdyANdz = -1

For 1-forms and 3-forms we should get x> = 1 :



*dt = —dxANdyANdz

*dr ANdy ANdz = —dt
*dr = —dtANdyANdz
*xdt Ndy Ndz = —dx
*xdy = dtANdrANdz
*dt Ndx Ndz = dy
*dz = —dtANdxANdy
*dt Ndx Ndy = —dz
Finally for 2-forms we should get x? = —1:
*dt Ndr = —dyAdz
*dy Ndz = dtNdx
*dt Ndy = dxANdz
*xdx ANdz = —dtAdy
*xdt Ndz = —dx Ndy
*dr ANdy = dtANdz

Exercise 68
Applying the definition on p89 twice gives
xk (€T A Ne') = x(Eett Ao Ae™)
= ZFe""A---Ae
The sign is given by
sign(it, ..., 0n)SIO(Ipt1, - -« s iy 815 .-, 0p)€(in) -+ - €(ip)€(ips1) - - - €(in,)

For the part with the €’s, the sign is (—1)°. Permuting (ip+1,...,%n,%1,---,ip)
to get (i1,...,14,) requires p(n — p) transpositions, so the contribution to the
sign is (—1)P(»~P). The remaining permutation from (iy,...,4,) is performed
twice, so if it is negative, it cancels. Putting the two parts together gives the
required formula.

Exercise 69

Assume that the coefficient in the final equation is m instead of i.
Note that
€ ljl»lf»jnfp = g” 1912 R .g'LP peklk?'nkpjl---jnfp

= e(i1)e(ia) - €(ip)€iy.ipjrocin_p

0 otherwise

{e(il) e e(ip)Sign(ila s ?ipajla s ?jnfp) if {jlv cee ?jnfp} = {ierlv s

vin}



First consider the case where w only consists of one term. Let {j,...,j;,_,}

be the indices distinct from {i1,...,4,} in a specific, fixed order. Then
*w = lw- ok (€A Ne'r)
p' 11...7p
1 . N . _ ) p
= Hwil---ipe(ll) e e(ip)sign(in, . .. ip, J1s - - - ,];_p) e N Nen-r
— éwi p eil"jiP ) eI A A ein—p
pl(n —p)! et Jiednp

In the last line, the fixed set of indices jj, is replaced by a summation over
all possible sets of indices ji. There are only (n — p)! cases where the coefficient
€ is not 0, and in all these cases

i1y

y y . . . . . . . s/ s/
jl...jn,peh/\' S NeTm P = €(iy) - €(ip)sign(in, . .y ipy J1s - - - ,];lfp) eMN - NeTn-p

Next consider the case where w consists of several terms, but all with the
same set of indices {i1,...,4,}, just with different permutations applied. Then
each term will produce an expression as above with fixed ix’s, and adding them
up will yield the same expression where we sum over the i’s.

Finally, including more terms in w with different sets of indices, and applying
the x gives a completely different set of terms, so the result still holds.

Exercise 70

For the first equation,
N
V-E=p
is the same as
0By + 0By + 0K, =p

But if
E=FE,dx \NEydy N E.dz
then
*slE = FEgpdyANdz+ Eydz ANdr + E.dx AN dy
ds*s E = (0,E; +0yEy + 0,E,)dx Ndy N dz
xsdsxs E = 0,F, +0,E, + 0.E.

so the two formulations are the same.

For the second equation, the coefficients for the current on the right-hand
side already correspond, so we just check the left-hand side. Using the older
formulation,

VxB = (3,B.—0.By,0.By —0,B.,0,B, — 0,B,)
OE
E - (8th,atEy,ath)



and using the new formulation,

OE = 0/E,dr+ 0/Eydy + 0. E.dz
B = BgdyAdz+ Bydz ANdx + B.dx A\ dy
*sB = Bidx+ Bydy + B.dz
dsxs B = (9yB,—0,By)dyNdz+
= (0.B; — 0;B,)dz Ndx +
= (0,By — 0yBz)dx Ndy
xgdg*xs B = (0yB, — 0.By)dx + (0,By — 0, B,)dy + (0, By — 0y, By)dz

so again the coefficients agree.

Exercise 71

First check that
*B = (—*SB)/\dt

This can be checked for each component individually. For instance, if B =
dx N dy, then

*(dx Ndy) = —dzAdt
*sdx Ndy = dz

and similarly for the other. Next check that
*(EANdt) =xsE
in a similar way, using for instance that
*(dx ANdt) =dy N dz = xgdx
Using these, it follows that if
F=B+EANdt
then

*F = xB+*(EAdt)
= (—*SB)/\dt+*SE

Next apply d:

d(—*sB/\dt) = —dgxs BANdt—0;*xs BAdtNdt
= —dgxs BAdt
d(*sE) = dgxs E+0;%xs ENdt

ds *xs E +xg0:FE N dt



Combining these gives the required expression for d x F":
d*F =xgOyENdt +dg*s B —dgxs BAdt
For finding *d x F', we can again check the individual terms. If £ = F,dx,

then

*(xs0: E A dt)

*(*sOpErdx A dt)
*(0¢Epdy A dz A dt)
= —0.F,dx

= —-OF

and this can be checked for general E as well.
For the second term,

dsxs E=kdx Ndy ANdz

where k is a function. So

*xdsxs = kdt
= kAdt
= *g(kdr Ndy Ndz) Adt
= *gdg*s EAdt

and the third term can be checked similarly. This gives the expression for xd* F'.
The last step follows directly as described there.



