Exercise 46

We claim that it is enough to prove this for
w=av ANy

and

p=PBvpr1 A Ay
where n = p+¢q, and vy, ..., v, form part of a basis of V. In general w would be
a linear combination of elements of the form awv;, A---v; . Suppose w = w1 +wa,

and the property that we have to prove holds for the pairs (w1, ) and (wa, i).
Then it also holds for (w, ) as the following shows

WAp = wiAp+wasAp
= (~1PpAwr+ (~1)Pp Aws
= (=DMpA (w1 +ws2)
= (D"prw

Therefore it is enough to assume that w is of the form av; A ---v; , and
similarly for u. We can also assume that they don’t have any basis vectors in
common, since then both sides of the desired equation would be 0, so it would
be true. This proves the claim.

Finally,

wAp = Oéﬁ’l)1/\-'-/\vp/\vp+1/\.../\vn
aﬁ(_l)pvp—i-l/\’U1/\-'-/\’Up/\'up+2/\.../\vn
O‘ﬂ(fl)%vml ANUppa ANVT A= NUp AUpyz A+ Ay

afB(=1)Pvp41 Avpsa A= A A1 AV A+ Ay
= (-1)MuAw

as required. In the first step v,11 is moved p steps to the left, and so on. The
total number of transpositions is pg, hence the expression for the sign.

Exercise 47

The pullback map ¢* can be defined to operate on functions and 1-forms in the
usual way. Since the given three operations (multiplying by a function, addition
and taking the wedge product) generates all the differential forms starting with
functions and 1-forms, the given three requirements are enough to define ¢*for
all differential forms. This shows that if such a map exists, it is unique.

The image of a differential form under the pullback map is well-defined in
all cases because the three operations commute in all the necessary ways. (So
you could define the pullback of a given differential form in many different ways,
but they are actually all the same.) Therefore such a pullback map exists.



Exercise 48

If (v1,v2,v3) is a right-handed basis, then vy x vo is parallel to vz and points in
the same direction. Applying ¢ to get (uy,us, us), we have u; Xug = —v1 X —vg =
v1 X vg and uz = —v3. So uy X us is still parallel to uz, but points in the opposite
direction, giving a left-handed basis. The converse is similar.

Here are the other two computations:

¢*(wpda) = —(wy o ¢)dz”

1 1
qﬁ*(?wwdac“ ANdx") = §(ww o ¢)dat A dx”

Exercise 49

This follows from the Leibniz law and the definition of the differential of a
function.

dwydz®) = dw, Adx*
= Oywyudz” Nda"

Exercise 50

Let {(Ui, ¢:)} be an atlas for S. Then {(R x U;,idg X ¢;)} is an atlas for R x S.
Choose any chart (U;, ¢;) and let 2% be local coordinates. Then together with ¢
they form local coordinates for the corrsponding chart on R x S. It follows that
the set of 2-forms dz’ Adt and dz’ Adz’ with i < j form a basis for Q*(U;). Hence
there exist unique «; and (3;; such that the given 2-form F' can be expressed
locally as

a;dzt A dt + ﬂijdxi Ada?.

(Again, we assume i < j.) So locally, F' can be expressed as a sum of 2-
forms in the desired form. Now it remains to be shown that these 2-forms can
be patched together to give the global decomposition of F. This would follow
if we can show that the transition functions respect the local decomposition.

Suppose (U/, ¢;) is another chart on S with local coordinates 2 and ¢'. Then
the transition function between the corresponding charts on R x S maps ¢ to
t'. Tt follows from this the induced pullback map on differential forms will map
a;dz® A dt to something of the form &;dz? Adt and similarly for the other local
2-form. But due to the uniqueness of the local decomposition of F', we must
have &; = o}, where adz” A dt’ is the first component of F on U/. A similar
statement holds for the second component. Thus the pullback map respects
the local decomposition, and we can patch things together to obtain a local
decomposition as required:



F=B+EANdt

The global decomposition is unique due to the uniqueness of all the local
ones.

(An aside: the coefficients B;; are only unique if we add a condition such as
Bij = —Bji.)

Exercise 51

This is similar to the previous exercise. It follows from the definition of the
exterior derivative that this decomposition is possible locally. It is also locally
unique since there are no choices involved. As in the previous exercise, the fact
that the transition functions maps ¢ to ¢’ implies that the induced pullback map
preserves the decomposition. Thus the local differential forms can be patched
together to form global ones giving the required decomposition.

Exercise 52

Denote the map from V to V* by ¢. Let v € ker ¢. This means that g(v,w) =
0Vw € V. Since g is nondegenerate, this implies that v = 0, so ¢ is one-to-one.
Since the dimensions of V' and V* are equal, ¢ must be an isomorphism.

Note that V should be finite dimensional for this result to hold (from peeking
at comments to other people’s answers...).

Exercise 53

To show that the two 1-forms are the same, it is enough to apply each of them to
a basis vector field, e). First, applying the 1-form corresponding to the vector
v under the metric g gives:

gv,en) = glvte,,en)
= v'g(eu, en)

= 'U'ug,u)\

Then, applying the given 1-form v, f* gives:

(v f)(ex) = (guv"f¥)(er)
gu)\'UH

= 'U'ug,u)\

which is the same.



Exercise 54

The question is to show that under the metric g, the 1-form w = w, f* corre-
sponds to the given vector field. Since the corrspondence goes both ways, we
can start with the vector field and show that it corresponds to the given 1-form.
Using the result from the previous exercise, the vector field w”e, corresponds to
the 1-form g, w” f*. But

Gaw’ = gurg"w,
A
= Nw,f
wp f*

where the first step uses the given definition of the vector field w”e,, and the
second step uses the fact that the two matrices are inverses of each other.

Exercise 55
From the definition of the Minkowski metric

n(v,w) = —v'w® + v'w' + v?w? + v3uw?

it follows that n(e;,e;) is 0if ¢ # j, —1if i = j =0, and 1 if ¢ = 5, and ¢ # 0.

This is the content of the given matrix 7.

Exercise 56

Lowering the index u, gives

Jvp = guAg?/\
which implies that
g = 99w
%

as desired.

Exercise 57

Firstly, we should consider only p-fold wedge products
e Ner

with strictly increasing indices (i1 < -+ < ip). It was shown in an earlier exercise
that these wedge products form a basis for the p-forms. To show that the basis
is orthonormal, first consider the inner product of two distinct elements:

<ei1 /\.../\eip’eié /\“./\ei;> _ det[g(eij,ei;)]



But since the elements are distinct, there must be some j such that i; # @},
for all k. This means that the j’th row of the matrix will consist only of 0’s
(since (el,...,e") is an orthonormal basis), and hence the determinant will be
0.

Now consider the inner product of an element with itself:

(e Ao Nefr et Ao Ne?) = det[g(e, )
= Hg(eijﬂeij)
J
I )
J

= e(in)---e(ip)

as claimed, and which has absolute value 1. Hence the p-fold wedge products
form an orthonormal basis of p-forms.

To see that this implies that the inner product of p-forms is nondegenerate,
consider an aribrary non-zero p-form

W= A Aetr ...
with a # 0. Then
(W, A---NeP) = Fa

£ 0

Exercise 58

For the Euclidean metric, the component matrix of the metric is the identity
matrix. So it’s inverse is also the identity, and hence the inner product on
1-forms is still just the dot product. This gives the first part

_ 2 2 2
(E,E) =E; + E, + E;

For the second part, we can write Bydz A dx as —Bydx A dz and use the
results of the previous exercise to derive the required result:

_ 2 2 2
(B,B) = B? + B2 + B?
Exercise 59

F = B+EAd
= B-FEANdt



(F,F) = (B,B)+(—dtNE,—dt\E)
= (B,B)+ {(dt \NE,dt\E)
= (B,B)+ (dt Ndt)(E, E)
(B,B) — (E,E)
A(EF) = (B.E)-(BB)

which is the Lagrangian.



