
Exerise 25Given that ω and µ are 1-forms, we �rst show that ω + µ is a 1-form:
(ω + µ)(v + w) = ω(v + w) + µ(v + w)

= ω(v) + ω(w) + µ(v) + ω(v)

= (ω + µ)(v) + (ω + µ)(w)

(ω + µ)(gv) = ω(gv) + µ(gv)

= gω(v) + gµ(v)

= g(ω(v) + µ(v))

= g(ω + µ)(v)and then that fω is a 1-form, for f ∈ C∞(M):
(fω)(v + w) = fω(v + w)

= f(ω(v) + ω(w))

= fω(v) + fω(w)

= (fω)(v) + (fω)(w)

(fω)(gv) = fω(gv)

= fgω(v)

= gfω(v)

= g(fω(v))

= g((fω)(v))Exerise 26In the following, let v ∈ Vect(M). Then just hek the 4 onditions on p26:
(f(ω + µ))(v) = f(ω + µ)(v)

= f(ω(v) + µ(v))

= fω(v) + fµ(v)

= (fω)(v) + (fµ)(v)

= (fω + fµ)(v)whih implies that f(ω + µ) = fω + fµ.1



((f + g)ω)(v) = (f + g)ω(v)

= fω(v) + gω(v)

= (fω)(v) + (gω)(v)

= (fω + gω)(v)whih implies that (f + g)ω = fω + gω.
((fg)ω)(v) = (fg)ω(v)

= f(gω(v))

= f((gω)(v))

= (f(gω))(v)whih implies that (fg)(ω) = f(g(ω)), and �nally:
(1ω)(v) = 1ω(v)

= ω(v)whih implies that 1ω = ω, and hene Ω1(M) is a module over C∞(M).Exerise 27As before, let v ∈ Vect(M). Then we hek eah of the 4 onditions:
(d(f + g))(v) = v(f + g) (de�nition of d)

= v(f) + v(g) (linearity of v)
= (df)(v) + (dg)(v) (de�nition of d)
= (df + dg)(v) (Vet(M)is a module over C∞(R))whih implies that d(f + g) = df + dg.

(d(αf))(v) = v(αf) (de�nition of d)
= αv(f) (linearity of v)
= α(df)(v) (de�nition of d)
= (αdf)(v) (Ω1(M)is a module over C∞(R))whih implies that d(αf) = αdf .
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((f + g)dh)(v) = (f + g)(dh)(v)

= (f + g)(vh)

= fvh + gvh

= f(dh)(v) + g(dh)(v)

= (fdh)(v) + (gdh)(v)

= (fdh + gdh)(v)whih implies thhat (f + g)df = fdh + gdh.
(d(fg))(v) = v(fg)

= fvg + gvf

= f(dg)(v) + g(df)(v)

= (fdg)(v) + (gdf)(v)

= (fdg + gdf)(v)whih implies that d(fg) = fdg + gdf .Exerise 28Assume that {∂µ} forms a basis for the vetor �elds on R
n, and let v = vµ∂µbe any vetor �eld on R

n. Then starting with the right-hand side of the givenequation:
(∂µfdxµ)(v) = (∂µf)dxµ(v)

= ∂µfvxµ

= ∂µf(vν∂νxµ)

= ∂µf(vµ)

= (vµ∂µ)(f)

= vf

= (df)(v)whih implies that ∂µfdxµ = df .Exerise 29
ω = 0 means that ωv = 0 for any vetor �eld v. In partiular, let v = ∂ν . Then

ω∂ν = ωµdxµ∂ν

= ωνso ων = 0. This holds for all 1 ≤ ν ≤ n, whih implies that the basis funtionsare independent. 3



Exerise 30For the �rst part of the question, we should show that if v and w are two vetor�elds on M suh that vp = wp, then ω(v)(p) = ω(w)(p). This would imply that
ωp is well-de�ned.If we de�ne z = v − w, then zp = vp − wp = 0, and ω(z)(p) = 0 wouldimply that ω(v)(p) = ω(w)(p). This uses the linearity of both vetor �elds and1-forms. Therefore it is enough to prove that given a vetor �eld v on M with
vp = 0, it follows that ω(v)(p) = 0. (Just using v instead of z.)Let xµ be loal oordinates in a hart around p. In this hart, we an write
v = vν∂ν , where the vν are simply funtions de�ned in a neighbourhood of p.So then

vp = (vν∂ν)pand applying the tangent vetor to a oordinate funtion yields
vp(x

µ) = (vxµ)(p)

= (vµ∂νxµ)(p)

= vµ(p)But sine vp = 0, the funtions vµ all vanish at p.Using the hart, we an also expand the 1-form as
ω = ωµdxµwhih leads to

ω(v)(p) = (ωµdxµ)(vν∂ν)(p)

= (ωµvν)(p)

= ωµ(p).vµ(p)

= ωµ(p).0

= 0whih is what we wanted to prove.For the seond part, let v be any vetor �eld on M , and let p ∈ M . Then
ω(v)(p) = ωp(v)

= νp(v)

= ν(v)(p)implies that ω(v) = ν(v), and sine v was arbitrary, this implies that ω = ν.
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Exerise 31Denote the identity map on V by f , and let ν ∈ V ∗. Then for any v ∈ V , wehave
f∗(ν)(v) = ν(fv)

= ν(v)whih implies that f∗(ν) = ν. It follows that f∗ is the identity map on V ∗.For the seond part of the question, let ξ ∈ X∗. Then for any v ∈ V , wehave
(g ◦ f)∗(ξ)(v) = ξ((g ◦ f)v)

= ξ(g(f(v)))and
(f∗ ◦ g∗)(ξ)(v) = (f∗(g∗(ξ)))(v)

= g∗(ξ)(fv)

= ξ(g(fv))whih implies that (g ◦ f)∗(ξ) = (f∗ ◦ g∗)(ξ) and hene (g ◦ f)∗ = (f∗ ◦ g∗).Exerise 32The idea is to de�ne a 1-form ν on M and show that for any p ∈ M , theotangent vetor νp is the same as φ∗(ωq).De�ne ν as a map from Vet(M) to C∞(M) whih takes the vetor v tothe funtion φ∗(ω(φ∗v)). I think it an be shown that this map is linear over
C∞(M), and hene it is a 1-form on M .The following shows that the two tangent vetors are the same:

νp(vp) = ν(v)(p)

= φ∗(ω(φ∗v))(p)

= (ω(φ∗v))(q)

= ωq((φ∗v)q)

= ωq(φ∗vq)

= (φ∗ωq)(vq)Finally, uniqueness follows from exerise 30.
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Exerise 33
φ∗dx = d(φ∗x)

= d(sin t)

= (∂t sin t) dt

= cos t dtExerise 34
(x, y) ∈ R

2 is mapped by φ to (cos θ x−sin θ y, sin θ x+cos θ y) ∈ R
2. Therefore,

φ∗dx = d(φ∗x)

= d(cos θ x − sin θ y)

= cos θ dx − sin θ dywhere the last step uses the �rst two properties from exerise 27.Exerise 35If we use preise notation, then the question is to show that
φ∗(dxµ) = d(φ∗xµ).But if we onsider φ as a map between manifolds U and φ(U) ⊂ R

n, then thisis the ontent of the equation at the top of p48, namely that d is a naturaltransformation.Exerise 36Both {dxµ} and {dx′ν} form a basis for 1-forms on R
n. Hene we an write

dxµ = Cµ
ν dx′νwhere Cµ

ν is a matrix of funtions on R
n. Now apply eah side to ∂′

λ. Theleft-hand side beomes:
dxµ∂′

λ = ∂′

λxµ

=
∂xµ

∂x′λand the right-hand side beomes:
Cµ

ν dx′ν∂′

λ = C
µ
λ6



so in other words:
C

µ
λ =

∂xµ

∂x′λand
dxµ =

∂xµ

∂x′ν
dx′νIf we reverse the two oordinate systems at the beginning, we obtain the �rstequation of the exerise, but this form is more useful for the rest.Given the 1-form ω expressed in eah of the bases as shown, we an use theabove equation to write:

ω′

νdx′ν = ωµdxµ

= ωµ

∂xµ

∂x′ν
dx′νEquating oe�ients gives the desired:

ω′

ν =
∂xµ

∂x′ν
ωµExerise 37Apply both sides of the given equation to one of the oordinate vetor �elds ∂λon R

m. The left hand side is
φ∗(dx′ν )∂λ = dx′νφ∗∂λ

= dx′ν ∂x′ν

∂xλ
∂′

ν

=
∂x′ν

∂xλ
dx′ν∂′

ν

=
∂x′ν

∂xλAnd the right hand side is
∂x′ν

∂xµ
dxµ∂λ =

∂x′ν

∂xλwhih is the same.Exerise 38For the one diretion, suppose T ν
µ (p) is invertible for all p ∈ U . For eah p, let

Sµ
ν (p) be its inverse. This gives a matrix of funtions on U , namely Sµ

ν . Assumethat they are smooth (I don't know how to show this).7



Then
Sµ

ν eµ = Sµ
ν T λ

µ ∂λ

= δλ
ν ∂λ

= ∂νSine {∂ν} forms a basis for the vetor �elds on U , and any ∂ν an be expressedas a linear ombination of eµ's, it follows that {eµ} forms a basis as well.For the other diretion, suppose {eµ} is a basis. Then we an express
∂ν = Sµ

ν eµfor smooth funtions Sµ
ν on U . But that means that

∂ν = Sµ
ν T λ

µ ∂λwhih implies that Sµ
ν T λ

µ = δλ
ν . So at any p ∈ U , the produt of the two induedmatries is the identity matrix, and so the matrix T λ

µ (p) is invertible.Exerise 39Use the same matrix of funtion S
µ
λ on U (with di�erent indies) to de�ne

fµ = S
µ
λdxλApply these 1-forms to the vetor �eld basis funtion from the previous exerise:

fµ(eν) = S
µ
λdxλT ω

ν ∂ω

= S
µ
λT ω

ν dxλ∂ω

= S
µ
λT ω

ν δλ
ω

= S
µ
λT λ

ν

= δµ
νwhere the last step follows from the previous exerise (for any p, T is invertibleand square, so both ST and TS is the identity). Hene the dual basis exists. It'sunique beause if we had started with another set of basis funtion satisfyingthe same property, they would again have had to be inverses to T at eah point,and inverses are unique (note that we ould have started by de�ning the S

µ
λ asthe expansion for fµ).Exerise 40By the de�nition of dual basis, we know that

f ′µ(e′λ) = δ
µ
λ ,8



and it is uniquely de�ned by this property. So we just need to show that theexpression on the right hand side gives the same delta funtion when applied toa basis vetor �eld.
(T−1)µ

νfν(e′λ) = (T−1)µ
νfν(T ω

λ eω)

= (T−1)µ
νT ω

λ fν(eω)

= (T−1)µ
νT ω

λ δν
ω

= (T−1)µ
νT ν

λ

= δ
µ
λFor transforming between the omponents of the vetor �eld, we just use thetranformation matries between the di�erent bases:

v′µe′µ = vµeµ

= vµ(T−1)λ
µe′λ

= vν(T−1)µ
ν e′µso by equating oe�ients we get the desired result

v′µ = (T−1)µ
νvνFor transforming between the 1-form omponents we do the same

ω′

µf ′µ = ωµfµ

= ωνfν

= ωνT ν
µf ′µ

= T ν
µωνf ′µand hene

ω′

µ = T ν
µων .Exerise 41Let

u = uxdx + uydy + uzdzand
v ∧ w = (vxwy − vywx)dx ∧ dy

+(vywz − vzwy)dy ∧ dz

+(vzwx − vxwz)dz ∧ dx9



Then
u ∧ (v ∧ w) = ux(vywz − vzwy)dx ∧ dy ∧ dz

+uy(vzwx − vxwz)dy ∧ dz ∧ dx

+uz(vxwy − vywx)dz ∧ dx ∧ dy

= det(M)dx ∧ dy ∧ dzwhere we use dx∧dx = 0 (and same for y and z) for the �rst step, and dx∧dy =
−dy ∧ dx for the seond step. M is the matrix given in the question.Using de�nitions of dot produt and ross produt, we get

−→u · (−→v ×−→w ) = det(M).Exerise 42By the previous exerise, we get
a ∧ b ∧ c ∧ d = (axdx + aydy + azdz) ∧ (k dx ∧ dy ∧ dz)where k ∈ R. Expanding this, and using dx ∧ dx = 0 (and same for y and z)gives the desired result.Exerise 43

• If V is 1-dimensional, then ∧V onsists of all linear ombinations of 1 and
dx.

• If V is 2-dimensional, then ∧V onsists of all linear ombinations of 1, dx,
dy and dx ∧ dy.

• If V is 4-dimensional, then ∧V onsists of linear ombinations of 16 dif-ferent elements.So it appears that dimk(∧V ) = 2dim V , where V is a vetor spae over the �eld
k. (This is for ∧V seen as a vetor spae.)Exerise 44Let {v1, . . . , vn} be a basis for V . Then ∧pV is generated by elements of theform

vi1 ∧ · · · ∧ vipwhere eah ij is an index between 1 and n. This follows from the de�nitionof ∧pV by writing eah vetor in the wedge produt as a linear ombination ofbasis vetors.We an restrit ourselves to elements of this form for whih ij ≤ ij+1. Thisis beause rearranging the vetors suh that the indies are in non-dereasing10



order will at most hange the sign of the vetor, so it's still a linear multiple ofthe original vetor.Note that if there is an index j for whih ij = ij+1, then vij
∧ vij+1

= 0 andhene the entire element is 0. If p > n then this must happen every time, andhene ∧pV = {0} in this ase (or is it empty as the text laims?).So we assume that p ≤ n and the indies are stritly inreasing. It's lear(i.e. I'm not sure how prove it) that the set of suh elements is independent.Thus this set forms a basis for ∧pV .The number of suh elements (the dimension of ∧pV ) is the number of waysof hoosing p objets from a set of n objets, whih is the given expression.Exerise 45Well, the given subspaes generate the entire spae, and the intersetion of anytwo distint suh subspaes is {0}. This implies the �rst part.Using the �rst part, the dimension of ∧pV an be alulated as the sum ofthe dimensions of the subspaes. The expression for eah of these was given inthe previous exerise, and the fat that their sum is 2n is a well-known resultin ombinatoris.
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