
Exerise 100We know that
⋆dz = dx ∧ dyGiven that
r2 = x2 + y2it follows that

2rdr = 2xdx + 2ydyand hene
2rdr ∧ dθ =

1

x2 + y2
(2x2dx ∧ dy + 2y2dx ∧ dy)

= 2dx ∧ dyThus
⋆dz = rdr ∧ dθwhih implies the desired result.Exerise 101Starting with the left side:

⋆dθ =
1

x2 + y2
(x ⋆ dy + y ⋆ dx)

=
1

r2
(xdz ∧ dx − ydy ∧ dx)and to alulate the right side:

2rdz ∧ dr = dz ∧ (2rdr)

= dz ∧ (2xdx + 2ydy)

= 2xdz ∧ dx − 2ydy ∧ dzthus the right side is
1

r
dz ∧ dr =

1

r2
(xdz ∧ dx − ydy ∧ dz)

= ⋆dθExerise 102The left side is
d ⋆ B = dg(r)dθ

= ∂rg(r)dr ∧ dθ + ∂zg(r)dz ∧ dθ

= g′(r)dr ∧ dθ1



sine g is independent of z.The right side is
⋆j = rf(r)dr ∧ dθThus d ⋆ B = ⋆j if and only if

g′(r) = rf(r)Exerise 103Firstly, aording to the errata, this exerise is not so relevant. But otherwise,the hint desribes how to alulate the 1-forms dθi, and all that remains is toshow that they are losed but not exat.They are losed beause the 1-form dθ is losed on S1. They are exatbeause we an integrate dθi along a loop
γi(s) = (α1, . . . , αi−1, s, αi+1, . . . , αn)on T n and the result will not be 0. They are distint sine integrating dθi alongthe loop γj for j 6= i gives 0.Exerise 104To show that dE = 0 we use only that e(r) is a funtion of r and not of φ or θ.Thus

dE = ∂redr ∧ dr + ∂φedφ ∧ dr + ∂θedθ ∧ dr

= e′(r).0 + 0.dφ ∧ dr + 0.dθ ∧ dr

= 0To show d ⋆ E = 0, we must �rst determine ⋆dr. First �nd an orthonormalbasis. From the given matrix, it follows that
〈dr, dr〉 = 1

〈dφ, dφ〉 =
1

f(r)2

〈dθ, dθ〉 =
1

f(r)2 sin2 φHene an orthonormal basis is given by dr, f(r)dφ, and f(r) sin φdθ. Andthus
⋆dr = (f(r)dφ) ∧ (f(r) sin φdθ)

= f(r)2 sinφdφ ∧ dθ

⋆E = e(r) ⋆ dr

=
q sinφ

4π
dφ ∧ dθ2



and �nally
d ⋆ E = ∂r

q sin φ

4π
dr ∧ dφ ∧ dθ

= 0sine the oe�ient q sin φ
4π

has no dependeny on r.Exerise 105De�ne φ(r) as
ˆ r

0

−q

4πf(s)2
ds −

q

4πf(0)2if r ≥ 0, and
ˆ 0

r

q

4πf(s)2
ds +

q

4πf(0)2if r < 0. Then dφ = −E.Exerise 106Assume that |r| is large enough so that
E =

qdr

rπr2Then
⋆E =

q

4πr2
r2 sin φdθ ∧ dφ

=
q sin θ

4π
dθ ∧ dφSo

ˆ

S2

⋆E =
q

4π

ˆ π

0

ˆ 2π

0

sin φdθdφ

=
q

2

ˆ 2π

0

sin φdθdφ

=
q

2
(− cosφ)|π0

= qNote: on p144 where spherial oordinates is �rst mentioned, sin φ is usedinstead of sin θ. So I'm staying with sinφ and interpreting φ as the angle fromthe vertial downward as seen from the side, and θ as the horizontal angle asseen from above. 3



Exerise 107Given the sphere, with either r > 0 or r < 0, we want to alulate the integralof the normal omponent of the eletri �eld over the sphere. To have the sameperspetive from both sides of the wormhole, the normal omponent shouldpoint outward.The integral that was alulated in the previous exerise assumes a volumeform ω on S2 suh that dr∧ω is the volume form on the whole spae. Under theorrespondene between the volume form and the normal to the surfae, thismeans that in both ases we were integrating the normal omponent pointingin the diretion of inreasing r. For S2 with r > 0 this is indeed the normalomponent pointing outwards, but for S2 with r < 0 this is the omponentpointing inwards. Thus in the latter ase we should have used a volume form
ω suh that −dr ∧ ω is the volume form on the whole spae. This amounts totaking the negative of the answer, hene −q.Exerise 108In higher dimensions, say dimension n, if E is still a 1-form, then ⋆E is an (n−1)-form, so it must be integrated over an n− 1 dimensional surfae. Given that Eis hosen to make ⋆E losed, it implies the spae must have Hn−1 non-zero foran n − 1 dimensional surfae S with ´

S
⋆E 6= 0 to exist.Exerise 109

dω is the sum of three terms. Due to symmetry between the variables, we onlyneed to alulate the �rst to know how the others will look:
∂x

x

(x2 + y2 + z2)
3

2

=
x2 + y2 + z2 − 3x2

(x2 + y2 + z2)
5

2Thus the sum over the three terms is
dω =

3(x2 + y2 + z2) − 3x2 − 3y2 − 3z2

(x2 + y2 + z2)
5

2

= 0Exerise 110The required (n − 1)-form is
ω =

x1dx2 ∧ · · · ∧ dxn + x2dx3 ∧ · · · ∧ dxn ∧ dx1 + · · · + xndx1 ∧ · · · ∧ dxn−1

((x1)2 + · · · + (xn)2)
n

2The proof that this form is losed is exatly as in the previous exerise (I know).And it an be shown to be non-exat in a similar way (I hope).4



Exerise 111We showed in exerise 104 that
⋆dr = f(r)2 sinφdθ ∧ dφ(well, we had dφ ∧ dθ instead of dθ ∧ dφ, but it's not so important here.)This implies that

B =
m sin φ

4π
dθ ∧ dφThe result

ˆ

S2

B = mthen follows exatly as in exerise 106 (just with m instead of q).

5


