Exercise 2

The definition of an open set given in the text can be made more precise as follows:
$V \subseteq \mathbb{R}$ is defined to be open if for all $x \in V$ there exists $\delta>0$ such that $B(x, \delta) \subseteq V$, where $B(x, \delta)$ is defined as $\left\{y \in \mathbb{R}^{n}| | x-y \mid<\delta\right\}$.

It can be shown that $B(x, \delta)$ is open according to this definition for any $x \in \mathbb{R}^{n}, \delta>0$.

To prove the given statement, let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ and suppose that $f^{-1}(V)$ is open for any $V \subseteq \mathbb{R}^{n}$ open (i.e. f is continuous according to the general topology definition). Let $x \in \mathbb{R}^{n}$ and $\epsilon>0$. Let $V=B(f(x), \epsilon)$. Then V is open, and hence $f^{-1}(V)$ is open. Thus by the above definition of 'open', there exists $\delta>0$ such that $x \in B(x, \delta) \subset f^{-1}(V)$. In other words, if $|y-x|<\delta$ then $|f(y)-f(x)|<\epsilon$, which proves the one direction.

For the converse, assume that f is continuous according to the epsilon-delta definition. Let $x \in f^{-1}(V)$. Since $f(x) \in V$, which is open, there exists $\epsilon>0$ such that $f(x) \in B(f(x), \epsilon) \subset V$. Then since f is continuous, there exists $\delta>0$ such that $f(B(x, \delta)) \subset B(f(x), \epsilon) \subset V$. Which implies that $B(x, \delta) \subset f^{-1}(V)$, hence $f^{-1}(V)$ is open. So f is continuous according to the definition from topology.

Exercise 3

Let $z=(0,0, \ldots, 0,1) \in S^{n}$. Define $U=S^{n} \backslash z$. Then $U=\left(\mathbb{R}^{n+1} \backslash z\right) \bigcap S^{n}$ is open in the induced topology since $\left(\mathbb{R}^{n+1} \backslash z\right) \subset \mathbb{R}^{n+1}$ is open. Define the stereographic projection $f: U \rightarrow \mathbb{R}^{n}$:
$f\left(x_{1}, x_{2}, \ldots, x_{n+1}\right)=\left(\frac{x_{1}}{1-x_{n+1}}, \frac{x_{2}}{1-x_{n+1}}, \ldots, \frac{x_{n}}{1-x_{n+1}}\right)$
It can be shown that f is a homeomorphism between U and \mathbb{R}^{n} (the inverse can be given explicitly, and both are continuous). Similarly, we can define an open set $V=S^{n} \backslash\{-z\}$, with a similar homeomorphism to \mathbb{R}^{n}. The transition function can be shown to be smooth. Since U and V cover S^{n}, this proves that S^{n} with the given charts is a smooth manifold.

Exercise 4

Suppose that $\left\{\left(A_{i}, \phi_{i}\right)\right\}$ is an atlas for M. Then $\left\{\left(A_{i} \cap U, \tilde{\phi}_{i}\right)\right\}$ is an atlas for U, where $\tilde{\phi}_{i}$ is the restriction of ϕ_{i} to U. The transition functions for the new atlas are exactly the same, only restricted to an open subset of their original domain.

Exercise 5

Let $\left\{\left(A_{i}, \alpha_{i}\right) \mid i \in I\right\}$ be an atlas for M, and $\left\{\left(B_{j}, \beta_{j}\right) \mid j \in J\right\}$ an atlas for N. Then define the open sets $C_{i j}=A_{i} \times B_{j} \subseteq M \times N$. The family $C_{i j}$ forms an open cover for $M \times N$. Define $\delta_{i j}: A_{i} \times B_{j} \rightarrow \mathbb{R}^{m+n}$ by mapping (a, b) to $\left(\alpha_{i}(a), \beta_{j}(b)\right)$. From the properties of α_{i} and β_{j} follows that $\delta_{i j}$ is a homeomorphism between $A_{i} \times B_{j}$ and $\alpha_{i}\left(A_{i}\right) \times \beta_{j}\left(B_{j}\right)$. The family of charts
$\left\{\left(C_{i j}, \delta_{i j}\right) \mid i, j \in I \times J\right\}$ is an atlas for $M \times N$. The new transition functions can also be expressed in terms of the original transition functions and shown to be smooth.

Exercise 6

In this case we first need to find two disjoint open subsets of \mathbb{R}^{n} which are both diffeomorphic to \mathbb{R}^{n}. Define $X^{+}=\left\{x \in \mathbb{R}^{n} \mid x_{n}>0\right\}$. Then a diffeomorphism f^{+}between \mathbb{R}^{n} and X^{+}is given by mapping $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ to $\left(x_{1}, x_{2}, \ldots, \exp \left(x_{n}\right)\right)$. Similarly, a diffeomorphism f^{-}can be defined mapping \mathbb{R}^{n} to $X^{-}=\left\{x \in \mathbb{R}^{n} \mid x_{n}<0\right\}$ by mapping x_{n} to $-\exp \left(x_{n}\right)$.

Now let atlases for M and N be given as in the previous exercise. Then $\left\{\left(A_{i} \cup B_{j}\right)\right\}$ is a family of open sets covering $M \cup N$. Define $\delta_{i j}: A_{i} \cup B_{j} \rightarrow \mathbb{R}^{n}$ by mapping x to $f^{+}\left(\alpha_{i}(x)\right)$ if $x \in A_{i}$, and $f^{-}\left(\beta_{j}(x)\right)$ if $x \in B_{j}$. Since X^{+}and X^{-}are disjoint, these maps are still bijective. The resulting atlas satisfies the requirements for making $M \cup N$ a manifold.

Exercise 7

We need to show that both $v+w$ and $g w$ satisfy the three conditions at the top of page 26 .

First for $v+w$:

$$
\begin{aligned}
(v+w)(f+g) & =v(f+g)+w(f+g) \\
& =v(f)+v(g)+w(f)+w(g) \\
& =(v+w)(f)+(v+w)(g) \\
(v+w)(\alpha f) & =v(\alpha f)+w(\alpha f) \\
& =\alpha v(f)+\alpha w(f) \\
& =\alpha(v(f)+w(f)) \\
(v+w)(f g) & =v(f g)+w(f g) \\
& =v(f) g+f v(g)+w(f) g+f w(g) \\
& =(v(f)+w(f)) g+f(v(g)+w(g))=(v+w)(f) g+f(v+w)(g)
\end{aligned}
$$

Then for $g w$:

$$
\begin{aligned}
(g w)\left(f_{1}+f_{2}\right) & =g w\left(f_{1}+f_{2}\right) \\
& =g\left(w f_{1}+w f_{2}\right) \\
& =g w f_{1}+g w f_{2} \\
& =(g w) f_{1}+(g w) f_{2}
\end{aligned}
$$

$$
\begin{aligned}
(g w)(\alpha f) & =g w(\alpha f) \\
& =g \alpha w(f) \\
& =\alpha g w(f) \\
(g w)\left(f_{1} f_{2}\right) & =g w\left(f_{1} f_{2}\right) \\
& =g\left(w\left(f_{1}\right) f_{2}+f_{1} w\left(f_{2}\right)\right) \\
& =g w\left(f_{1}\right) f_{2}+g f_{1} w\left(f_{2}\right) \\
& =g\left(w\left(f_{1}\right) f_{2}+f_{1} w\left(f_{2}\right)\right) \\
& =g w\left(f_{1} f_{2}\right)
\end{aligned}
$$

Exercise 8

To show that two vector fields are equal, we need to show that they are equal for all $h \in C^{\infty}(M)$:

$$
\begin{aligned}
(f(v+w))(h) & =f(v+w)(h) \\
& =f(v(h)+w(h)) \\
& =f v(h)+f w(h) \\
& =(f v)(h)+(f w)(h) \\
& =(f v+f w)(h) \\
((f+g) v)(h) & =(f+g) v(h) \\
& =f v(h)+g v(h) \\
& =(f v)(h)+(g v)(h) \\
& =(f v+g v)(h) \\
& \\
((f g) v)(h) & =(f g) v(h) \\
& =f(g v(h)) \\
& =f((g v)(h)) \\
& =(f(g v))(h) \\
& =1 v(h) \\
(1 v)(h) & =v(h)
\end{aligned}
$$

Exercise 9

Apply the vector field to the coordinate functions:

$$
\begin{aligned}
v^{\mu} \partial_{\mu} x_{i} & =v^{i} \frac{\partial x_{i}}{\partial x_{i}} \\
& =v^{i}
\end{aligned}
$$

Thus $v^{i}=0$ for all i.

