Exercise 16

First consider the left side. Note that ¢o-y is a composition of smooth functions,
and hence it is smooth. Also,

(@o)(t) = o(v(t) = ¢(p) € N,

and thus
(o) (t) € Ty N.
Then

6oV () = ~76om)®)

where f € C*°(N), and hence

(o) (t) = ¢ (v'(1)).

Exercise 17
Let v,w € T,M and f € C°°(N). Then

d(v+w)(f) = (w+w)(o*f) (definition of pushforward)

= v(@"f)+w(eo*f) (definition of addition in tangent space)
(x0)(f) + (duw)(f) (definition of pushforward)
= (¢sv + ¢uw)(f) (definition of addition in tangent space)

which implies that

Now let a € R. Then

(pu(av))(f) = (av)(9*f) (definition of pushforward)
= afv(¢*f)] (scalar multiplication in tangent space)
= a[(¢«v)(f)] (pushforward)

= (a(¢g«0))(f) (scalar multiplication)

and hence

P« (av) = a(dsv).



Exercise 18

Let v be a vector field on M. Then define
v 2 C°(N) — C(N)

by mapping f to v(f o ¢) o ¢~ !. To show that ¢.v is a vector field on N, we
should show that it is linear and satisfies the product rule. We only show that it
satisfies the first of the three properties (linearity is two properties) and assume
the other two:

(f+g)od)oo?
fodp+gog)og™t
= [U(f0¢)+v(90¢))0 -
= v(fod)od  +u(gog)o

= (¢0)(f) + () (9)

(@0)(f+9) = v

P

- v

where f,g € C*°(N).
Now let p € M, and ¢ = ¢(p) € N. And let f € C*°(N). Then

(Px0)g(f) = [(ox0)(f)](q)
(v(fod)od " )(q)

I
=
—~
~

o)
<

vp (0" f)
= (¢«(vp))(f)

and hence

(Pxv)g = du(vp).

Exercise 19

Denote the components of ¢ by v and v. In other words,
o(z,y) = (u(z,y),v(z,y)).
Then, as used in a previous exercise, we have:

u(z,y) = (cos@)x — (sinh)y
v(z,y) = (sin@)x+ (cosh)y



Let f € C*°(RR?), seen as a function of (u,v). Then:

(¢*az)(f) = am(¢*f)
0
= %(fmﬁ)
_ 0fou, 05w
T Judr O ox

= (Ouf)cosf+ (9,f)sind
= (0xf)cosf + (9, f)sinf
= (cos60; +sinb0,)(f)

where in the second-last line we consider f as a function of (z,y) instead. It
follows that
40y = cos 00, + sin 00,,.

Similarly, we can show:

@0y = —sin 0, + cos §0,.

Exercise 20

Suppose v(t) is an integral curve through v(0) = p = (a,b) € R? of v. Then for
t in a small interval around 0, we must have

') = vy00)-
Setting v(t) = («(¢),y(t)), this can be rewritten as
&' (8)0s +y' (t)0y = (x(1))*0x + (y(£))0y,
and given than d,and 9, are independent, this is equivalent to:
o'(t) = (x(t))?
y'(t) = y)

The solution depends on p = (a, b). We can distinguish between the following
cases:

1. (a,b) = (0,0). Then

x(t) =
y(t) =
is a solution defined for all ¢.
2. a#0,b=0. Then
a
W = 4
yt) = 0



is a solution defined for ¢ > % ifa <0,and t < % if @ > 0. In other
words, the solution is not defined for all ¢, and the image of + is either the
positive or negative x-axis. Note that the solution for x(t) is simply —%,
which has been reparametrised to force 2(0) = a.

3. a=0,b%#0. Then
xz(t) = 0
y(t) = bet

is a solution defined either for ¢ > 0 or ¢t < 0, again depending on the sign
of b. The image of « is either the positive or negative y-axis.

4. a #0,b# 0. Then

1—at
y(t) = be'

is again only defined for either positive or negative ¢. It’s image is a curve
lying either in the first two quadrants, or in the last two quadrants.

These solutions exhaust the possibilities for p = (a,b). The only integral curve

defined for all ¢, is the first one, thus this vector field is not integrable.

Exercise 21

The first part follows from the definition of an integral curve through a point.
For the second part, fix s = sg € R. Define

¢ :R—=R
by 1(t) = so+t. For simplity, let ¢ = ¢5,(p). Now consider two different curves
R— X.
The first is ¢:(q). It has the property that ¢o(q) = ¢, and
d
E|t:0¢t(Q) = Vq-
The other curve is the composition
¢s(p) 0¥,

seen as a function of t. Note that

(ps(P) o)) = dyr)(p)
(¢s(p) 0 ¥)(0) = &s,(p)



and

d d d
E|t:0(¢s (p)o)(t) = £|S:SU¢(p)-E|t:o1/)(t)
= Vg, (p)-1
= 4

Thus both these functions have the same value and derivative at ¢ = 0. The
first function is an integral curve of X, and the second is simply a reparametri-
sation of an integral curve of X, and hence also an integral curve. By the
appropriate uniqueness property of differential equations, they must actually be
equal for all ¢ € R. In other words, for all ¢:

d(q) = (os(p) o ¥)(t)
De(dso(P)) = Py (p
= Qsort(P)
This holds for all sg € R, and hence:

b1(0s(p)) = Ps+t(p)-

Exercise 22
5 of 0% f .
Let f € C*°(R?). Denote 9z by fz, and 922 by fuz, and similarly for y. Then:
v, wl(f) = (vw—wv)f
= v(wf) —w(vf)

VAT
. € ézfy*yfz Yy ngy*yfz
Y = T e A s T e
o xfy_-ryfzz'i‘xyfyy_yfm + (yfz_xfy)
B z2 + y2 z2 + y2
of = zfz+yfy
VT
wlvf) = T ﬁxfw'i'yfy _ Y ﬁxfm‘f'yfy

/$2+y2(3y \/1.2+y2) \/$2+y2 oz /1.2+y2

xfy — 2Y frx +$yfyy —Yfe
-T2+y2




(A few steps have been left out to keep it short.)

v, w](f) = v(wf)—w(vf)
Yfe — -Tfy
1.2 +y2
YOy — 20y
1.2 +y2

=

)(f)

Therefore:
yOp — x0y

$2+y2

[0, w] = ( )

Exercise 23

Applying the given expression for (vf)(p) with wf instead of f, yields:

() = L@ @)heo

d, 6 o0

= D Gl
82

= %Jc(ws(@@)ms:tzo

A similar derivation yields a similar expression for (wv f)(p), and subtracting
the two gives the desired expression.

Exercise 24

1.

[, w(f) = v(wf) —w(f)
—[w(vf) —v(wf)]
= —([w,v](/))

= (=[w,o))(f)

which implies that
[v, w] = —[w, v].

2.

[u,av + Buwl(f) = u((av+ Bw)(f)) — (av + w)(uf)

= u(avf + pwf) — (av(uf) + fw(uf))
au(vf) + pu(wf) — av(uf) — fw(uf)
afu, v](f) + Blu, w|(f)
= (afu,v] + Blu, w])(f)

6



implying that
fu, av + Bu] = afu, ] + Blu, w).

[w, [v;w])(f) = ullo,w](f)) = [v, w](uf)
ulvwf —wof) — (vw — wv)(uf)

= wwf —uvwvf —vwuf + wouf

which gives an expression for the first term:
[u, [v, w]] = wvw — vwv — Vwu + wou.

The expressions for the other two terms can be found by permuting the variables,
and adding them yields:

[u, [v,w]] + [v, [w,u]] + [w, [u,v]] = wvw—uwv —vwu + wou +
VWU — VUW — WUV + uwv +
WUV — WUU — VW + vuw
= 0



