Exercise 10

For the one direction, suppose v = w. Let $p \in M$. Then for all $f \in C^{\infty}(M)$ we have:

$$v_p(f) = v(f)(p)$$
$$= w(f)(p)$$
$$= w_p(f)$$

This implies that $v_p = w_p$.

For the converse, suppose that $v_p = w_p$ for all $p \in M$. Let $f \in C^{\infty}(M)$. Then for all $p \in M$ we have:

$$v(f)(p) = v_p(f)$$

= $w_p(f)$
= $w(f)(p)$

Which implies that v(f) = w(f) for all $f \in C^{\infty}(M)$, hence v = w.

Exercise 11

Let $u, v, w \in T_p(M)$, and $\alpha, \beta \in \mathbb{R}$. Then u + (v + w) = (u + v) + wand

v + w = w + v

both follow directly from the definition of addition and $\mathbb R$ being a commutative group w.r.t. addition.

The zero vector $0 \in T_p(M)$ is defined by requiring that 0(f) = 0 for all $f \in T_p(M)$. Then v + 0 = v from the definition and 0 being the identity of the additive group $(\mathbb{R}, +)$. For the additive inversion, define -v by (-v)(f) = -v(f). This satisfies the axiom for being an additive inverse again because of the definition of additive inverse in $(\mathbb{R}, +)$.

For the distributive laws:

$$\begin{aligned} (\alpha(v+w))(f) &= & \alpha((v+w)(f)) \\ &= & \alpha(v(f)+w(f)) \\ &= & \alpha v(f) + \alpha w(f) \\ &= & (\alpha v)(f) + (\alpha w)(f) \\ &= & (\alpha v + \alpha w)(f) \end{aligned}$$

hence $\alpha(v+w) = \alpha v + \alpha w$. And

$$\begin{aligned} ((\alpha + \beta)v)(f) &= (\alpha + \beta)v(f) \\ &= \alpha v(f) + \beta v(f) \\ &= (\alpha v)(f) + (\beta v)(f) \\ &= (\alpha v + \beta v)(f) \end{aligned}$$

hence $(\alpha + \beta)v = \alpha v + \beta v$.

Again, $\alpha(\beta v) = (\alpha \beta)v$ follows from the properties of \mathbb{R} . And if we define $1 \in T_p(M)$ by requiring 1(f) = 1 for all $f \in T_p(M)$, then the final property 1v = v follows from:

$$(1v)(f) = 1v(f)$$
$$= v(f)$$

which shows that $T_p(M)$ is a vector space over \mathbb{R} .

Exercise 12

Let $f, g \in C^{\infty}(M)$, and $\alpha \in \mathbb{R}$. Then:

1.

$$\gamma'(t)(f+g) = \frac{d}{dt}((f+g)(\gamma(t)))$$
$$= \frac{d}{dt}(f(\gamma(t)) + g(\gamma(t)))$$
$$= \frac{d}{dt}(f(\gamma(t)) + \frac{d}{dt}(g(\gamma(t)))$$
$$= \gamma'(t)(f) + \gamma'(t)(g)$$

2.

$$\gamma'(t)(\alpha f) = \frac{d}{dt}((\alpha f)\gamma(t))$$
$$= \frac{d}{dt}(\alpha f(\gamma(t)))$$
$$= \alpha \frac{d}{dt}(f(\gamma(t)))$$
$$= \alpha \gamma'(t)(f)$$

3.

$$\gamma'(t)(fg) = \frac{d}{dt}((fg)(\gamma(t)))$$
$$= \frac{d}{dt}(f(\gamma(t))g(\gamma(t)))$$

$$= \frac{d}{dt}f(\gamma(t)).g(\gamma(t)) + f(\gamma(t)).\frac{d}{dt}g(\gamma(t))$$

= $\gamma'(t)(f).g(\gamma(t)) + f(\gamma(t)).\gamma'(t)(g)$

Exercise 13

Let $t \in \mathbb{R}$. Then

$$\begin{aligned} (\phi^* x)(t) &= (x \circ \phi)(t) \\ &= x(\phi(t)) \\ &= x(e^t) \\ &= e^t \\ &= e^x(t) \end{aligned}$$

thus $\phi^* x = e^x$.

Exercise 14

If a point $(x, y) \in \mathbb{R}^2$ is rotated counterclockwise around the origin by an angle θ , then the resulting point is $(x \cos \theta - y \sin \theta, x \sin \theta + y \cos \theta)$. This can be seen by identifying \mathbb{R}^2 with \mathbb{C} , and multiplying by $e^{i\theta}$ (thank you wikipedia).

 $\phi^* x = x \circ \phi$. This is just the first component of the above vector, which is what we need to show. And similar for $\phi^* y$.

Exercise 15

First consider smooth functions $f : M \to \mathbb{R}$.

For the one direction, let $f : M \to \mathbb{R}$ be any function such that $f \circ \phi_{\alpha}^{-1} : \mathbb{R}^n \to \mathbb{R}$ is smooth for all α , where $\{(U_{\alpha}, \phi_{\alpha})\}$ is a family of charts on M, in other words assume that f is smooth according to the original definition. Let $g \in C^{\infty}(\mathbb{R})$. Then because the composition of two smooth functions is again smooth, we have that $g \circ (f \circ \phi_{\alpha}^{-1}) = (g \circ f) \circ \phi_{\alpha}^{-1}$ is smooth for all α . By the original definition, this implies that $g \circ f$ is smooth. Thus f is smooth according to the new definition.

For the converse, assume that f is smooth according to the new definition. In other words, for any $g \in C^{\infty}(\mathbb{R})$, we have that $g \circ f \in C^{\infty}(M)$. Take $g = id_{\mathbb{R}}$, the identity map on \mathbb{R} . Then it follows that $f \in C^{\infty}(M)$, which is the old definition.

Next consider smooth curves, $\gamma : \mathbb{R} \to M$. In this case the two definitions (on pages 29 and 32) are exactly the same.