
Exerise 10For the one diretion, suppose v = w. Let p ∈ M . Then for all f ∈ C∞(M) wehave:
vp(f) = v(f)(p)

= w(f)(p)

= wp(f)This implies that vp = wp.For the onverse, suppose that vp = wp for all p ∈ M . Let f ∈ C∞(M).Then for all p ∈ M we have:
v(f)(p) = vp(f)

= wp(f)

= w(f)(p)Whih implies that v(f) = w(f) for all f ∈ C∞(M), hene v = w.Exerise 11Let u, v, w ∈ Tp(M), and α, β ∈ R. Then
u+ (v + w) = (u+ v) + wand
v + w = w + vboth follow diretly from the de�nition of addition and R being a ommuta-tive group w.r.t. addition.The zero vetor 0 ∈ Tp(M) is de�ned by requiring that 0(f) = 0 for all

f ∈ Tp(M). Then v + 0 = v from the de�nition and 0 being the identity ofthe additive group (R,+). For the additive inversion, de�ne −v by (−v)(f) =
−v(f). This satis�es the axiom for being an additive inverse again beause ofthe de�nition of additive inverse in (R,+).For the distributive laws:

(α(v + w))(f) = α((v + w)(f))

= α(v(f) + w(f))

= αv(f) + αw(f)

= (αv)(f) + (αw)(f)

= (αv + αw)(f)hene α(v + w) = αv + αw. And 1



((α + β)v)(f) = (α + β)v(f)

= αv(f) + βv(f)

= (αv)(f) + (βv)(f)

= (αv + βv)(f)hene (α+ β)v = αv + βv.Again, α(βv) = (αβ)v follows from the properties of R. And if we de�ne
1 ∈ Tp(M) by requiring 1(f) = 1 for all f ∈ Tp(M), then the �nal property
1v = v follows from:

(1v)(f) = 1v(f)

= v(f)whih shows that Tp(M) is a vetor spae over R.Exerise 12Let f, g ∈ C∞(M), and α ∈ R. Then:1.
γ′(t)(f + g) =

d

dt
((f + g)(γ(t))

=
d

dt
(f(γ(t)) + g(γ(t)))

=
d

dt
(f(γ(t)) +

d

dt
(g(γ(t))

= γ′(t)(f) + γ′(t)(g)2.
γ′(t)(αf) =

d

dt
((αf)γ(t))

=
d

dt
(αf(γ(t)))

= α
d

dt
(f(γ(t))

= αγ′(t)(f)3.
γ′(t)(fg) =

d

dt
((fg)(γ(t)))

=
d

dt
(f(γ(t))g(γ(t)))2



=
d

dt
f(γ(t)).g(γ(t)) + f(γ(t)).

d

dt
g(γ(t))

= γ′(t)(f).g(γ(t)) + f(γ(t)).γ′(t)(g)Exerise 13Let t ∈ R. Then
(φ∗x)(t) = (x ◦ φ)(t)

= x(φ(t))

= x(et)

= et

= ex(t)thus φ∗x = ex.Exerise 14If a point (x, y) ∈ R2 is rotated ounterlokwise around the origin by an angle
θ, then the resulting point is (x cos θ− y sin θ, x sin θ+ y cos θ). This an be seenby identifying R2 with C, and multiplying by eiθ (thank you wikipedia).

φ∗x = x ◦ φ. This is just the �rst omponent of the above vetor, whih iswhat we need to show. And similar for φ∗y.Exerise 15First onsider smooth funtions f : M → R.For the one diretion, let f : M → R be any funtion suh that f ◦ φ−1

α :
Rn → R is smooth for all α, where {(Uα, φα)} is a family of harts on M , inother words assume that f is smooth aording to the original de�nition. Let
g ∈ C∞(R). Then beause the omposition of two smooth funtions is againsmooth, we have that g ◦ (f ◦ φ−1

α ) = (g ◦ f) ◦ φ−1

α is smooth for all α. By theoriginal de�nition, this implies that g ◦f is smooth. Thus f is smooth aordingto the new de�nition.For the onverse, assume that f is smooth aording to the new de�nition. Inother words, for any g ∈ C∞(R), we have that g ◦ f ∈ C∞(M). Take g = idR,the identity map on R. Then it follows that f ∈ C∞(M), whih is the oldde�nition.Next onsider smooth urves, γ : R → M . In this ase the two de�nitions(on pages 29 and 32) are exatly the same.
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