
Baez and Muniain Exercises

Huygens Ravelomanana

Symmetry

Exercise 1

Let Q be the bilinear form of the Minkowski metric and L be the Lorentz transform mixing up the t and x
coordinates.

Let X = (x, y, z, t) , X ′ = (x′, y′, z′, t′) ∈ R4.

Q (LX, LX ′) = − (t coshφ − x sinhφ) (t′ coshφ − x′ sinhφ)

+ (−t sinhφ + x coshφ) (−t′ sinhφ + x′ coshφ) + yy′ + zz′

= − tt′ cosh2 φ − xx′ sinh2 φ + xt′ cosh φ sinhφ + tx′ coshφ sinhφ

+ tt′ cosh2 φ + xx′ sinh2 φ − xt′ cosh φ sinhφ − tx′ coshφ sinhφ + yy′ + zz′

= − tt′
(

cosh2 φ − sinh2 φ
)

+ xx′
(

cosh2 φ − sinh2 φ
)

+ yy′ + zz′

= − tt′ + xx′ + yy′ + zz′

= Q (X, X ′) .

Then L ∈ O (3, 1). Since det (L) = cosh2 φ − sinh2 φ = 1, L ∈ SO (3, 1).

With the same way wee can prove that Lorentz transforms mixing up t and y coordinates or t and z
coordinates belong to SO (3, 1).

Exercise 2

The linear maps P : (t, x, y, z) 7−→ (t,−x,−y,−z) and T : (t, x, y, z) 7−→ (−t, x, y, z) can be represented by
the matrices diag (1,−1,−1,−1) and diag (−1, 1, 1, 1) respectively, so det (P ) = det (T ) = −1.
Therefore T, P /∈ SO (3, 1)

Let X = (x, y, z, t) , X ′ = (x′, y′, z′, t′) ∈ R4.

Q (PX, PX ′) = − tt′ + (−x) (−x′) + (−y) (−y′) + (−z) (−z′)

= − tt′ + xx′ + yy′ + zz′

= Q (X, X ′) ,

and
Q (TX, TX ′) = − (−t) (−t′) + xx′ + yy′ + zz′

= − tt′ + xx′ + yy′ + zz′

= Q (X, X ′) .

Then T, P ∈ O (3, 1). It follows that PT ∈ O (3, 1) . Since det (PT ) = det (P ) det (T ) = 1, PT ∈ SO (3, 1).
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Exercise 3

1. The ”restriction” of the determinant, det : GL (n, R) −→ R∗ is a group homomorphism with the
multiplication. Therefore SL (n, R) is a subgroup since SL (n, R) = det−1 (1) = ker (det).

2. We denote Q the bilinear form associated to O (p, q). Let A, B ∈ O (p, q) and X, X ′ ∈ R4.

Q (ABX, ABX ′) = Q (BX, BX ′) = Q (X, X ′) ,

and
Q (X, X ′) = Q

(

BB−1X, BB−1X ′
)

= Q
(

B−1X, B−1X ′
)

.

Therefore AB, B−1 ∈ O (p, q). It follows that O (p, q) is a subgroup of GL (n, R).
Since SO (p, q) = O (p, q) ∩ SL (n, R), SO (p, q) is also a subgroup of GL (n, R).

The other proofs are similar.

Exercise 4

1. The set of matrices M (n, R) has a natural structure of manifold isomorphic to Rn2

. The determinant
det : M (n, R) −→ R is a smooth map and GL (n, R) = det−1 (R \ {0}), therefore GL (n, R) is an
open subset of M (n, R). It follows that GL (n, R) is a sub-manifold of M (n, R) of dimension n2.
Multiplication and inverse of matrices in GL (n, R) are smooth since they are polynomial and fractional
function of the components. Thus GL (n, R) is a Lie group.

By analogous reasoning GL (n, C) is a complex (resp. real) Lie group of complex dimension n2 (resp.

real dimension 2n2 (Cn2 ∼= R2n2

) ).

2. Here we will prove that the determinant is a submersion on GL (n, R). Let X ∈ GL (n, R), by expandin-
galong the ith column we have

detX =
∑

k

(−1)i+k Xik|X
k
i |

where |Xk
i | is the determinant of the (i, k) minor of X . Then

∂detX

∂Xij

= (−1)
i+j

|Xj
i |

= detX

(

(−1)
i+j

|Xj
i |

detX

)

= detX
(

X−1
)

ji

.

Thus
d (det)X =

∑

i,j

detX
(

X−1
)

ji
dXij

= detX
∑

i,j

(

X−1
)

ji
dXij

.
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Therefore, for B ∈ TXGL (n, R) ∼= M (n, R),

d (det)X (B) = detX





∑

i,j

(

X−1
)

ji
dXij



 (B)

= detX
∑

i,j

(

X−1
)

ji
Bij

= detX tr
(

X−1B
)

where tr
(

X−1B
)

is the trace of X−1B. Now since d (det)X : M (n, R) −→ R is a linear map,
d (det)X 6= 0 if there exists B ∈ M (n, R) suth that d (det)X (B) 6= 0. Let chose B = X , we have

d (det)X (B) = detX tr
(

X−1X
)

= detX tr (In) = (detX) n 6= 0.

Therefore d (det)X never vanishes for all X ∈ GL (n, R). Then the detrminant is a submersion on
GL (n, R).

3. The determinant is a submersion on GL (n, R), so SL (n, R) = det−1 (1) is a submanifold of GL (n, R) of
dimension n2 − 1. Thus is a Lie subgroup of GL (n, R).

By analogous reasoning SL (n, C) is a complex Lie group of complex dimension n2 − 1 and then a real
Lie group of real dimension 2

(

n2 − 1
)

.

4. Let J = diag (Ip,−Iq) be the canonical representative of the quadratique form of O (p, q)

A ∈ O (p, q) if and only if tAJA = J.

Let consider the map
M (n, R) −→ M (n, R)

A 7−→t AJA

Since t (tAJA) =t AJA, we can reduce this map to a map

G : M (n, R) −→ Sym (n, R)

A 7−→t AJA

Where Sym (n, R) is the space of symetric n × n matrices over R. Sym (n, R) is a submanifold of
M (n, R) of dimension n (n + 1) /2 since it’s a subalgebra. The dimension is the number of entries for
the ”upper (or lower) triangle” of a n × n matrix. Since multiplication is smooth G is a smooth map
between two manifolds.

dG = d
(

tAJA
)

= d
(

tA
)

JA +t AJdA

A 7→ A and A 7→t A are linear maps so there differential are themselves. Thus for B ∈ O (p, q),
dGB : X 7→t XJB +t BJX and

dGB (X) = 0 if and only if tXJB = −tBJX
t
(

tBJX
)

= −tBJX.

Then kerdGB = {X ∈ M (n, R) :t BJXantisymetric}. Let AS (n, R) be the space of antisymetric
n × n matrices over R. The map

ker dGB −→ AS (n, R)

X 7−→t BJX
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is an isomorphism of vector space (with invert X 7−→ (tBJ)
−1

Y ). Since dimAS (n, R) = n (n − 1) /2
(number of entries of the ”strictly upper triangle” of a n×n matrix), dim (ker dGB) = n (n − 1) /2 and
then

dim (Im (dGB)) = n2 − n (n − 1) /2 = n (n + 1) /2 = dimSym (n, R) .

Therefore dGB has maximal rank for all B ∈ O (p, q). Thus O (p, q) = G−1 (J) is a submanifold of
M (n, R) of dimension n (n − 1) /2.

The fact that O (p, q) is a Lie group is immediat.

5. Let A ∈ O (p, q), the identity tAJA = J implies det (A)
2

= 1. Therefore det (A) = ±1. Then we have
a continuous map

O (p, q) −→ {1,−1}

A 7−→ det (A)
,

thus SO (p, q) is an open set in O (p, q) since it’s the preimage of the open set {1} under this map.
Therefore SO (p, q) is a submanifold of O (p, q) of the same dimension. It follows that it’s a Lie
subgroup.

6. Using the fact that
U (n) = {A ∈ M (n, C) : A∗A = I},

SU (n) = {A ∈ U (n) : detA = 1}

and by the same process as for O (p, q) and SO (p, q), we can prove that SU (n) and U (n) are real Lie
groups.

Exercise 5

Let G0 be the identity component of the Lie group G and e its identity element. G0 is a sub-manifold since
connected components of a manifold are always sub-manifolds. The map

G0 × G0 −→ G

(g, h) 7−→ gh−1

is continuous since the group multiplication and the inverse are continuous. The image of a connected set
by a continuous map is a connected set so G0G

−1

0 is connected. G0 ⊂ G0G
−1

0 since e ∈ G0, therefore
G0 = G0G

−1
0 because G0 is a connected component. Thus G0 is a group. Multiplication and inverse in G0

are still smooth, then G0 is a Lie group.

Exercise 6

1. Let A ∈ O (3). The characteristic polynomial of A has degree 3, so A has at least one real eigenvalue.
Let λ be a real eigenvalue of A with eigenvector x, the fact that

< Ax, Ax >=< λx, λx >= λ2 < x, x >=< x, x >

forces λ2 = 1, therefore λ = ±1. Putting A into a normal form in an appropriate (real) basis (v1, v2, v3)
gives the identity or matrices of the form Diag (1,−1,−1), Diag (−1, 1, 1), or





1 0 0
0 Re [µ] −Im [µ]
0 Im [µ] Re [µ]



 ,





−1 0 0
0 Re [µ] −Im [µ]
0 Im [µ] Re [µ]



 ,
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where µ is a complex eigenvalue of A. The identity tAA = I implies detA2 = 1, then detA = ±1 and

Re [µ]2 + Im [µ]2 = 1.

We can then reduce all this case to





1 0 0
0 cos θ − sin θ
0 sin θ cos θ



 and





−1 0 0
0 cos θ − sin θ
0 sin θ cos θ



 , θ ∈ R.

The former is the rotation about the axis of the vector v1 and the later is the composition of
Diag (−1, 1, 1), the reflexion throught the plane generated by the vectors v2, v3 and a rotation like in
the former case.

2. For θ ∈ R let denote

A (θ) =





1 0 0
0 cos θ − sin θ
0 sin θ cos θ



 .

From 1., the A (θ)’s are the elements of O (3) with determinant 1. Therefore SO (3) is the collection
of all these matrices. For θ fixed, let consider the map

γ : [0, 1] −→ SO (3)

t 7−→ A (tθ)

γ is continuous with γ (0) = I3 and γ (1) = A (θ). Therefore SO (3) is path connected then connected.
Since we have the disjoint union

O (3) = SO (3) ∐ det−1 (−1) ,

SO (3) is the identity component of O (3).

Exercise 7

The Lorentz group preserves the value of the expression t2−x2−y2−z2, so we have a natural smooth action
of SO (3, 1) on the hyperboloid H of equation

t2 − x2 − y2 − z2 = 1.

This action can be defined by:
F : SO (3, 1)× H −→ H

(g, X) 7−→ gX
.

1. Let suppose that there exists a continuous path γ (t) from the identity to the element PT in SO (3, 1).
Let denote x0 = (1, 0, 0, 0), the map γ (t) · x0 is then a continuous path in H from (1, 0, 0, 0) to
(−1, 0, 0, 0), two points in the two disjoint components of H , which is impossible. Therefore there is
no path from the identity to the element PT in SO (3, 1).

2. Let U = {(t, x, y, z) ∈ H : t > 0}, the connected component of H with t > 0.

The action of the Lorentz group on H is continuous, Id · U = U and U is a connected component.
Therefore we have an induced action

SO0 (3, 1)× U −→ U

(g, X) 7−→ gX
.
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of the identity component on U . We are going to show that this action is transitive.
Let x0 = (1, 0, 0, 0), the stabilizer of x0 by the action of SO (3, 1) is

Stab (x0) = {g ∈ SO (3, 1) : g · x0 = x0}

Let g ∈ Stab (x0), the identity g · x0 = x0 implies g11 = 1, g21 = g31 = g41 = 0 and by using transpose
we get g12 = g13 = g14 = 0. Then

g =

(

1 0
0 A

)

.

Since g ∈ SO0 (3, 1), A must preserve the Euclidean scalar product. Therefore

Stab (x0) = {

(

1 0
0 A

)

: A ∈ SO (3)}

and Stab (x0) ⊂ SO0 (3, 1).

Let y ∈ U . Since elements of SO (3) are composition of rotations about some axis, we can find an
element of Stab (x0) which map y to an element a of the hyperbol of equation

x2
1 − x2

2 = 1, x3 = x4 = 0.

We have a = (coshφ, sinhφ, 0, 0) (x1 > 0) for some φ ∈ R. Then the transformation

L = Diag

((

cosh φ − sinhφ
− sinhφ coshφ

)

, 1, 1

)

map a to (1, 0, 0, 0). We can check that L belongs to SO0 (3, 1). Therefore there exists g ∈ SO0 (3, 1)
such that g · y = (1, 0, 0, 0). Thus SO0 (3, 1) act transitively on U .

Let denote G := SO (3, 1) and G0 = SO0 (3, 1). Let g ∈ G,

• If g · x0 ∈ U , then there exists g′ ∈ G0 such that g′g · x0 = x0 because G0 act transitively on U .
Stab (x0) ⊂ G0, therefore g′g ∈ G0 and then g ∈ G0.

• If g · x0 /∈ U then PTgx0 ∈ U and by the above result PTg ∈ G0, thus g ∈ (PT )−1 G0 = PTG0.

Then we have either g ∈ G0 or g ∈ PTG0. It follows that G = G0 ∪ PTG0. Since translations are
continuous, PTG0 is connected. Therefore SO (3, 1) has two connected components, SO0 (3, 1) and
PTSO0 (3, 1) .
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