Baez and Muniain Exercises

Huygens Ravelomanana

Symmetry

Exercise 1

Let Q be the bilinear form of the Minkowski metric and L be the Lorentz transform mixing up the t and x coordinates.

Let $X = (x, y, z, t), X' = (x', y', z', t') \in \mathbb{R}^4.$

$$\begin{aligned} Q\left(LX,LX'\right) &= -\left(t\cosh\phi - x\sinh\phi\right)\left(t'\cosh\phi - x'\sinh\phi\right) \\ &+ \left(-t\sinh\phi + x\cosh\phi\right)\left(-t'\sinh\phi + x'\cosh\phi\right) + yy' + zz' \\ &= -tt'\cosh^2\phi - xx'\sinh^2\phi + xt'\cosh\phi \sinh\phi + tx'\cosh\phi \sinh\phi \\ &+ tt'\cosh^2\phi + xx'\sinh^2\phi - xt'\cosh\phi \sinh\phi - tx'\cosh\phi \sinh\phi + yy' + zz' \\ &= -tt'\left(\cosh^2\phi - \sinh^2\phi\right) + xx'\left(\cosh^2\phi - \sinh^2\phi\right) + yy' + zz' \\ &= -tt' + xx' + yy' + zz' \\ &= Q\left(X,X'\right). \end{aligned}$$

Then $L \in O(3, 1)$. Since det $(L) = \cosh^2 \phi - \sinh^2 \phi = 1, L \in SO(3, 1)$.

With the same way we can prove that Lorentz transforms mixing up t and y coordinates or t and z coordinates belong to SO(3, 1).

Exercise 2

The linear maps $P: (t, x, y, z) \mapsto (t, -x, -y, -z)$ and $T: (t, x, y, z) \mapsto (-t, x, y, z)$ can be represented by the matrices diag (1, -1, -1, -1) and diag (-1, 1, 1, 1) respectively, so det $(P) = \det(T) = -1$. Therefore $T, P \notin SO(3, 1)$

Let
$$X = (x, y, z, t), X' = (x', y', z', t') \in \mathbb{R}^4.$$

$$\begin{split} Q\left(PX, PX'\right) &= -tt' + (-x)\left(-x'\right) + (-y)\left(-y'\right) + (-z)\left(-z'\right) \\ &= -tt' + xx' + yy' + zz' \\ &= Q\left(X, X'\right), \end{split}$$

and

$$Q(TX, TX') = -(-t)(-t') + xx' + yy' + zz'$$

= - tt' + xx' + yy' + zz'
= Q(X, X').

Then $T, P \in O(3, 1)$. It follows that $PT \in O(3, 1)$. Since det (PT) = det(P) det(T) = 1, $PT \in SO(3, 1)$.

Exercise 3

- 1. The "restriction" of the determinant, det : $GL(n, \mathbb{R}) \longrightarrow \mathbb{R}^*$ is a group homomorphism with the multiplication. Therefore $SL(n, \mathbb{R})$ is a subgroup since $SL(n, \mathbb{R}) = det^{-1}(1) = ker(det)$.
- 2. We denote Q the bilinear form associated to O(p,q). Let $A, B \in O(p,q)$ and $X, X' \in \mathbb{R}^4$.

$$Q(ABX, ABX') = Q(BX, BX') = Q(X, X'),$$

and

$$Q\left(X,X'\right)=Q\left(BB^{-1}X,BB^{-1}X'\right)=Q\left(B^{-1}X,B^{-1}X'\right)$$

Therefore AB, $B^{-1} \in O(p,q)$. It follows that O(p,q) is a subgroup of $\mathsf{GL}(n,\mathbb{R})$. Since $SO(p,q) = O(p,q) \cap \mathsf{SL}(n,\mathbb{R})$, SO(p,q) is also a subgroup of $\mathsf{GL}(n,\mathbb{R})$.

The other proofs are similar.

Exercise 4

1. The set of matrices $M(n, \mathbb{R})$ has a natural structure of manifold isomorphic to \mathbb{R}^{n^2} . The determinant det : $M(n, \mathbb{R}) \longrightarrow \mathbb{R}$ is a smooth map and $\mathsf{GL}(n, \mathbb{R}) = \mathsf{det}^{-1}(\mathbb{R} \setminus \{0\})$, therefore $\mathsf{GL}(n, \mathbb{R})$ is an open subset of $M(n, \mathbb{R})$. It follows that $\mathsf{GL}(n, \mathbb{R})$ is a sub-manifold of $M(n, \mathbb{R})$ of dimension n^2 . Multiplication and inverse of matrices in $\mathsf{GL}(n, \mathbb{R})$ are smooth since they are polynomial and fractional function of the components. Thus $\mathsf{GL}(n, \mathbb{R})$ is a Lie group.

By analogous reasoning $\mathsf{GL}(n,\mathbb{C})$ is a complex (resp. real) Lie group of complex dimension n^2 (resp. real dimension $2n^2$ ($\mathbb{C}^{n^2} \cong \mathbb{R}^{2n^2}$)).

2. Here we will prove that the determinant is a submersion on $GL(n, \mathbb{R})$. Let $X \in GL(n, \mathbb{R})$, by expandingalong the i^{th} column we have

$$\det X = \sum_k \left(-1 \right)^{i+k} X_{ik} |X_i^k|$$

where $|X_i^k|$ is the determinant of the (i, k) minor of X. Then

$$\begin{split} \frac{\partial \text{det}X}{\partial X_{ij}} &= (-1)^{i+j} |X_i^j| \\ &= \text{det}X \ \left(\frac{(-1)^{i+j} |X_i^j|}{\text{det}X}\right) \\ &= \text{det}X \ \left(X^{-1}\right)_{ji} \end{split}$$

Thus

$$\begin{split} d\left(\det\right)_{X} &= \sum_{i,j} \det X \left(X^{-1}\right)_{ji} \mathrm{d}X_{ij} \\ &= \det X \sum_{i,j} \left(X^{-1}\right)_{ji} \mathrm{d}X_{ij} \end{split}.$$

Therefore, for $B \in T_X \mathsf{GL}(n, \mathbb{R}) \cong M(n, \mathbb{R})$,

$$d (\det)_X (B) = \det X \left(\sum_{i,j} (X^{-1})_{ji} dX_{ij} \right) (B)$$
$$= \det X \sum_{i,j} (X^{-1})_{ji} B_{ij}$$
$$= \det X tr (X^{-1}B)$$

where $tr(X^{-1}B)$ is the trace of $X^{-1}B$. Now since $d(\det)_X : M(n, \mathbb{R}) \longrightarrow \mathbb{R}$ is a linear map, $d(\det)_X \neq 0$ if there exists $B \in M(n, \mathbb{R})$ such that $d(\det)_X(B) \neq 0$. Let chose B = X, we have

$$d(\det)_X(B) = \det X \quad tr(X^{-1}X) = \det X \quad tr(I_n) = (\det X) \quad n \neq 0.$$

Therefore $d(\det)_X$ never vanishes for all $X \in \mathsf{GL}(n,\mathbb{R})$. Then the detrminant is a submersion on $\mathsf{GL}(n,\mathbb{R})$.

3. The determinant is a submersion on $GL(n, \mathbb{R})$, so $SL(n, \mathbb{R}) = det^{-1}(1)$ is a submanifold of $GL(n, \mathbb{R})$ of dimension $n^2 - 1$. Thus is a Lie subgroup of $GL(n, \mathbb{R})$.

By analogous reasoning $SL(n, \mathbb{C})$ is a complex Lie group of complex dimension $n^2 - 1$ and then a real Lie group of real dimension $2(n^2 - 1)$.

4. Let $J = diag(I_p, -I_q)$ be the canonical representative of the quadratique form of O(p, q)

$$A \in O(p,q)$$
 if and only if ${}^{t}AJA = J$.

Let consider the map

$$M(n,\mathbb{R}) \longrightarrow M(n,\mathbb{R})$$
$$A \longmapsto^{t} AJA$$

Since ${}^{t}({}^{t}AJA) = {}^{t}AJA$, we can reduce this map to a map

$$\begin{array}{c} G: M\left(n,\mathbb{R}\right) \longrightarrow Sym\left(n,\mathbb{R}\right) \\ A \longmapsto^{t} AJA \end{array}$$

Where $Sym(n, \mathbb{R})$ is the space of symmetric $n \times n$ matrices over \mathbb{R} . $Sym(n, \mathbb{R})$ is a submanifold of $M(n, \mathbb{R})$ of dimension n(n+1)/2 since it's a subalgebra. The dimension is the number of entries for the "upper (or lower) triangle" of a $n \times n$ matrix. Since multiplication is smooth G is a smooth map between two manifolds.

$$dG = d(^{t}AJA) = d(^{t}A)JA + ^{t}AJdA$$

 $A \mapsto A$ and $A \mapsto^t A$ are linear maps so there differential are themselves. Thus for $B \in O(p,q)$, $dG_B: X \mapsto^t XJB + ^t BJX$ and

$$dG_B(X) = 0$$
 if and only if ${}^tXJB = -{}^tBJX$
 ${}^t({}^tBJX) = -{}^tBJX.$

Then ker $dG_B = \{X \in M(n, \mathbb{R}) : ^t BJX$ antisymetric $\}$. Let $AS(n, \mathbb{R})$ be the space of antisymetric $n \times n$ matrices over \mathbb{R} . The map

$$\ker dG_B \longrightarrow AS(n, \mathbb{R})$$
$$X \longmapsto^t BJX$$

is an isomorphism of vector space (with invert $X \mapsto ({}^{t}BJ)^{-1}Y$). Since dim $AS(n, \mathbb{R}) = n(n-1)/2$ (number of entries of the "strictly upper triangle" of a $n \times n$ matrix), dim (ker dG_B) = n(n-1)/2 and then

$$dim(Im(dG_B)) = n^2 - n(n-1)/2 = n(n+1)/2 = \dim Sym(n,\mathbb{R}).$$

Therefore dG_B has maximal rank for all $B \in O(p,q)$. Thus $O(p,q) = G^{-1}(J)$ is a submanifold of $M(n,\mathbb{R})$ of dimension n(n-1)/2.

The fact that O(p,q) is a Lie group is immediat.

5. Let $A \in O(p,q)$, the identity ${}^{t}AJA = J$ implies $\det(A)^{2} = 1$. Therefore $\det(A) = \pm 1$. Then we have a continuous map

$$O(p,q) \longrightarrow \{1,-1\}$$
$$A \longmapsto \det(A)$$

thus SO(p,q) is an open set in O(p,q) since it's the preimage of the open set $\{1\}$ under this map. Therefore SO(p,q) is a submanifold of O(p,q) of the same dimension. It follows that it's a Lie subgroup.

6. Using the fact that

$$U(n) = \{ A \in M(n, \mathbb{C}) : A^*A = I \},\$$

$$SU(n) = \{ A \in U(n) : \det A = 1 \}$$

and by the same process as for O(p,q) and SO(p,q), we can prove that SU(n) and U(n) are real Lie groups.

Exercise 5

Let G_0 be the identity component of the Lie group G and e its identity element. G_0 is a sub-manifold since connected components of a manifold are always sub-manifolds. The map

$$\begin{array}{ccc} G_0 \times G_0 \longrightarrow G \\ (g,h) \longmapsto gh^{-1} \end{array}$$

is continuous since the group multiplication and the inverse are continuous. The image of a connected set by a continuous map is a connected set so $G_0G_0^{-1}$ is connected. $G_0 \subset G_0G_0^{-1}$ since $e \in G_0$, therefore $G_0 = G_0G_0^{-1}$ because G_0 is a connected component. Thus G_0 is a group. Multiplication and inverse in G_0 are still smooth, then G_0 is a Lie group.

Exercise 6

1. Let $A \in O(3)$. The characteristic polynomial of A has degree 3, so A has at least one real eigenvalue. Let λ be a real eigenvalue of A with eigenvector x, the fact that

$$= <\lambda x, \lambda x> = \lambda^2 < x, x> = < x, x>$$

forces $\lambda^2 = 1$, therefore $\lambda = \pm 1$. Putting A into a normal form in an appropriate (real) basis (v_1, v_2, v_3) gives the identity or matrices of the form Diag (1, -1, -1), Diag (-1, 1, 1), or

$$\left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & \operatorname{Re}\left[\mu\right] & -\operatorname{Im}\left[\mu\right] \\ 0 & \operatorname{Im}\left[\mu\right] & \operatorname{Re}\left[\mu\right] \end{array}\right), \qquad \left(\begin{array}{ccc} -1 & 0 & 0 \\ 0 & \operatorname{Re}\left[\mu\right] & -\operatorname{Im}\left[\mu\right] \\ 0 & \operatorname{Im}\left[\mu\right] & \operatorname{Re}\left[\mu\right] \end{array}\right),$$

where μ is a complex eigenvalue of A. The identity ${}^{t}AA = I$ implies det $A^{2} = 1$, then det $A = \pm 1$ and

$$\operatorname{Re}[\mu]^{2} + \operatorname{Im}[\mu]^{2} = 1.$$

We can then reduce all this case to

$$\left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta \\ 0 & \sin\theta & \cos\theta \end{array}\right) \quad \text{and} \quad \left(\begin{array}{ccc} -1 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta \\ 0 & \sin\theta & \cos\theta \end{array}\right), \qquad \theta \in \mathbb{R}.$$

The former is the rotation about the axis of the vector v_1 and the later is the composition of Diag (-1, 1, 1), the reflexion throught the plane generated by the vectors v_2 , v_3 and a rotation like in the former case.

2. For $\theta \in \mathbb{R}$ let denote

$$A(\theta) = \begin{pmatrix} 1 & 0 & 0\\ 0 & \cos\theta & -\sin\theta\\ 0 & \sin\theta & \cos\theta \end{pmatrix}.$$

From 1., the $A(\theta)$'s are the elements of O(3) with determinant 1. Therefore SO(3) is the collection of all these matrices. For θ fixed, let consider the map

$$\gamma: [0,1] \longrightarrow SO(3)$$
$$t \longmapsto A(t\theta)$$

 γ is continuous with $\gamma(0) = I_3$ and $\gamma(1) = A(\theta)$. Therefore SO(3) is path connected then connected. Since we have the disjoint union

$$O(3) = SO(3) \amalg \det^{-1}(-1),$$

SO(3) is the identity component of O(3).

Exercise 7

The Lorentz group preserves the value of the expression $t^2 - x^2 - y^2 - z^2$, so we have a natural smooth action of SO(3,1) on the hyperboloid H of equation

$$t^2 - x^2 - y^2 - z^2 = 1.$$

This action can be defined by:

$$F: SO(3,1) \times H \longrightarrow H$$
$$(g,X) \longmapsto gX$$

- 1. Let suppose that there exists a continuous path $\gamma(t)$ from the identity to the element PT in SO(3, 1). Let denote $x_0 = (1, 0, 0, 0)$, the map $\gamma(t) \cdot x_0$ is then a continuous path in H from (1, 0, 0, 0) to (-1, 0, 0, 0), two points in the two disjoint components of H, which is impossible. Therefore there is no path from the identity to the element PT in SO(3, 1).
- 2. Let $U = \{(t, x, y, z) \in H : t > 0\}$, the connected component of H with t > 0. The action of the Lorentz group on H is continuous, $Id \cdot U = U$ and U is a connected component. Therefore we have an induced action

$$SO_0(3,1) \times U \longrightarrow U$$
$$(g,X) \longmapsto gX^{\cdot}$$

of the identity component on U. We are going to show that this action is transitive. Let $x_0 = (1, 0, 0, 0)$, the stabilizer of x_0 by the action of SO(3, 1) is

$$Stab(x_0) = \{g \in SO(3,1) : g \cdot x_0 = x_0\}$$

Let $g \in Stab(x_0)$, the identity $g \cdot x_0 = x_0$ implies $g_{11} = 1$, $g_{21} = g_{31} = g_{41} = 0$ and by using transpose we get $g_{12} = g_{13} = g_{14} = 0$. Then

$$g = \left(\begin{array}{cc} 1 & 0\\ 0 & A \end{array}\right)$$

Since $g \in SO_0(3,1)$, A must preserve the Euclidean scalar product. Therefore

$$Stab(x_0) = \left\{ \left(\begin{array}{cc} 1 & 0 \\ 0 & A \end{array} \right) : A \in SO(3) \right\}$$

and $Stab(x_0) \subset SO_0(3, 1)$.

Let $y \in U$. Since elements of SO(3) are composition of rotations about some axis, we can find an element of $Stab(x_0)$ which map y to an element a of the hyperbol of equation

$$x_1^2 - x_2^2 = 1, \quad x_3 = x_4 = 0.$$

We have $a = (\cosh \phi, \sinh \phi, 0, 0)$ $(x_1 > 0)$ for some $\phi \in \mathbb{R}$. Then the transformation

$$L = \operatorname{Diag}\left(\left(\begin{array}{c} \cosh \phi & -\sinh \phi \\ -\sinh \phi & \cosh \phi \end{array} \right), 1, 1 \right)$$

map a to (1, 0, 0, 0). We can check that L belongs to $SO_0(3, 1)$. Therefore there exists $g \in SO_0(3, 1)$ such that $g \cdot y = (1, 0, 0, 0)$. Thus $SO_0(3, 1)$ act transitively on U.

Let denote G := SO(3, 1) and $G_0 = SO_0(3, 1)$. Let $g \in G$,

- If $g \cdot x_0 \in U$, then there exists $g' \in G_0$ such that $g'g \cdot x_0 = x_0$ because G_0 act transitively on U. Stab $(x_0) \subset G_0$, therefore $g'g \in G_0$ and then $g \in G_0$.
- If $g \cdot x_0 \notin U$ then $PTgx_0 \in U$ and by the above result $PTg \in G_0$, thus $g \in (PT)^{-1}G_0 = PTG_0$.

Then we have either $g \in G_0$ or $g \in PTG_0$. It follows that $G = G_0 \cup PTG_0$. Since translations are continuous, PTG_0 is connected. Therefore SO(3,1) has two connected components, $SO_0(3,1)$ and $PTSO_0(3,1)$.