Baez and Muniain Exercises

Huygens Ravelomanana

Symmetry

Exercise 1

Let Q be the bilinear form of the Minkowski metric and L be the Lorentz transform mixing up the t and x coordinates.

Let $X=(x, y, z, t), X^{\prime}=\left(x^{\prime}, y^{\prime}, z^{\prime}, t^{\prime}\right) \in \mathbb{R}^{4}$.

$$
\begin{aligned}
Q\left(L X, L X^{\prime}\right)= & -(t \cosh \phi-x \sinh \phi)\left(t^{\prime} \cosh \phi-x^{\prime} \sinh \phi\right) \\
& +(-t \sinh \phi+x \cosh \phi)\left(-t^{\prime} \sinh \phi+x^{\prime} \cosh \phi\right)+y y^{\prime}+z z^{\prime} \\
= & -t t^{\prime} \cosh ^{2} \phi-x x^{\prime} \sinh ^{2} \phi+x t^{\prime} \cosh \phi \sinh \phi+t x^{\prime} \cosh \phi \sinh \phi \\
& +t t^{\prime} \cosh ^{2} \phi+x x^{\prime} \sinh ^{2} \phi-x t^{\prime} \cosh \phi \sinh \phi-t x^{\prime} \cosh \phi \sinh \phi+y y^{\prime}+z z^{\prime} \\
= & -t t^{\prime}\left(\cosh ^{2} \phi-\sinh ^{2} \phi\right)+x x^{\prime}\left(\cosh ^{2} \phi-\sinh ^{2} \phi\right)+y y^{\prime}+z z^{\prime} \\
= & -t t^{\prime}+x x^{\prime}+y y^{\prime}+z z^{\prime} \\
= & Q\left(X, X^{\prime}\right)
\end{aligned}
$$

Then $L \in O(3,1)$. Since det $(L)=\cosh ^{2} \phi-\sinh ^{2} \phi=1, L \in S O(3,1)$.
With the same way wee can prove that Lorentz transforms mixing up t and y coordinates or t and z coordinates belong to $S O(3,1)$.

Exercise 2

The linear maps $P:(t, x, y, z) \longmapsto(t,-x,-y,-z)$ and $T:(t, x, y, z) \longmapsto(-t, x, y, z)$ can be represented by the matrices $\operatorname{diag}(1,-1,-1,-1)$ and $\operatorname{diag}(-1,1,1,1)$ respectively, so $\operatorname{det}(P)=\operatorname{det}(T)=-1$.
Therefore $T, P \notin S O(3,1)$
Let $X=(x, y, z, t), X^{\prime}=\left(x^{\prime}, y^{\prime}, z^{\prime}, t^{\prime}\right) \in \mathbb{R}^{4}$.

$$
\begin{aligned}
Q\left(P X, P X^{\prime}\right) & =-t t^{\prime}+(-x)\left(-x^{\prime}\right)+(-y)\left(-y^{\prime}\right)+(-z)\left(-z^{\prime}\right) \\
& =-t t^{\prime}+x x^{\prime}+y y^{\prime}+z z^{\prime} \\
& =Q\left(X, X^{\prime}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
Q\left(T X, T X^{\prime}\right) & =-(-t)\left(-t^{\prime}\right)+x x^{\prime}+y y^{\prime}+z z^{\prime} \\
& =-t t^{\prime}+x x^{\prime}+y y^{\prime}+z z^{\prime} \\
& =Q\left(X, X^{\prime}\right)
\end{aligned}
$$

Then $T, P \in O(3,1)$. It follows that $P T \in O(3,1)$. Since $\operatorname{det}(P T)=\operatorname{det}(P) \operatorname{det}(T)=1, P T \in S O(3,1)$.

Exercise 3

1. The "restriction" of the determinant, det : GL $(n, \mathbb{R}) \longrightarrow \mathbb{R}^{*}$ is a group homomorphism with the multiplication. Therefore $\operatorname{SL}(n, \mathbb{R})$ is a subgroup since $\operatorname{SL}(n, \mathbb{R})=\operatorname{det}^{-1}(1)=\operatorname{ker}(\operatorname{det})$.
2. We denote Q the bilinear form associated to $O(p, q)$. Let $A, B \in O(p, q)$ and $X, X^{\prime} \in \mathbb{R}^{4}$.

$$
Q\left(A B X, A B X^{\prime}\right)=Q\left(B X, B X^{\prime}\right)=Q\left(X, X^{\prime}\right)
$$

and

$$
Q\left(X, X^{\prime}\right)=Q\left(B B^{-1} X, B B^{-1} X^{\prime}\right)=Q\left(B^{-1} X, B^{-1} X^{\prime}\right)
$$

Therefore $A B, B^{-1} \in O(p, q)$. It follows that $O(p, q)$ is a subgroup of $\mathrm{GL}(n, \mathbb{R})$. Since $S O(p, q)=O(p, q) \cap \mathrm{SL}(n, \mathbb{R}), S O(p, q)$ is also a subgroup of $\mathrm{GL}(n, \mathbb{R})$.

The other proofs are similar.

Exercise 4

1. The set of matrices $M(n, \mathbb{R})$ has a natural structure of manifold isomorphic to $\mathbb{R}^{n^{2}}$. The determinant det $: M(n, \mathbb{R}) \longrightarrow \mathbb{R}$ is a smooth map and $G L(n, \mathbb{R})=\operatorname{det}^{-1}(\mathbb{R} \backslash\{0\})$, therefore $G L(n, \mathbb{R})$ is an open subset of $M(n, \mathbb{R})$. It follows that $G L(n, \mathbb{R})$ is a sub-manifold of $M(n, \mathbb{R})$ of dimension n^{2}. Multiplication and inverse of matrices in $\mathrm{GL}(n, \mathbb{R})$ are smooth since they are polynomial and fractional function of the components. Thus $\mathrm{GL}(n, \mathbb{R})$ is a Lie group.
By analogous reasoning $G L(n, \mathbb{C})$ is a complex (resp. real) Lie group of complex dimension n^{2} (resp. real dimension $2 n^{2}\left(\mathbb{C}^{n^{2}} \cong \mathbb{R}^{2 n^{2}}\right)$).
2. Here we will prove that the determinant is a submersion on $\mathrm{GL}(n, \mathbb{R})$. Let $X \in \mathrm{GL}(n, \mathbb{R})$, by expandingalong the $i^{\text {th }}$ column we have

$$
\operatorname{det} X=\sum_{k}(-1)^{i+k} X_{i k}\left|X_{i}^{k}\right|
$$

where $\left|X_{i}^{k}\right|$ is the determinant of the (i, k) minor of X. Then

$$
\begin{aligned}
\frac{\partial \operatorname{det} X}{\partial X_{i j}} & =(-1)^{i+j}\left|X_{i}^{j}\right| \\
& =\operatorname{det} X\left(\frac{(-1)^{i+j}\left|X_{i}^{j}\right|}{\operatorname{det} X}\right) \\
& =\operatorname{det} X \quad\left(X^{-1}\right)_{j i}
\end{aligned}
$$

Thus

$$
\begin{aligned}
d(\operatorname{det})_{X} & =\sum_{i, j} \operatorname{det} X \quad\left(X^{-1}\right)_{j i} \mathrm{~d} X_{i j} \\
& =\operatorname{det} X \sum_{i, j}\left(X^{-1}\right)_{j i} \mathrm{~d} X_{i j}
\end{aligned}
$$

Therefore, for $B \in T_{X} G \mathrm{~L}(n, \mathbb{R}) \cong M(n, \mathbb{R})$,

$$
\begin{aligned}
d(\operatorname{det})_{X}(B) & =\operatorname{det} X \quad\left(\sum_{i, j}\left(X^{-1}\right)_{j i} \mathrm{~d} X_{i j}\right) \\
& =\operatorname{det} X \sum_{i, j}\left(X^{-1}\right)_{j i} B_{i j} \\
& =\operatorname{det} X \quad \operatorname{tr}\left(X^{-1} B\right)
\end{aligned}
$$

where $\operatorname{tr}\left(X^{-1} B\right)$ is the trace of $X^{-1} B$. Now since $d(\operatorname{det})_{X}: M(n, \mathbb{R}) \longrightarrow \mathbb{R}$ is a linear map, $d(\operatorname{det})_{X} \neq 0$ if there exists $B \in M(n, \mathbb{R})$ suth that $d(\operatorname{det})_{X}(B) \neq 0$. Let chose $B=X$, we have

$$
d(\operatorname{det})_{X}(B)=\operatorname{det} X \quad \operatorname{tr}\left(X^{-1} X\right)=\operatorname{det} X \quad \operatorname{tr}\left(I_{n}\right)=(\operatorname{det} X) \quad n \neq 0
$$

Therefore $d(\operatorname{det})_{X}$ never vanishes for all $X \in G L(n, \mathbb{R})$. Then the detrminant is a submersion on $G L(n, \mathbb{R})$.
3. The determinant is a submersion on $G L(n, \mathbb{R})$, so $S L(n, \mathbb{R})=\operatorname{det}^{-1}(1)$ is a submanifold of $G L(n, \mathbb{R})$ of dimension $n^{2}-1$. Thus is a Lie subgroup of $\mathrm{GL}(n, \mathbb{R})$.
By analogous reasoning $\operatorname{SL}(n, \mathbb{C})$ is a complex Lie group of complex dimension $n^{2}-1$ and then a real Lie group of real dimension $2\left(n^{2}-1\right)$.
4. Let $J=\operatorname{diag}\left(I_{p},-I_{q}\right)$ be the canonical representative of the quadratique form of $O(p, q)$

$$
A \in O(p, q) \text { if and only if }{ }^{t} A J A=J
$$

Let consider the map

$$
\begin{aligned}
M(n, \mathbb{R}) & \longrightarrow M(n, \mathbb{R}) \\
A & { }^{t} A J A
\end{aligned}
$$

Since ${ }^{t}\left({ }^{t} A J A\right)={ }^{t} A J A$, we can reduce this map to a map

$$
\begin{aligned}
G: M(n, \mathbb{R}) & \longrightarrow \operatorname{Sym}(n, \mathbb{R}) \\
A & \longmapsto t A J A
\end{aligned}
$$

Where $\operatorname{Sym}(n, \mathbb{R})$ is the space of symetric $n \times n$ matrices over \mathbb{R}. Sym (n, \mathbb{R}) is a submanifold of $M(n, \mathbb{R})$ of dimension $n(n+1) / 2$ since it's a subalgebra. The dimension is the number of entries for the "upper (or lower) triangle" of a $n \times n$ matrix. Since multiplication is smooth G is a smooth map between two manifolds.

$$
d G=d\left({ }^{t} A J A\right)=d\left({ }^{t} A\right) J A+{ }^{t} A J d A
$$

$A \mapsto A$ and $A \mapsto^{t} A$ are linear maps so there differential are themselves. Thus for $B \in O(p, q)$, $d G_{B}: X \mapsto^{t} X J B+{ }^{t} B J X$ and

$$
\begin{aligned}
d G_{B}(X)=0 \text { if and only if } & { }^{t} X J B=-{ }^{t} B J X \\
& { }^{t}\left({ }^{t} B J X\right)=-{ }^{t} B J X .
\end{aligned}
$$

Then $\operatorname{ker} d G_{B}=\left\{X \in M(n, \mathbb{R}):^{t}\right.$ BJXantisymetric $\}$. Let $A S(n, \mathbb{R})$ be the space of antisymetric $n \times n$ matrices over \mathbb{R}. The map

$$
\begin{aligned}
\operatorname{ker} d G_{B} & \longrightarrow A S(n, \mathbb{R}) \\
X & \longmapsto^{t} B J X
\end{aligned}
$$

is an isomorphism of vector space (with invert $X \longmapsto\left({ }^{t} B J\right)^{-1} Y$). Since $\operatorname{dim} A S(n, \mathbb{R})=n(n-1) / 2$ (number of entries of the "strictly upper triangle" of a $n \times n$ matrix), $\operatorname{dim}\left(\operatorname{ker} d G_{B}\right)=n(n-1) / 2$ and then

$$
\operatorname{dim}\left(\operatorname{Im}\left(d G_{B}\right)\right)=n^{2}-n(n-1) / 2=n(n+1) / 2=\operatorname{dim} \operatorname{Sym}(n, \mathbb{R})
$$

Therefore $d G_{B}$ has maximal rank for all $B \in O(p, q)$. Thus $O(p, q)=G^{-1}(J)$ is a submanifold of $M(n, \mathbb{R})$ of dimension $n(n-1) / 2$.
The fact that $O(p, q)$ is a Lie group is immediat.
5. Let $A \in O(p, q)$, the identity ${ }^{t} A J A=J$ implies $\operatorname{det}(A)^{2}=1$. Therefore $\operatorname{det}(A)= \pm 1$. Then we have a continuous map

$$
\begin{aligned}
O(p, q) & \longrightarrow\{1,-1\} \\
A & \longmapsto \operatorname{det}(A)
\end{aligned}
$$

thus $S O(p, q)$ is an open set in $O(p, q)$ since it's the preimage of the open set $\{1\}$ under this map. Therefore $S O(p, q)$ is a submanifold of $O(p, q)$ of the same dimension. It follows that it's a Lie subgroup.
6. Using the fact that

$$
\begin{gathered}
U(n)=\left\{A \in M(n, \mathbb{C}): A^{*} A=I\right\} \\
S U(n)=\{A \in U(n): \operatorname{det} A=1\}
\end{gathered}
$$

and by the same process as for $O(p, q)$ and $S O(p, q)$, we can prove that $S U(n)$ and $U(n)$ are real Lie groups.

Exercise 5

Let G_{0} be the identity component of the Lie group G and e its identity element. G_{0} is a sub-manifold since connected components of a manifold are always sub-manifolds. The map

$$
\begin{aligned}
G_{0} \times G_{0} & \longrightarrow G \\
(g, h) & \longmapsto g h^{-1}
\end{aligned}
$$

is continuous since the group multiplication and the inverse are continuous. The image of a connected set by a continuous map is a connected set so $G_{0} G_{0}^{-1}$ is connected. $G_{0} \subset G_{0} G_{0}^{-1}$ since $e \in G_{0}$, therefore $G_{0}=G_{0} G_{0}^{-1}$ because G_{0} is a connected component. Thus G_{0} is a group. Multiplication and inverse in G_{0} are still smooth, then G_{0} is a Lie group.

Exercise 6

1. Let $A \in O(3)$. The characteristic polynomial of A has degree 3 , so A has at least one real eigenvalue. Let λ be a real eigenvalue of A with eigenvector x, the fact that

$$
<A x, A x>=<\lambda x, \lambda x>=\lambda^{2}<x, x>=<x, x>
$$

forces $\lambda^{2}=1$, therefore $\lambda= \pm 1$. Putting A into a normal form in an appropriate (real) basis $\left(v_{1}, v_{2}, v_{3}\right)$ gives the identity or matrices of the form $\operatorname{Diag}(1,-1,-1)$, $\operatorname{Diag}(-1,1,1)$, or

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & \operatorname{Re}[\mu] & -\operatorname{Im}[\mu] \\
0 & \operatorname{Im}[\mu] & \operatorname{Re}[\mu]
\end{array}\right), \quad\left(\begin{array}{lll}
-1 & 0 & 0 \\
0 & \operatorname{Re}[\mu] & -\operatorname{Im}[\mu] \\
0 & \operatorname{Im}[\mu] & \operatorname{Re}[\mu]
\end{array}\right)
$$

where μ is a complex eigenvalue of A. The identity ${ }^{t} A A=I$ implies $\operatorname{det} A^{2}=1$, then $\operatorname{det} A= \pm 1$ and

$$
\operatorname{Re}[\mu]^{2}+\operatorname{Im}[\mu]^{2}=1
$$

We can then reduce all this case to

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & \cos \theta & -\sin \theta \\
0 & \sin \theta & \cos \theta
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{lll}
-1 & 0 & 0 \\
0 & \cos \theta & -\sin \theta \\
0 & \sin \theta & \cos \theta
\end{array}\right), \quad \theta \in \mathbb{R}
$$

The former is the rotation about the axis of the vector v_{1} and the later is the composition of Diag $(-1,1,1)$, the reflexion throught the plane generated by the vectors v_{2}, v_{3} and a rotation like in the former case.
2. For $\theta \in \mathbb{R}$ let denote

$$
A(\theta)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & \cos \theta & -\sin \theta \\
0 & \sin \theta & \cos \theta
\end{array}\right)
$$

From 1., the $A(\theta)$'s are the elements of $O(3)$ with determinant 1. Therefore $S O(3)$ is the collection of all these matrices. For θ fixed, let consider the map

$$
\begin{aligned}
\gamma:[0,1] & \longrightarrow S O(3) \\
t & \longmapsto A(t \theta)
\end{aligned}
$$

γ is continuous with $\gamma(0)=I_{3}$ and $\gamma(1)=A(\theta)$. Therefore $S O(3)$ is path connected then connected. Since we have the disjoint union

$$
O(3)=S O(3) \amalg \operatorname{det}^{-1}(-1),
$$

$S O(3)$ is the identity component of $O(3)$.

Exercise 7

The Lorentz group preserves the value of the expression $t^{2}-x^{2}-y^{2}-z^{2}$, so we have a natural smooth action of $S O(3,1)$ on the hyperboloid H of equation

$$
t^{2}-x^{2}-y^{2}-z^{2}=1
$$

This action can be defined by:

$$
\begin{aligned}
F: S O(3,1) \times H & \longrightarrow H \\
(g, X) & \longmapsto g X .
\end{aligned}
$$

1. Let suppose that there exists a continuous path $\gamma(t)$ from the identity to the element $P T$ in $S O(3,1)$. Let denote $x_{0}=(1,0,0,0)$, the map $\gamma(t) \cdot x_{0}$ is then a continuous path in H from $(1,0,0,0)$ to $(-1,0,0,0)$, two points in the two disjoint components of H, which is impossible. Therefore there is no path from the identity to the element $P T$ in $S O(3,1)$.
2. Let $U=\{(t, x, y, z) \in H: t>0\}$, the connected component of H with $t>0$.

The action of the Lorentz group on H is continuous, $I d \cdot U=U$ and U is a connected component. Therefore we have an induced action

$$
\begin{aligned}
S O_{0}(3,1) \times U & \longrightarrow U \\
(g, X) & \longmapsto g X
\end{aligned}
$$

of the identity component on U. We are going to show that this action is transitive. Let $x_{0}=(1,0,0,0)$, the stabilizer of x_{0} by the action of $S O(3,1)$ is

$$
\operatorname{Stab}\left(x_{0}\right)=\left\{g \in S O(3,1): g \cdot x_{0}=x_{0}\right\}
$$

Let $g \in \operatorname{Stab}\left(x_{0}\right)$, the identity $g \cdot x_{0}=x_{0}$ implies $g_{11}=1, g_{21}=g_{31}=g_{41}=0$ and by using transpose we get $g_{12}=g_{13}=g_{14}=0$. Then

$$
g=\left(\begin{array}{ll}
1 & 0 \\
0 & A
\end{array}\right) .
$$

Since $g \in S O_{0}(3,1), A$ must preserve the Euclidean scalar product. Therefore

$$
\operatorname{Stab}\left(x_{0}\right)=\left\{\left(\begin{array}{cc}
1 & 0 \\
0 & A
\end{array}\right): A \in S O(3)\right\}
$$

and $\operatorname{Stab}\left(x_{0}\right) \subset S O_{0}(3,1)$.
Let $y \in U$. Since elements of $S O(3)$ are composition of rotations about some axis, we can find an element of Stab $\left(x_{0}\right)$ which map y to an element a of the hyperbol of equation

$$
x_{1}^{2}-x_{2}^{2}=1, \quad x_{3}=x_{4}=0
$$

We have $a=(\cosh \phi, \sinh \phi, 0,0)\left(x_{1}>0\right)$ for some $\phi \in \mathbb{R}$. Then the transformation

$$
L=\operatorname{Diag}\left(\left(\begin{array}{ll}
\cosh \phi & -\sinh \phi \\
-\sinh \phi & \cosh \phi
\end{array}\right), 1,1\right)
$$

map a to $(1,0,0,0)$. We can check that L belongs to $S O_{0}(3,1)$. Therefore there exists $g \in S O_{0}(3,1)$ such that $g \cdot y=(1,0,0,0)$. Thus $S O_{0}(3,1)$ act transitively on U.
Let denote $G:=S O(3,1)$ and $G_{0}=S O_{0}(3,1)$. Let $g \in G$,

- If $g \cdot x_{0} \in U$, then there exists $g^{\prime} \in G_{0}$ such that $g^{\prime} g \cdot x_{0}=x_{0}$ because G_{0} act transitively on U. $\operatorname{Stab}\left(x_{0}\right) \subset G_{0}$, therefore $g^{\prime} g \in G_{0}$ and then $g \in G_{0}$.
- If $g \cdot x_{0} \notin U$ then $P T g x_{0} \in U$ and by the above result $P T g \in G_{0}$, thus $g \in(P T)^{-1} G_{0}=P T G_{0}$.

Then we have either $g \in G_{0}$ or $g \in P T G_{0}$. It follows that $G=G_{0} \cup P T G_{0}$. Since translations are continuous, $P T G_{0}$ is connected. Therefore $S O(3,1)$ has two connected components, $S O_{0}(3,1)$ and $\operatorname{PTSO}_{0}(3,1)$.

