Baez and Muniain Exercises

Huygens Ravelomanana

Symmetry

Exercise 1

Let @ be the bilinear form of the Minkowski metric and L be the Lorentz transform mixing up the ¢ and =
coordinates.

Let X = (xayazat)a X' = ('rlvyIVZ/?tI) € R4'

Q(LX,LX") = — (tcosh ¢ — xsinh ¢) (¢’ cosh ¢ — 2’ sinh ¢)
+ (—tsinh ¢ + x cosh ¢) (—t'sinh ¢ + 2’ cosh ¢) + yy' + 22’
= — tt' cosh? ¢ — za’ sinh® ¢ + xt’ cosh ¢ sinh ¢ + t2’ cosh ¢ sinh ¢
+ tt' cosh? ¢ 4 za’ sinh? ¢ — xt’ cosh ¢ sinh ¢ — ¢tz cosh ¢ sinh ¢ + yy’ + 22’
= —tt’ (cosh2 ¢ — sinh? ¢) + a2’ (cosh2 ¢ — sinh? o) +yy + 27
= —tt' +ax’ +yy + 22
=Q (X, X').

Then L € O (3,1). Since det (L) = cosh® ¢ —sinh® ¢ = 1, L € SO (3,1).

With the same way wee can prove that Lorentz transforms mixing up ¢ and y coordinates or ¢ and z
coordinates belong to SO (3,1).

Exercise 2

The linear maps P : (t,z,y,2) — (t,—x,—y,—z) and T : (¢,2,y,2) — (—t,x,y,2) can be represented by
the matrices diag (1, —1,—1,—1) and diag (—1,1, 1, 1) respectively, so det (P) = det (T") = —1.
Therefore T, P ¢ SO (3,1)

Let X = (z,y,2,t), X' = (2,9, 2,t') € R

Q(PX, PX') = —tt' + (—x) (=2') + (=y) (=) + (=2) (=)
=—tt' +ax’ +yy + 22
= Q (X’ X/) s

and
Q(TX,TX') =~ (=t) (—t') + 2’ +yy' + 22’

= —tt' +ax’ +yy + 22
=Q(X,X').
Then T, P € O (3,1). Tt follows that PT € O (3,1) . Since det (PT) = det (P)det(T) =1, PT € SO (3,1).



Exercise 3

1. The "restriction” of the determinant, det : GL (n,R) — R* is a group homomorphism with the
multiplication. Therefore SL (n,R) is a subgroup since SL (n, R) = det ™" (1) = ker (det).

2. We denote @ the bilinear form associated to O (p,q). Let A, B € O (p,q) and X, X' € R*.

Q(ABX,ABX') = Q(BX,BX') = Q (X, X'),

and
Q(X,X)=Q (BB 'X,BB'X')=Q (B'X,B'X).

Therefore AB, B~! € O (p, q). It follows that O (p, q) is a subgroup of GL (n,R).
Since SO (p,q) = O (p,q) NSL (n,R), SO (p, q) is also a subgroup of GL (n,R).

The other proofs are similar.

Exercise 4

1. The set of matrices M (n,R) has a natural structure of manifold isomorphic to R™*. The determinant
det : M (n,R) — R is a smooth map and GL (n,R) = det™ (R\ {0}), therefore GL (n,R) is an
open subset of M (n,R). It follows that GL (n,R) is a sub-manifold of M (n,R) of dimension n?.
Multiplication and inverse of matrices in GL (n, R) are smooth since they are polynomial and fractional
function of the components. Thus GL (n,R) is a Lie group.

2

By analogous reasoning GL (n,C) is a complex (resp. real) Lie group of complex dimension n* (resp.

real dimension 2n2 (C"° = R2%%) ),

2. Here we will prove that the determinant is a submersion on GL (n,R). Let X € GL (n,R), by expandin-
galong the i*" column we have
detX = > (—=1)""* Xy | X[
k

where | XF| is the determinant of the (i, k) minor of X. Then

(9detX i+ 7 1
=(-D"7|Xx7
ox,, U
(=17 |1X]|
= detX ank
€ ( detX
— -1
=detX (X )ji
Thus
-1
d (det) :ZdetX (X71),,dXy
)
=detX Y (X7'), dXy

0]



Therefore, for B € TxGL (n,R) = M (n,R),

d(det) (B) =detX | > (X7') dX; | (B)

i.J

=detX Y (X)), By
5]

=detX tr (X 'B)

where {7 (X_lB) is the trace of X 1 B. Now since d (
d (det) y # 0 if there exists B € M (n,R) suth that d (

et)y : M (n,R) — R is a linear map,
et)y (B) # 0. Let chose B = X, we have

d
d
d(det) (B) = detX tr (X 'X) =detX tr(l,) = (detX) n #0.

Therefore d (det) never vanishes for all X € GL(n,R). Then the detrminant is a submersion on

GL (n,R).

. The determinant is a submersion on GL (n,R), so SL (n, R) = det™! (1) is a submanifold of GL (n, R) of
dimension n? — 1. Thus is a Lie subgroup of GL (n,R).

By analogous reasoning SL (n,C) is a complex Lie group of complex dimension n? — 1 and then a real

Lie group of real dimension 2 (n? — 1).

. Let J = diag (I, —1I,) be the canonical representative of the quadratique form of O (p, q)

A€ O(p,q) ifandonlyif ‘"AJA = J.

Let consider the map
M (n,R) — M (n,R)

At AJA

Since t (*fAJA) =t AJA, we can reduce this map to a map

G : M (n,R) — Sym (n,R)
At AJA

Where Sym (n,R) is the space of symetric n x n matrices over R. Sym (n,R) is a submanifold of
M (n,R) of dimension n (n + 1) /2 since it’s a subalgebra. The dimension is the number of entries for
the ”upper (or lower) triangle” of a n x n matrix. Since multiplication is smooth G is a smooth map
between two manifolds.

dG =d("AJA) =d("A) JA+" AJdA

A A and A —' A are linear maps so there differential are themselves. Thus for B € O (p,q),
dGp: X —' XJB+!' BJX and
dGp (X) =0 ifand only if 'XJB = -'BJX
*(‘BJX) = —'BJX.

Then kerdGp = {X € M (n,R) :* BJXantisymetric}. Let AS (n,R) be the space of antisymetric
n X n matrices over R. The map

kerdGp — AS (n,R)
X +—'BJX



is an isomorphism of vector space (with invert X +— (‘SBJ)71 Y). Since dim AS (n,R) =n(n—1) /2
(number of entries of the ”strictly upper triangle” of a n x n matrix), dim (ker dGg) = n(n — 1) /2 and
then

dim (Im (dGg)) =n* —n(n—1)/2=n(n+1)/2 = dim Sym (n,R).

Therefore dGp has maximal rank for all B € O (p,q). Thus O (p,q) = G~ (J) is a submanifold of
M (n,R) of dimension n (n —1) /2.
The fact that O (p, q) is a Lie group is immediat.
5. Let A € O (p,q), the identity AJA = J implies det (A)> = 1. Therefore det (A) = £1. Then we have
a continuous map
o (pa q) - {1’ _1}
A det(A)’

thus SO (p,q) is an open set in O (p, ¢q) since it’s the preimage of the open set {1} under this map.
Therefore SO (p,q) is a submanifold of O (p,q) of the same dimension. It follows that it’s a Lie
subgroup.

6. Using the fact that
Un)={AeM@n,C): A*A=1T1},

SU(n)={Ae€U(n):detA=1}

and by the same process as for O (p,q) and SO (p, q), we can prove that SU (n) and U (n) are real Lie
groups.

Exercise 5

Let Gg be the identity component of the Lie group G and e its identity element. Gy is a sub-manifold since
connected components of a manifold are always sub-manifolds. The map

Go X Go — G
(g,h) — gh™!

is continuous since the group multiplication and the inverse are continuous. The image of a connected set
by a continuous map is a connected set so GoG|, !is connected. Gy C GGy ! since e € Gy, therefore
Go = GoGy ! because Gy is a connected component. Thus Gy is a group. Multiplication and inverse in Gy
are still smooth, then Gy is a Lie group.

Exercise 6

1. Let A € O (3). The characteristic polynomial of A has degree 3, so A has at least one real eigenvalue.
Let X be a real eigenvalue of A with eigenvector z, the fact that

< Az, Az >=< Az, \x >= N <z,x >=< 1z, >

forces A? = 1, therefore A = +1. Putting A into a normal form in an appropriate (real) basis (v1, v2, v3)
gives the identity or matrices of the form Diag (1,—1,—1), Diag(—1,1,1), or

10 0 -1 0 0
0 Relp] —Im[p] |, 0 Rel[p] —Im[d] [,
0 Imu] Rely] 0 Im[y] Rely]



where p is a complex eigenvalue of A. The identity *AA = I implies detA? = 1, then detA = +1 and
Re [p)? + Tm [u]* = 1.

We can then reduce all this case to

1 0 0 -1 0 0
0 cosf —sind and 0 cosf —sinf |, f eR.
0 sinf cos@ 0 sinf cosf

The former is the rotation about the axis of the vector v; and the later is the composition of
Diag (—1,1, 1), the reflexion throught the plane generated by the vectors v, vs and a rotation like in
the former case.

2. For 0 € R let denote
1 0 0

A@)=1| 0 cosf —sind
0 sinf cosf

From 1., the A (0)’s are the elements of O (3) with determinant 1. Therefore SO (3) is the collection
of all these matrices. For 6 fixed, let consider the map

v:10,1] — SO (3)
t— A(t0)

~ is continuous with ~ (0) = I3 and (1) = A (#). Therefore SO (3) is path connected then connected.
Since we have the disjoint union

O (3) =50 (3)det™* (—1),

SO (3) is the identity component of O (3).

Exercise 7

The Lorentz group preserves the value of the expression 2 — x? —y? — 22

of SO (3,1) on the hyperboloid H of equation

, 80 we have a natural smooth action

22—y —22=1.
This action can be defined by:
F:S0(3,1)xH — H
(9, X) — gX

1. Let suppose that there exists a continuous path «y (¢) from the identity to the element PT in SO (3,1).
Let denote xzy = (1,0,0,0), the map ~y (¢) - 2o is then a continuous path in H from (1,0,0,0) to
(—=1,0,0,0), two points in the two disjoint components of H, which is impossible. Therefore there is
no path from the identity to the element PT in SO (3,1).

2. Let U = {(t,x,y,z) € H : t > 0}, the connected component of H with ¢ > 0.

The action of the Lorentz group on H is continuous, Id-U = U and U is a connected component.
Therefore we have an induced action
SO (3,1)xU — U
(9, X) — gX



of the identity component on U. We are going to show that this action is transitive.
Let z9 = (1,0,0,0), the stabilizer of zy by the action of SO (3,1) is

Stab (x0) = {g € SO (3,1) : g - g = o}

Let g € Stab (z9), the identity ¢ - £o = 2o implies g11 = 1, g21 = ¢g31 = ga1 = 0 and by using transpose
we get g12 = g13 = g14 = 0. Then
(10
g= 0 A .

Since g € SOy (3,1), A must preserve the Euclidean scalar product. Therefore

10
Stab (xo) = {< 0 A ) :Ae SO 3)}
and Stab (z9) C SOp (3,1).
Let y € U. Since elements of SO (3) are composition of rotations about some axis, we can find an
element of Stab (zp) which map y to an element a of the hyperbol of equation

2 —a22 =1, x3=1a4=0.

We have a = (cosh ¢, sinh ¢,0,0) (z1 > 0) for some ¢ € R. Then the transformation

A cosh ¢ —sinh ¢
LD1ag<< —sinh¢ cosh¢ )’1’1>

map a to (1,0,0,0). We can check that L belongs to SOy (3,1). Therefore there exists g € SOq (3,1)
such that ¢ -y = (1,0,0,0). Thus SOy (3,1) act transitively on U.

Let denote G := SO (3,1) and Go = SOy (3,1). Let g € G,
e If g-xg € U, then there exists ¢’ € G such that ¢’g - xg = g because Gy act transitively on U.
Stab (xo) C Gy, therefore ¢g'g € Gy and then g € G.
o If g-xog ¢ U then PTgxy € U and by the above result PT'g € Gy, thus g € (PT)_1 Gy = PTGy.
Then we have either g € Gy or g € PT'Gq. It follows that G = Gy U PT'Gy. Since translations are

continuous, PTGy is connected. Therefore SO (3,1) has two connected components, SOq (3,1) and
PTSO,(3,1) .



