Exercise 69

Solomon

May 3, 2010

Define the Levi-Civita symbol by

$$
\epsilon_{i_{1}, \ldots, i_{n}}=\left\{\begin{array}{lc}
\operatorname{sign}\left(i_{1}, \ldots, i_{n}\right) & \text { all } i_{j} \text { distinct } \\
0 & \text { otherwise }
\end{array}\right.
$$

or

$$
\epsilon_{i_{1}, \ldots, i_{p}}= \begin{cases}+1 & \text { if }\left(i_{1}, \ldots, i_{p}\right) \text { is an even permutation of }(1, \ldots, n) \\ -1 & \text { if }\left(i_{1}, \ldots, i_{p}\right) \text { is an odd permutation of }(1, \ldots, n) \\ 0 & \text { otherwise }\end{cases}
$$

We have

$$
\omega=\frac{1}{p!} \omega_{i_{1} \cdots i_{p}} e^{i_{1}} \wedge \cdots \wedge e^{i_{p}}
$$

Taking the dual of both sides, we obtain:

$$
\begin{aligned}
\star \omega & =\frac{1}{p!} \omega_{i_{1} \cdots i_{p}} \star\left(e^{i_{1}} \wedge \cdots \wedge e^{i_{p}}\right) \\
& =\frac{1}{p!} \operatorname{sign}\left(i_{1}, \ldots, i_{n}\right) \epsilon\left(i_{1}\right) \cdots \epsilon\left(i_{p}\right) \omega_{i_{1} \cdots i_{p}} e^{j_{1}} \wedge \cdots \wedge e^{j_{n-p}} \\
& =\frac{1}{p!(n-p)!} \epsilon^{i_{1} \cdots i_{p}}{ }_{j_{1} \cdots j_{n-p}} \omega_{i_{1} \cdots i_{p}} e^{j_{1}} \wedge \cdots \wedge e^{j_{n-p}} \\
& =\frac{1}{(n-p)!} \star(\omega)_{j_{1} \cdots j_{n-p}} e^{j_{1}} \wedge \cdots \wedge e^{j_{n-p}}
\end{aligned}
$$

where, $\star(\omega)_{j_{1} \cdots j_{n-p}}=\frac{1}{p!} \epsilon^{i_{1} \cdots i_{p}}{ }_{j_{1} \cdots j_{n-p}} \omega_{i_{1} \cdots i_{p}}$ as required.
Notice that we have used the linear property of Hodge star operator and the sign $\left(i_{1}, \ldots, i_{n}\right) \epsilon\left(i_{1}\right) \cdots \epsilon\left(i_{p}\right)$ is being replaced by the Levi-Civita symbol $\epsilon^{i_{1} \cdots i_{p}}{ }_{j_{1} \cdots j_{n-p}}$, where, $j_{1}<, \ldots,<j_{n-p}$ is the complement of $i_{1}<, \ldots,<i_{p}$ in the set $\{1, \ldots, n\}$. The $(n-p)$! takes care of double counting due to the antisymmetric permutation symbol.

