16. By applying the definitions, we see that, for all $f \in C^{\infty}(N)$, we have

$$
\phi_{*}\left(\gamma^{\prime}(t)\right)(f)=\gamma^{\prime}(t)(f \circ \phi)=\frac{d}{d t} f(\phi(\gamma(t)))=\frac{d}{d t} f(\phi \circ \gamma(t))=(\phi \circ \gamma)^{\prime}(t)(f)
$$

17. For $f, g \in C^{\infty}(N)$ and $\alpha \in \mathbb{R}$, we have, by linearity of $v \in T_{p} M$, that

$$
\left(\phi_{*} v\right)(f+\alpha g)=v((f+\alpha g) \circ \phi)=v(f \circ \phi)+\alpha v(g \circ \phi)=\left(\phi_{*} v\right) f+\alpha\left(\phi_{*} v\right)(g)
$$

18. For $v \in \operatorname{Vect}(M)$ and $\phi: M \rightarrow N$ a diffeomorphism, we may define $\phi_{*} v \in \operatorname{Vect}(N)$ as follows: For $q \in N$ and $f \in C^{\infty}(N)$, define

$$
\left(\phi_{*} v\right)(f)(q)=v(f \circ \phi)\left(\phi^{-1}(q)\right) \quad \text { i.e. } \quad\left(\phi_{*} v\right)_{\phi(p)}(f):=v_{p}\left(\phi^{*} f\right)
$$

(where $f \in C^{\infty}(N)$ and $v_{p}(g):=v(g)(p)$, etc.) To show that $\phi_{*} v \in \operatorname{Vect}(N)$, note that

$$
\left(\phi_{*} v\right)_{\phi(p)}(f g)=v_{p}((f g) \circ \phi)=f(\phi(p))\left(\phi_{*} v\right)(g)+\left(\phi_{*} v\right)(f) g(\phi(p))
$$

to obtain the Leibniz property. Linearity follows similarly.
19. Note that $\phi(x, y)=(x \cos \theta-y \sin \theta, x \sin \theta+y \cos \theta)$, and so

$$
\begin{aligned}
\left(\left(\phi_{*} \partial_{x}\right) f,\left(\phi_{*} \partial_{y}\right) f\right) & =\left.\left(\partial_{x}(f \circ \phi), \partial_{y}(f \circ \phi)\right)\right|_{\phi(x, y)} \\
& =\left.D(f \circ \phi)\right|_{\phi(x, y)} \\
& =\left.\left.D f\right|_{\phi(x, y)} D \phi\right|_{(x, y)} \\
& =\left.\left(\partial_{x} f, \partial_{y} f\right)\right|_{\phi(x, y)}\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right) \\
& =\left(\cos \theta \partial_{x} f+\sin \theta \partial_{y} f,-\sin \theta \partial_{x} f+\cos \theta \partial_{y} f\right)
\end{aligned}
$$

where D denotes the derivative as linear operator, given by the Jacobian matrix.
20. If $\gamma: \mathbb{R} \rightarrow \mathbb{R}^{2}: t \mapsto(x(t), y(t))$ is an integral curve, we want that $\gamma^{\prime}(t)=x(t)^{2} \partial x+y(t) \partial_{y}$, i.e. that

$$
\partial_{x} f \frac{d x}{d t}+\partial_{y} f \frac{d y}{d t}=\frac{d}{d t} f(x(t), y(t))=\gamma^{\prime}(t)(f)=x(t)^{2} \partial_{x} f+y(t) \partial_{y} f
$$

for all $f \in C^{\infty}\left(\mathbb{R}^{2}\right)$. So e

$$
\frac{d x}{d t}=x(t)^{2} \quad \frac{d y}{d t}=y(t)
$$

and hence either $x(t)=0$ or

$$
x(t)=\frac{1}{A-t} \quad y(t)=B e^{t}
$$

for constants A, B. These blow up at $t=A$.
21. The semigroup property is intuitively clear from the "water" analogy in BM: If a water molecule is at point p at time zero, it will be at $\phi_{t}(p)$ at time t. s units of time later, i.e. at time $t+s$ the point particle will be at $\phi_{s}\left(\phi_{t}(p)\right)$ - this assumes that the vector field is constant over time. Doing this in one step, the particle will also be at $\phi_{t+s}(p)$ at time $t+s$.
Actually, though intuitively clear, I didn't find the semigroup property all that easy to prove (semi)-formally, partly because BM aren't very precise, and partly because there's probably an easier way I am not seeing. Anyway,
(i) If v is a vector field on a manifold M, there is at a unique integral curve $\gamma_{p}(t)$ through each point $p \in M$ such that $\gamma_{p}(0)=p$ This is implied by a statements in BM ("Let $\phi_{t}(p)$ be the integral curve of v through $p \in M$ "), and "Show that ϕ_{0} is the identity map", but presumably needs some Lipschitz-like conditions, as for ODE's.
(ii) Certainly the integral curve as function is not unique, but nor is it sufficient to simply specify the range of an integral curve as a subset of M. The speed at which the curve is traversed is important, but the starting point is not. To be more precise, note that if $\gamma(t)$ is an integral curve through a point p, and $s \in \mathbb{R}$ is fixed, then $\bar{\gamma}(t):=\gamma(t+s)$ is also an integral curve through p (but starting at a different point). Indeed, if $f \in C^{\infty}(M)$, and $h_{s}(t):=t+s$, then by the chain rule

$$
(f \circ \bar{\gamma})^{\prime}(t)=\left(f \circ \gamma \circ h_{s}\right)^{\prime}(t)=(f \circ \gamma)^{\prime}\left(h_{s}(t)\right) h_{s}^{\prime}(t)=(f \circ \gamma)^{\prime}(t+s)
$$

Hence $\bar{\gamma}^{\prime}(t)=\gamma^{\prime}(t)$ as tangent vectors in $T_{\gamma(t+s)} M$, and hence $\bar{\gamma}$ is also an integral curve through p. Yet $\bar{\gamma} \neq \gamma$ as curves.
(iii) For $p \in M$, let $\psi_{p}(t):=\phi_{t}(p)$, where $\left\{\phi_{t}: M \rightarrow M\right\}$ is the flow generated by a given vector field v, with $\phi_{0}=\mathrm{id}_{M}$. Then by the previous bullet point, for fixed s, we have that $\psi_{p}(t+s)$ and $\psi_{p}(t)$ are the "same" integral curve, namely the integral curve through p. However $\psi_{p}(t+s)$ starts at the point $\psi_{p}(s)$ at 0 , as does the integral curve $\psi_{\psi_{p}(s)}(t)$. By uniqueness, it follows that $\psi_{p}(t+s)=\psi_{\psi_{s}(p)}(t)$. Going back from ψ 's to ϕ 's, we see that

$$
\phi_{t+s}(p)=\psi_{p}(t+s)=\psi_{\psi_{s}(p)}(t)=\phi_{t}\left(\phi_{s}(p)\right)
$$

i.e. $\phi_{t+s}=\phi_{t} \circ \phi_{s}$.
22. $v=\partial_{r}, w=\frac{1}{r} \partial_{\theta}$, so

$$
[v, w]=\partial_{r}\left(\frac{1}{r} \partial_{\theta}\right)-\frac{1}{r} \partial_{\theta} \partial_{r}=-\frac{1}{r^{2}} \partial_{\theta}=-\frac{w}{r}=-\frac{y \partial_{x}-x \partial_{y}}{x^{2}+y^{2}}
$$

23.

$$
v w(f)(p)=\left.\frac{d}{d t} w(f)\left(\phi_{t}(p)\right)\right|_{t=0}=\left.\frac{d}{d t} \frac{d}{d s} f\left(\psi_{s}\left(\phi_{t}(p)\right)\right)\right|_{t, s=0}
$$

24. 1), 2) are easy.

The Jacobi identity can be proved as follows: Multiplying out the lefthand side $[u,[v, w]]+$ $[v,[w, u]]+[w,[u, v]]$ we will obtain 12 terms. Each such term can be regarded as a permutation of $u v w$ - of which there are $3!=6$ in total - and each term will occur exactly twice, but with opposite signs. Thus $+a b c$ will occur in the expansion of $[a,[b, c]]$, and $-a b c$ in that of $[c,[a, b]]$. But this "explanation" is more complicated than simply multiplying the whole thing out:

$$
\begin{aligned}
& {[u,[v, w]]=u v w-u w v-v w u+w v u} \\
& {[v,[w, u]]=v w u-v u w-w u v+u w v} \\
& {[w,[u, v]]=w u v-w v u-u v w+v u w}
\end{aligned}
$$

Adding, we see that all terms cancel.
25. For $\omega, \mu \in \Omega^{1}(M), v, w \in \operatorname{Vect}(M)$ and $f, g \in C^{\infty}(M)$, we have $(\omega+\mu)(v+w)=\omega(v+w)+\mu(v+w)=\omega(v)+\omega(w)+\mu(v)+\mu(w)=(\omega+\mu)(v)+(\omega+\mu)(w)$
and

$$
(\omega+\mu)(g v)=\omega(g v)+\mu(g v)=g \omega(v)+g \mu(v)=g(\omega+\mu)(v)
$$

Also

$$
(f \omega)(v+w)=f(\omega(v+w))=f(\omega(v)+\omega(w))=(f \omega)(v)+(f \omega)(w)
$$

and

$$
(f \omega)(g v)=f(\omega(g v))=f(g \omega(v))=g(f \omega)(v)
$$

26. We have

$$
\begin{aligned}
f(\omega+\mu)(v) & =f(\omega(v)+\mu(v))=f \omega(v)+f \mu(v) \\
(f+g)(\omega)(v) & =f \omega(v)+g \omega(v) \\
(f g)(\omega(v) & =f(g \omega(v)) \\
1 \omega(v) & =\omega(v)
\end{aligned}
$$

27.

$$
\begin{aligned}
d(f+g)(v) & =v(f+g)=v(f)+v(g)=d f(v)+d g(v) \\
d(\alpha f)(v) & =v(\alpha f)=\alpha v(f)=\alpha d f(v) \\
(f+g) d h(v) & =(f+g) v(h)=f v(h)+g v(h)=f d h(v)+g d h(v) \\
d(f g)(v) & =v(f g)=g v(f)+f v(g)=g d f(v)+f d g(v)
\end{aligned}
$$

28. If $v \in \operatorname{Vect}\left(\mathbb{R}^{n}\right)$, then $v=v^{i}(x) \partial_{i}$ for some $v^{i} \in C^{\infty}\left(\mathbb{R}^{n}\right)$. Note that we have $d x^{j}(v)=$ $v^{i}(x) \partial_{i} x^{j}=v^{j}(x)$ so that

$$
d f(v)=v(f)=v^{i}(x) \partial_{i} f=\partial_{i} f d x^{i}(v)
$$

29. Suppose that $\omega:=\omega_{\mu} d x^{\mu}=0$, and define $v:=\omega^{\nu} \partial_{\nu}$, where $\omega^{\nu}:=\omega_{\nu}$ (i.e. equal as functions in $\left.C^{\infty}\left(\mathbb{R}^{n}\right)\right)$. Then

$$
0=\omega(v)=\omega_{\mu} d x^{\mu}\left(\omega^{\nu} \partial_{\nu}\right)=\omega_{\mu} \omega_{\nu} \delta_{\nu}^{\mu}=\omega_{\mu} \omega^{\mu}=\sum_{\mu=1}^{n}\left(\omega_{\mu}\right)^{2}
$$

30. I can't do this (yet) without coordinates, i.e. without assuming every 1-form is locally of the form $\omega=\omega_{\mu} d x^{\mu}$. Assuming that, it is easy.
31. $\left(\mathrm{id}^{*} \omega\right)(v)=\omega(\operatorname{id}(v))=\omega(v)$.
$(g f)^{*}(\omega)(v)=\omega\left(g(f(v))=\left(g^{*} \omega\right)(f(v))=\left(f^{*} g^{*} \omega\right)(v)\right.$.
32. For $\phi: M \rightarrow N$, we put $\phi^{*}: \Omega^{1}(N) \rightarrow \Omega^{1}(M)$ by $\phi^{*}(\omega)(v)(p)=\omega\left(\phi_{*}(v)\right)(\phi(p))$. Let $f \in C^{\infty}(M), v \in \operatorname{Vec}(M)$, and put $q:=\phi(p)$. Note that $\phi_{*}(f v)_{p}(g)=(f v)_{p}(g \circ \phi)=$ $f(p) v_{p}(g \circ \phi)=\left(f \phi_{*}(v)\right)_{p}(g)$, so that $\phi_{*}(f v)=f \phi_{*}(v)$. Hence

$$
\phi^{*}(\omega)_{p}(f v)_{p}=\omega_{q}\left(\phi_{*}(f v)_{p}\right)=\omega_{q}\left(f \phi_{*}(v)_{p}\right)=f(p) \omega_{q}\left(\phi_{*}(v)_{p}\right)=\left(f \phi^{*}(\omega)\right)_{p}\left(v_{p}\right)
$$

so that indeed $\phi^{*}(\omega)(f v)=f \phi^{*}(\omega)(v)$.
33. Note first that $d x=d \mathrm{id}_{\mathbb{R}}$. Hence

$$
\phi^{*}(d x)_{t}(v)=d x_{\mathrm{id}(t)}\left(\phi_{*}(v)\right)=\phi_{*}(v)_{t}(\mathrm{id})=v_{t}(\mathrm{id} \circ \phi)=v_{t}(\phi)=d \phi_{t}(v)
$$

i.e. $\phi^{*}(d x)=d \phi$. But clearly $d \phi_{t}=\frac{\partial \phi}{\partial t} d t=\cos t d t$.
34. $\phi(x, y):=\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)\binom{x}{y}=(x \cos \theta-y \sin \theta, x \sin \theta+y \cos \theta)$, so with π_{1} denoting the projection onto the first component, we see that

$$
\phi^{*}(d x)=\phi^{*}\left(d \pi_{1}\right)=d\left(\phi^{*} \pi_{1}\right)=d\left(\pi_{1} \circ \phi\right)=d(x \cos \theta-y \sin \theta)=\cos \theta d x-\sin \theta d y
$$

using linearity of d.
35. Let $\varphi: U \rightarrow \mathbb{R}^{n}$ be a chart. We are writing x^{μ} instead of $x^{\mu} \circ \varphi=\varphi^{*}\left(x^{\mu}\right), \partial_{\mu}$ instead of $\left(\varphi^{-1}\right)_{*}\left(\partial_{\mu}\right)$, and $d x^{\mu}$ instead of $\varphi^{*}\left(d x^{\mu}\right)$. We have to check that

$$
d\left(\phi^{*} x^{\mu}\right)=\varphi^{*}\left(d x^{\mu}\right)
$$

but we already know that.
36. By definition, $d x^{\lambda}\left(\partial_{\mu}\right)=\partial_{\mu}\left(x^{\lambda}\right)=\delta_{\mu} \lambda$. Thus if $d x^{\prime \nu}=S_{\mu}^{\nu} d x^{\mu}$, we see that $d x^{\prime \nu}\left(\partial_{\lambda}\right)=S_{\lambda}^{\nu}$. But $d x^{\prime \nu}\left(\partial_{\lambda}\right)=\partial_{\lambda} x^{\prime \nu}$ and hence $S_{\mu}^{\nu}=\frac{\partial x^{\prime \prime}}{\partial x^{\mu}}$. Then if $\omega_{\nu}^{\prime} d x^{\prime \nu}=\omega_{\mu} d x^{\mu}$, we see that

$$
\omega_{\nu}^{\prime} \frac{\partial x^{\prime \nu}}{\partial x^{\mu}} d x^{\mu}=\omega_{\mu} d x^{\mu}
$$

from which $\omega_{\mu}=\frac{\partial x^{\prime \nu}}{\partial x^{\mu}} \omega_{\nu}^{\prime}$. Now to obtain $\omega_{\nu}^{\prime}=\frac{\partial x^{\mu}}{\partial x^{\prime \nu}} \omega_{\mu}$ either interchange primed and non-primed coordinates and μ and ν, or else multiply both sides by $\frac{\partial x^{\lambda}}{\partial x^{\prime \nu}}$ (with summation convention), noting that $\frac{\partial x^{\lambda}}{\partial x^{\prime}} \frac{\partial x^{\prime \nu}}{\partial x^{\mu}}=\frac{\partial x^{\lambda}}{\partial x^{\mu}}=\delta_{\mu}^{\lambda}$.
37. On the left we have

$$
\phi^{*}\left(d x^{\prime \nu}\right)\left(\partial_{\lambda}\right)=d\left(\phi^{*} x^{\prime \nu}\right)\left(\partial_{\lambda}\right)=\partial_{\lambda}\left(\phi^{*} x^{\prime \nu}\right)=\text { sloppy } \frac{\partial x^{\prime \nu}}{\partial x^{\lambda}}
$$

and on the right we obtain the same:

$$
\frac{\partial x^{\prime \nu}}{\partial x^{\mu}} d x^{\mu}\left(\partial_{\lambda}\right)=\frac{\partial x^{\prime \nu}}{\partial x^{\mu}} \delta_{\lambda}^{\mu}=\frac{\partial x^{\prime \nu}}{\partial x^{\lambda}}
$$

