
16. By applying the definitions, we see that, for all f ∈ C∞(N), we have

φ∗(γ′(t))(f) = γ′(t)(f ◦ φ) =
d

dt
f(φ(γ(t))) =

d

dt
f(φ ◦ γ(t)) = (φ ◦ γ)′(t)(f)

17. For f, g ∈ C∞(N) and α ∈ R, we have, by linearity of v ∈ TpM , that

(φ∗v)(f + αg) = v((f + αg) ◦ φ) = v(f ◦ φ) + αv(g ◦ φ) = (φ∗v)f + α(φ∗v)(g)

18. For v ∈ Vect(M) and φ : M → N a diffeomorphism, we may define φ∗v ∈ Vect(N) as
follows: For q ∈ N and f ∈ C∞(N), define

(φ∗v)(f)(q) = v(f ◦ φ)(φ−1(q)) i.e. (φ∗v)φ(p)(f) := vp(φ∗f)

(where f ∈ C∞(N) and vp(g) := v(g)(p), etc.) To show that φ∗v ∈ Vect(N), note that

(φ∗v)φ(p)(fg) = vp((fg) ◦ φ) = f(φ(p))(φ∗v)(g) + (φ∗v)(f)g(φ(p))

to obtain the Leibniz property. Linearity follows similarly.

19. Note that φ(x, y) = (x cos θ − y sin θ, x sin θ + y cos θ), and so

((φ∗∂x)f, (φ∗∂y)f) = (∂x(f ◦ φ), ∂y(f ◦ φ))|φ(x,y)

= D(f ◦ φ)|φ(x,y)

= Df |φ(x,y)Dφ|(x,y)

= (∂xf, ∂yf)|φ(x,y)

(
cos θ − sin θ
sin θ cos θ

)
= (cos θ∂xf + sin θ∂yf,− sin θ∂xf + cos θ∂yf)

where D denotes the derivative as linear operator, given by the Jacobian matrix.

20. If γ : R→ R2 : t 7→ (x(t), y(t)) is an integral curve, we want that γ′(t) = x(t)2∂x+ y(t)∂y,
i.e. that

∂xf
dx

dt
+ ∂yf

dy

dt
=

d

dt
f(x(t), y(t)) = γ′(t)(f) = x(t)2∂xf + y(t)∂yf

for all f ∈ C∞(R2). So e
dx

dt
= x(t)2

dy

dt
= y(t)

and hence either x(t) = 0 or

x(t) =
1

A− t
y(t) = Bet

for constants A,B. These blow up at t = A.

21. The semigroup property is intuitively clear from the “water” analogy in BM: If a water
molecule is at point p at time zero, it will be at φt(p) at time t. s units of time later, i.e.
at time t + s the point particle will be at φs(φt(p)) — this assumes that the vector field
is constant over time. Doing this in one step, the particle will also be at φt+s(p) at time
t+ s.

Actually, though intuitively clear, I didn’t find the semigroup property all that easy to
prove (semi)–formally, partly because BM aren’t very precise, and partly because there’s
probably an easier way I am not seeing. Anyway,
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(i) If v is a vector field on a manifold M , there is at a unique integral curve γp(t) through
each point p ∈ M such that γp(0) = p This is implied by a statements in BM (“Let
φt(p) be the integral curve of v through p ∈ M”), and “Show that φ0 is the identity
map”, but presumably needs some Lipschitz–like conditions, as for ODE’s.

(ii) Certainly the integral curve as function is not unique, but nor is it sufficient to simply
specify the range of an integral curve as a subset of M . The speed at which the curve
is traversed is important, but the starting point is not. To be more precise, note that
if γ(t) is an integral curve through a point p, and s ∈ R is fixed, then γ̄(t) := γ(t+ s)
is also an integral curve through p (but starting at a different point). Indeed, if
f ∈ C∞(M), and hs(t) := t+ s, then by the chain rule

(f ◦ γ̄)′(t) = (f ◦ γ ◦ hs)′(t) = (f ◦ γ)′(hs(t))h′s(t) = (f ◦ γ)′(t+ s)

Hence γ̄′(t) = γ′(t) as tangent vectors in Tγ(t+s)M , and hence γ̄ is also an integral
curve through p. Yet γ̄ 6= γ as curves.

(iii) For p ∈M , let ψp(t) := φt(p), where {φt : M →M} is the flow generated by a given
vector field v, with φ0 = idM . Then by the previous bullet point, for fixed s, we have
that ψp(t + s) and ψp(t) are the “same” integral curve, namely the integral curve
through p. However ψp(t + s) starts at the point ψp(s) at 0, as does the integral
curve ψψp(s)(t). By uniqueness, it follows that ψp(t+s) = ψψs(p)(t). Going back from
ψ’s to φ’s, we see that

φt+s(p) = ψp(t+ s) = ψψs(p)(t) = φt(φs(p))

i.e. φt+s = φt ◦ φs.

22. v = ∂r, w = 1
r∂θ, so

[v, w] = ∂r(1
r∂θ)−

1
r∂θ∂r = − 1

r2
∂θ = −w

r
= −y∂x − x∂y

x2 + y2

23.
vw(f)(p) =

d

dt
w(f)(φt(p))

∣∣∣
t=0

=
d

dt

d

ds
f(ψs(φt(p)))

∣∣∣
t,s=0

24. 1), 2) are easy.
The Jacobi identity can be proved as follows: Multiplying out the lefthand side [u, [v, w]]+
[v, [w, u]] + [w, [u, v]] we will obtain 12 terms. Each such term can be regarded as a permu-
tation of uvw — of which there are 3!=6 in total — and each term will occur exactly twice,
but with opposite signs. Thus +abc will occur in the expansion of [a, [b, c]], and −abc in
that of [c, [a, b]]. But this “explanation” is more complicated than simply multiplying the
whole thing out:

[u, [v, w]] = uvw − uwv − vwu+ wvu

[v, [w, u]] = vwu− vuw − wuv + uwv

[w, [u, v]] = wuv − wvu− uvw + vuw

Adding, we see that all terms cancel.
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25. For ω, µ ∈ Ω1(M), v, w ∈ Vect(M) and f, g ∈ C∞(M), we have

(ω+µ)(v+w) = ω(v+w)+µ(v+w) = ω(v)+ω(w)+µ(v)+µ(w) = (ω+µ)(v)+(ω+µ)(w)

and
(ω + µ)(gv) = ω(gv) + µ(gv) = gω(v) + gµ(v) = g(ω + µ)(v)

Also
(fω)(v + w) = f(ω(v + w)) = f(ω(v) + ω(w)) = (fω)(v) + (fω)(w)

and
(fω)(gv) = f(ω(gv)) = f(gω(v)) = g(fω)(v)

26. We have
f(ω + µ)(v) = f(ω(v) + µ(v)) = fω(v) + fµ(v)

(f + g)(ω)(v) = fω(v) + gω(v)
(fg)(ω(v) = f(gω(v))

1ω(v) = ω(v)

27.
d(f + g)(v) = v(f + g) = v(f) + v(g) = df(v) + dg(v)
d(αf)(v) = v(αf) = αv(f) = αdf(v)

(f + g)dh(v) = (f + g)v(h) = fv(h) + gv(h) = f dh(v) + g dh(v)
d(fg)(v) = v(fg) = gv(f) + fv(g) = g df(v) + f dg(v)

28. If v ∈ Vect(Rn), then v = vi(x)∂i for some vi ∈ C∞(Rn). Note that we have dxj(v) =
vi(x)∂ixj = vj(x) so that

df(v) = v(f) = vi(x)∂if = ∂ifdx
i(v)

29. Suppose that ω := ωµ dxµ = 0, and define v := ων∂ν , where ων := ων (i.e. equal as
functions in C∞(Rn)). Then

0 = ω(v) = ωµ dx
µ(ων∂ν) = ωµωνδ

µ
ν = ωµω

µ =
n∑
µ=1

(ωµ)2

30. I can’t do this (yet) without coordinates, i.e. without assuming every 1-form is locally of
the form ω = ωµ dx

µ. Assuming that, it is easy.

31. (id∗ω)(v) = ω(id(v)) = ω(v).
(gf)∗(ω)(v) = ω(g(f(v)) = (g∗ω)(f(v)) = (f∗g∗ω)(v).

32. For φ : M → N , we put φ∗ : Ω1(N) → Ω1(M) by φ∗(ω)(v)(p) = ω(φ∗(v))(φ(p)). Let
f ∈ C∞(M), v ∈ Vec(M), and put q := φ(p). Note that φ∗(fv)p(g) = (fv)p(g ◦ φ) =
f(p)vp(g ◦ φ) = (fφ∗(v))p(g), so that φ∗(fv) = fφ∗(v). Hence

φ∗(ω)p(fv)p = ωq(φ∗(fv)p) = ωq(fφ∗(v)p) = f(p)ωq(φ∗(v)p) = (fφ∗(ω))p(vp)

so that indeed φ∗(ω)(fv) = fφ∗(ω)(v).
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33. Note first that dx = didR. Hence

φ∗(dx)t(v) = dxid(t)(φ∗(v)) = φ∗(v)t(id) = vt(id ◦ φ) = vt(φ) = dφt(v)

i.e. φ∗(dx) = dφ. But clearly dφt = ∂φ
∂t dt = cos t dt.

34. φ(x, y) :=
(

cos θ − sin θ
sin θ cos θ

)(
x
y

)
= (x cos θ − y sin θ, x sin θ + y cos θ), so with π1 denoting

the projection onto the first component, we see that

φ∗(dx) = φ∗(dπ1) = d(φ∗π1) = d(π1 ◦ φ) = d(x cos θ − y sin θ) = cos θ dx− sin θ dy

using linearity of d.

35. Let ϕ : U → Rn be a chart. We are writing xµ instead of xµ ◦ ϕ = ϕ∗(xµ), ∂µ instead of
(ϕ−1)∗(∂µ), and dxµ instead of ϕ∗(dxµ). We have to check that

d(φ∗xµ) = ϕ∗(dxµ)

but we already know that.

36. By definition, dxλ(∂µ) = ∂µ(xλ) = δµλ. Thus if dx′ν = Sνµ dx
µ, we see that dx′ν(∂λ) = Sνλ.

But dx′ν(∂λ) = ∂λx
′ν and hence Sνµ = ∂x′ν

∂xµ . Then if ω′ν dx
′ν = ωµ dx

µ, we see that

ω′ν
∂x′ν

∂xµ
dxµ = ωµ dx

µ

from which ωµ = ∂x′ν

∂xµ ω
′
ν . Now to obtain ω′ν = ∂xµ

∂x′ν ωµ either interchange primed and
non–primed coordinates and µ and ν, or else multiply both sides by ∂xλ

∂x′ν (with summation
convention), noting that ∂xλ

∂x′ν
∂x′ν

∂xµ = ∂xλ

∂xµ = δλµ.

37. On the left we have

φ∗(dx′ν)(∂λ) = d(φ∗x′ν)(∂λ) = ∂λ(φ∗x′ν) = sloppy
∂x′ν

∂xλ

and on the right we obtain the same:

∂x′ν

∂xµ
dxµ(∂λ) =

∂x′ν

∂xµ
δµλ =

∂x′ν

∂xλ
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