10.

$$v = w$$

$$\iff \forall f \in C^{\infty}(M) \ (v(f) = w(f))$$

$$\iff \forall f \in C^{\infty}(M) \ \forall p \in M \ (v(f)(p) = w(f)(p))$$

$$\iff \forall p \in M \ \forall f \in C^{\infty}(M) \ (v_p(f) = w_p(f))$$

$$\iff \forall p \in M \ (v_p = w_p)$$

11. For $p \in M$, define $ev_p : Vec(M) \to T_pM : v \mapsto v_p$. Then ev_p is clearly linear:

$$\operatorname{ev}_p(v + \alpha w)(f) = (v + \alpha w)(f)(p) = v(f)(p) + \alpha w(f)(p) = \operatorname{ev}_p(v)(f) + \alpha \operatorname{ev}_p(w)(f)$$

It is asserted on p. 28 of Baez and Muniain (without proof) that ev_p is surjective.

12. Note that

$$\gamma'(t)(f + \alpha g) = \frac{d}{dt}f(\gamma(t)) + \alpha \frac{d}{dt}g(\gamma(t)) = \gamma'(t)(f) + \alpha \gamma'(t)(g)$$

and that

$$\gamma'(t)(fg) = \frac{d}{dt}f(\gamma(t))g(\gamma(t)) = f(\gamma(t))\frac{dg(\gamma(t))}{dt} + \frac{df(\gamma(t))}{dt}g(\gamma(t)) = f(\gamma(t))\cdot\gamma'(t)(g) + \gamma'(t)(f)\cdot g(\gamma(t))$$

13. $\phi^* \operatorname{id}_{\mathbb{R}} = \operatorname{id} \circ \phi = \phi$.

14.

$$\phi^* \pi_1 \begin{pmatrix} x \\ y \end{pmatrix} = \pi_1 \circ \phi \begin{pmatrix} x \\ y \end{pmatrix} = (1 \ 0) \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = x \cos \theta - y \sin \theta$$

15. (a) For $f: M \to \mathbb{R}$ we have two definitions of smoothness: Say that f is S_1 iff $f \in C^{\infty}(M)$, i.e. iff $f \circ \varphi_{\alpha}^{-1} : V_{\alpha} \subseteq \mathbb{R}^n \to \mathbb{R}$ is smooth for all charts $\varphi_{\alpha} : U_{\alpha} \to V_{\alpha} \subseteq \mathbb{R}^n$ of M. Further, say that f is S_2 iff $f^*g \in C^{\infty}(M)$ for all $g \in C^{\infty}(\mathbb{R})$. We are required to show that f is S_1 iff it is S_2 . If $f: M \to \mathbb{R}$ is S_1 and $g \in C^{\infty}(\mathbb{R})$, then certainly the composition $g \circ (f \circ \varphi_{\alpha}^{-1}) : V_{\alpha} \subseteq \mathbb{R}^n \to \mathbb{R}$ is smooth for any chart $\varphi_{\alpha} : U_{\alpha} \to V_{\alpha}$, so $g \circ f$ is S_1 , i.e. $g \circ f \in C^{\infty}(M)$, and so $f^*g \in C^{\infty}(M)$. hence f is S_2

Conversely, if f is S_2 , then $f^* \operatorname{id}_{\mathbb{R}} \in C^{\infty}(M)$, so that $f \in C^{\infty}(M)$, i.e. f is S_1 .

(b) The two definitions of "smooth curve" are actually the same already. To make this explicit, say that $\gamma : \mathbb{R} \to M$ is S_3 if $f \circ \gamma : \mathbb{R} \to \mathbb{R}$ is smooth for any $f \in C^{\infty}(M)$, and define S_2 -smoothness as in (a). Now note that γ is S_2 iff $f \circ \gamma \in C^{\infty}(\mathbb{R})$ for all $f \in C^{\infty}(M)$, iff $\gamma^* f \in C^{\infty}(\mathbb{R})$ for all

Now note that γ is S_3 iff $f \circ \gamma \in C^{\infty}(\mathbb{R})$ for all $f \in C^{\infty}(M)$, iff $\gamma^* f \in C^{\infty}(\mathbb{R})$ for all $f \in C^{\infty}(M)$ iff γ is S_2 .