nLab
flux compactification

Context

String theory

Gravity

Contents

Idea

Flux compactifications are a variant of the Kaluza-Klein mechanism in physics.

One way of achieving moduli stabilization for KK-compactifications of string theory backgrounds is to consider higher gauge fields in the compact space. Their higher field strength/curvature forms parameterize mass terms for the compactification moduli and hence can, under suitable conditions, stabilize them.

References

General

A good survey of the story of flux compactifications in F-theory is in

See also

  • Barton Zwiebach, A first course in string theory
  • R. Bousso, J. Polchinski?, Quantization of four-form fluxes and dynamical neutralization of the cosmological constant, JHEP 06, 006 (2000) hep-th/0004134
  • M.R. Douglas, S. Kachru, Flux compactification, Rev. Mod. Phys. 79 (2007) 733–796, arXiv:hep-th/0610102
  • Frederik Denef, Michael R. Douglas?, Shamit Kachru, Physics of string flux compactifications, Ann.Rev.Nucl.Part.Sci.57:119-144,2007, hep-th/0701050, doi
  • Frederik Denef, Introduction to flux compactifications, lecture at Summer School on particle physics, cosmology and strings - Perimeter Institute 2007, video
  • R. Blumenhagen, B. K¨ors, D. Lüst, S. Stieberger, Four-dimensional string compactifications with D-Branes, orientifolds and fluxes, Phys. Rept. 445 (2007) 1–193, hepth/0610327.
  • Mariana Graña, Flux compactifications in string theory: a comprehensive review, hep-th/0509003

Non-geometric flux compactifications

  • R. Blumenhagen, A. Deser, E. Plauschinn, F. Rennecke, Bianchi identities for non-geometric fluxes: from quasi-Poisson structures to Courant algebroids, arXiv:1205.1522
  • D. Mylonas, P. Schupp, R. J. Szabo, Membrane sigma-models and quantization of non-geometric flux backgrounds, arxiv/1207.0926

Revised on April 21, 2014 02:05:28 by Urs Schreiber (89.204.138.200)