For $C$ any 2-category and $c \in C$ any object of it, the category $Aut_C(c) \subset Hom_C(c,c)$ of auto-equivalences of $c$ and invertible 2-morphisms between these is naturally a 2-group, whose group product comes from the horizontal composition in $C$.

For instance if $C = Grp_2 \subset Grpd$ is the 2-category of group obtained by regarding groups as one-object groupoids, then for $H \in Grp$ a group, its automorphism 2-group obtained this way is the strict 2-group