
I. WHAT IS FLAVOR?

The term “flavors” is used, in the jargon of particle physics, to describe several copies

of the same gauge representation, namely several fields that are assigned the same quantum

charges. Within the Standard Model, when thinking of its unbroken SU(3)C×U(1)EM gauge

group, there are four different types of particles, each coming in three flavors:

• Up-type quarks in the (3)+2/3 representation: u, c, t;

• Down-type quarks in the (3)−1/3 representation: d, s, b;

• Charged leptons in the (1)−1 representation: e, µ, τ ;

• Neutrinos in the (1)0 representation: ν1, ν2, ν3.

The term “flavor physics” refers to interactions that distinguish between flavors. By

definition, gauge interactions, namely interactions that are related to unbroken symmetries

and mediated therefore by massless gauge bosons, do not distinguish among the flavors and

do not constitute part of flavor physics. Within the Standard Model, flavor-physics refers

to the weak and Yukawa interactions.

The term “flavor parameters” refers to parameters that carry flavor indices. Within

the Standard Model, these are the nine masses of the charged fermions and the four “mixing

parameters” (three angles and one phase) that describe the interactions of the charged weak-

force carriers (W±) with quark-antiquark pairs. If one augments the Standard Model with

Majorana mass terms for the neutrinos, one should add to the list three neutrino masses

and six mixing parameters (three angles and three phases) for the W± interactions with

lepton-antilepton pairs.

The term “flavor universal” refers to interactions with couplings (or to parameters) that

are proportional to the unit matrix in flavor space. Thus, the strong and electromagnetic

interactions are flavor-universal.1 An alternative term for “flavor-universal” is “flavor-

1 In the interaction basis, the weak interactions are also flavor-universal, and one can identify the source of

all flavor physics in the Yukawa interactions among the gauge-interaction eigenstates.
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blind”.

The term “flavor diagonal” refers to interactions with couplings (or to parameters) that

are diagonal, but not necessarily universal, in the flavor space. Within the Standard Model,

the Yukawa interactions of the Higgs particle are flavor diagonal in the mass basis.

The term “flavor changing” refers to processes where the initial and final flavor-numbers

(that is, the number of particles of a certain flavor minus the number of anti-particles of

the same flavor) are different. In “flavor changing charged current” processes, both up-

type and down-type flavors, and/or both charged lepton and neutrino flavors are involved.

Examples are (i) muon decay via µ → eν̄iνj, and (ii) K− → µ−ν̄j (which corresponds, at

the quark level, to sū → µ−ν̄j). Within the Standard Model, these processes are mediated

by the W -bosons and occur at tree level. In “flavor changing neutral current” (FCNC)

processes, either up-type or down-type flavors but not both, and/or either charged lepton or

neutrino flavors but not both, are involved. Example are (i) muon decay via µ→ eγ and (ii)

KL → µ+µ− (which corresponds, at the quark level, to sd̄ → µ+µ−). Within the Standard

Model, these processes do not occur at tree level, and are often highly suppressed.

Another useful term is “flavor violation”. We will explain it later in these lectures.

II. WHY IS FLAVOR PHYSICS INTERESTING?

• Flavor physics can discover new physics or probe it before it is directly observed in

experiments. Here are some examples from the past:

– The smallness of Γ(KL→µ+µ−)
Γ(K+→µ+ν)

led to predicting a fourth (the charm) quark;

– The size of ∆mK led to a successful prediction of the charm mass;

– The size of ∆mB led to a successful prediction of the top mass;

– The measurement of εK led to predicting the third generation.

– The measurement of neutrino flavor transitions led to the discovery of neutrino

masses.

• CP violation is closely related to flavor physics. Within the Standard Model, there is

a single CP violating parameter, the Kobayashi-Maskawa phase δKM [1]. Baryogenesis

tells us, however, that there must exist new sources of CP violation. Measurements of

CP violation in flavor changing processes might provide evidence for such sources.
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• The fine-tuning problem of the Higgs mass, and the puzzle of the dark matter imply

that there exists new physics at, or below, the TeV scale. If such new physics had a

generic flavor structure, it would contribute to flavor changing neutral current (FCNC)

processes orders of magnitude above the observed rates. The question of why this does

not happen constitutes the new physics flavor puzzle.

• Most of the charged fermion flavor parameters are small and hierarchical. The Stan-

dard Model does not provide any explanation of these features. This is the Standard

Model flavor puzzle. The puzzle became even deeper after neutrino masses and mix-

ings were measured because, so far, neither smallness nor hierarchy in these parameters

have been established.

III. FLAVOR IN THE STANDARD MODEL

A model of elementary particles and their interactions is defined by the following ingre-

dients: (i) The symmetries of the Lagrangian and the pattern of spontaneous symmetry

breaking; (ii) The representations of fermions and scalars. The Standard Model (SM) is

defined as follows:

(i) The gauge symmetry is

GSM = SU(3)C × SU(2)L × U(1)Y. (1)

It is spontaneously broken by the VEV of a single Higgs scalar, ϕ(1, 2)1/2 (⟨ϕ0⟩ = v/
√
2):

GSM → SU(3)C × U(1)EM. (2)

(ii) There are three fermion generations, each consisting of five representations of GSM:

QLi(3, 2)+1/6, URi(3, 1)+2/3, DRi(3, 1)−1/3, LLi(1, 2)−1/2, ERi(1, 1)−1. (3)

A. The interaction basis

The Standard Model Lagrangian, LSM, is the most general renormalizable Lagrangian

that is consistent with the gauge symmetry (1), the particle content (3) and the pattern of

spontaneous symmetry breaking (2). It can be divided to three parts:

LSM = Lkinetic + LHiggs + LYukawa. (4)

3



As concerns the kinetic terms, to maintain gauge invariance, one has to replace the

derivative with a covariant derivative:

Dµ = ∂µ + igsG
µ
aLa + igW µ

b Tb + ig′BµY. (5)

Here Gµ
a are the eight gluon fields, W µ

b the three weak interaction bosons and Bµ the single

hypercharge boson. The La’s are SU(3)C generators (the 3 × 3 Gell-Mann matrices 1
2
λa

for triplets, 0 for singlets), the Tb’s are SU(2)L generators (the 2× 2 Pauli matrices 1
2
τb for

doublets, 0 for singlets), and the Y ’s are the U(1)Y charges. For example, for the quark

doublets QL, we have

Lkinetic(QL) = iQLiγµ

(
∂µ +

i

2
gsG

µ
aλa +

i

2
gW µ

b τb +
i

6
g′Bµ

)
δijQLj, (6)

while for the lepton doublets LIL, we have

Lkinetic(LL) = iLLiγµ

(
∂µ +

i

2
gW µ

b τb −
i

2
g′Bµ

)
δijLLj. (7)

The unit matrix in flavor space, δij, signifies that these parts of the interaction Lagrangian

are flavor-universal. In addition, they conserve CP.

The Higgs potential, which describes the scalar self interactions, is given by:

LHiggs = µ2ϕ†ϕ− λ(ϕ†ϕ)2. (8)

For the Standard Model scalar sector, where there is a single doublet, this part of the

Lagrangian is also CP conserving.

The quark Yukawa interactions are given by

−LqY = Y d
ijQLiϕDRj + Y u

ijQLiϕ̃URj + h.c., (9)

(where ϕ̃ = iτ2ϕ
†) while the lepton Yukawa interactions are given by

−LℓY = Y e
ijLLiϕERj + h.c.. (10)

This part of the Lagrangian is, in general, flavor-dependent (that is, Y f ̸∝ 1) and CP

violating.
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B. Global symmetries

In the absence of the Yukawa matrices Y d, Y u and Y e, the SM has a large U(3)5 global

symmetry:

Gglobal(Y
u,d,e = 0) = SU(3)3q × SU(3)2ℓ × U(1)5, (11)

where

SU(3)3q = SU(3)Q × SU(3)U × SU(3)D,

SU(3)2ℓ = SU(3)L × SU(3)E,

U(1)5 = U(1)B × U(1)L × U(1)Y × U(1)PQ × U(1)E. (12)

Out of the five U(1) charges, three can be identified with baryon number (B), lepton number

(L) and hypercharge (Y ), which are respected by the Yukawa interactions. The two remain-

ing U(1) groups can be identified with the PQ symmetry whereby the Higgs and DR, ER

fields have opposite charges, and with a global rotation of ER only.

The point that is important for our purposes is that Lkinetic + LHiggs respect the non-

Abelian flavor symmetry S(3)3q × SU(3)2ℓ , under which

QL → VQQL, UR → VUUR, DR → VDDR, LL → VLLL, ER → VEER, (13)

where the Vi are unitary matrices. The Yukawa interactions (9) and (10) break the global

symmetry,

Gglobal(Y
u,d,e ̸= 0) = U(1)B × U(1)e × U(1)µ × U(1)τ . (14)

(Of course, the gauged U(1)Y also remains a good symmetry.) Thus, the transformations of

Eq. (13) are not a symmetry of LSM. Instead, they correspond to a change of the interaction

basis. These observations also offer an alternative way of defining flavor physics: it refers to

interactions that break the SU(3)5 symmetry (13). Thus, the term “flavor violation” is

often used to describe processes or parameters that break the symmetry.

One can think of the quark Yukawa couplings as spurions that break the global SU(3)3q

symmetry (but are neutral under U(1)B),

Y u ∼ (3, 3̄, 1)SU(3)3q
, Y d ∼ (3, 1, 3̄)SU(3)3q

, (15)

and of the lepton Yukawa couplings as spurions that break the global SU(3)2ℓ symmetry (but

are neutral under U(1)e × U(1)µ × U(1)τ ),

Y e ∼ (3, 3̄)SU(3)2
ℓ
. (16)
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The spurion formalism is convenient for several purposes: parameter counting (see below),

identification of flavor suppression factors (see Section V), and the idea of minimal flavor

violation (which is beyond the scope of this course).

C. Counting parameters

How many independent parameters are there in LqY? The two Yukawa matrices, Y u and

Y d, are 3 × 3 and complex. Consequently, there are 18 real and 18 imaginary parameters

in these matrices. Not all of them are, however, physical. The pattern of Gglobal breaking

means that there is freedom to remove 9 real and 17 imaginary parameters (the number of

parameters in three 3× 3 unitary matrices minus the phase related to U(1)B). For example,

we can use the unitary transformations QL → VQQL, UR → VUUR and DR → VDDR, to

lead to the following interaction basis:

Y d = λd, Y u = V †λu, (17)

where λd,u are diagonal,

λd = diag(yd, ys, yb), λu = diag(yu, yc, yt), (18)

while V is a unitary matrix that depends on three real angles and one complex phase. We

conclude that there are 10 quark flavor parameters: 9 real ones and a single phase. In the

mass basis, we will identify the nine real parameters as six quark masses and three mixing

angles, while the single phase is δKM.

How many independent parameters are there in LℓY? The Yukawa matrix Y e is 3× 3 and

complex. Consequently, there are 9 real and 9 imaginary parameters in this matrix. There is,

however, freedom to remove 6 real and 9 imaginary parameters (the number of parameters in

two 3× 3 unitary matrices minus the phases related to U(1)3). For example, we can use the

unitary transformations LL → VLLL and ER → VEER, to lead to the following interaction

basis:

Y e = λe = diag(ye, yµ, yτ ). (19)

We conclude that there are 3 real lepton flavor parameters. In the mass basis, we will

identify these parameters as the three charged lepton masses. We must, however, modify

the model when we take into account the evidence for neutrino masses.
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D. The mass basis

Upon the replacement Re(ϕ0) → v+h0√
2
, the Yukawa interactions (9) give rise to the mass

matrices

Mq =
v√
2
Y q. (20)

The mass basis corresponds, by definition, to diagonal mass matrices. We can always find

unitary matrices VqL and VqR such that

VqLMqV
†
qR =Mdiag

q ≡ v√
2
λq. (21)

The four matrices VdL, VdR, VuL and VuR are then the ones required to transform to the mass

basis. For example, if we start from the special basis (17), we have VdL = VdR = VuR = 1

and VuL = V . The combination VuLV
†
dL is independent of the interaction basis from which

we start this procedure.

We denote the left-handed quark mass eigenstates as UL and DL. The charged current

interactions for quarks [that is the interactions of the charged SU(2)L gauge bosons W±
µ =

1√
2
(W 1

µ∓ iW 2
µ)], which in the interaction basis are described by (6), have a complicated form

in the mass basis:

−LqW± =
g√
2
ULiγ

µVijDLjW
+
µ + h.c.. (22)

where V is the 3 × 3 unitary matrix (V V † = V †V = 1) that appeared in Eq. (17). For a

general interaction basis,

V = VuLV
†
dL. (23)

V is the Cabibbo-Kobayashi-Maskawa (CKM) mixing matrix for quarks [1, 2]. As a result

of the fact that V is not diagonal, the W± gauge bosons couple to quark mass eigenstates of

different generations. Within the Standard Model, this is the only source of flavor changing

quark interactions.

The detailed structure of the CKM matrix, its parametrization, and the constraints on

its elements are described in Appendix A.

IV. TESTING THE CKM MECHANISM

Measurements of rates, mixing, and CP asymmetries in B decays in the two B factories,

BaBar abd Belle, and in the two Tevatron detectors, CDF and D0, signified a new era in our
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understanding of CP violation. The progress is both qualitative and quantitative. Various

basic questions concerning CP and flavor violation have received, for the first time, answers

based on experimental information. These questions include, for example,

• Is the Kobayashi-Maskawa mechanism at work (namely, is δKM ̸= 0)?

• Does the KM phase dominate the observed CP violation?

As a first step, one may assume the SM and test the overall consistency of the various

measurements. However, the richness of data from the B factories allow us to go a step

further and answer these questions model independently, namely allowing new physics to

contribute to the relevant processes. We here explain the way in which this analysis proceeds.

A. SψKS

The CP asymmetry in B → ψKS decays plays a major role in testing the KM mechanism.

Before we explain the test itself, we should understand why the theoretical interpretation of

the asymmetry is exceptionally clean, and what are the theoretical parameters on which it

depends, within and beyond the Standard Model.

The CP asymmetry in neutral meson decays into final CP eigenstates fCP is defined as

follows:

AfCP
(t) ≡

dΓ/dt[B0
phys(t) → fCP ]− dΓ/dt[B0

phys(t) → fCP ]

dΓ/dt[B0
phys(t) → fCP ] + dΓ/dt[B0

phys(t) → fCP ]
. (24)

A detailed evaluation of this asymmetry is given in Appendix B. It leads to the following

form:

AfCP
(t) = SfCP

sin(∆mt)− CfCP
cos(∆mt),

SfCP
≡ 2 Im(λfCP

)

1 + |λfCP
|2
, CfCP

≡ 1− |λfCP
|2

1 + |λfCP
|2
, (25)

where

λfCP
= e−iϕB(AfCP

/AfCP
) . (26)

Here ϕB refers to the phase of M12 [see Eq. (B23)]. Within the Standard Model, the corre-

sponding phase factor is given by

e−iϕB = (V ∗
tbVtd)/(VtbV

∗
td) . (27)
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FIG. 1: Feynman diagrams for (a) tree and (b) penguin amplitudes contributing to B0 → f or

Bs → f via a b̄→ q̄qq̄′ quark-level process.
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The decay amplitudes Af and Af are defined in Eq. (B1).

The B0 → J/ψK0 decay [3, 4] proceeds via the quark transition b̄ → c̄cs̄. There are

contributions from both tree (t) and penguin (pqu , where qu = u, c, t is the quark in the

loop) diagrams (see Fig. 1) which carry different weak phases:

Af = (V ∗
cbVcs) tf +

∑
qu=u,c,t

(
V ∗
qubVqus

)
pquf . (28)

(The distinction between tree and penguin contributions is a heuristic one, the separation

by the operator that enters is more precise. For a detailed discussion of the more complete

operator product approach, which also includes higher order QCD corrections, see, for ex-

ample, ref. [5].) Using CKM unitarity, these decay amplitudes can always be written in

terms of just two CKM combinations:

AψK = (V ∗
cbVcs)TψK + (V ∗

ubVus)P
u
ψK , (29)

where TψK = tψK + pcψK − ptψK and P u
ψK = puψK − ptψK . A subtlety arises in this decay that

is related to the fact that B0 → J/ψK0 and B
0 → J/ψK0. A common final state, e.g.

J/ψKS, can be reached via K0 −K0 mixing. Consequently, the phase factor corresponding

to neutral K mixing, e−iϕK = (V ∗
cdVcs)/(VcdV

∗
cs), plays a role:

AψKS

AψKS

= −
(VcbV

∗
cs)TψK + (VubV

∗
us)P

u
ψK

(V ∗
cbVcs)TψK + (V ∗

ubVus)P
u
ψK

× V ∗
cdVcs
VcdV

∗
cs

. (30)

The crucial point is that, for B → J/ψKS and other b̄ → c̄cs̄ processes, we can neglect

the P u contribution to AψK , in the SM, to an approximation that is better than one percent:

|P u
ψK/TψK | × |Vub/Vcb| × |Vus/Vcs| ∼ (loop factor)× 0.1× 0.23 ∼< 0.005. (31)
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Thus, to an accuracy better than one percent,

λψKS
=

(
V ∗
tbVtd
VtbV

∗
td

)(
VcbV

∗
cd

V ∗
cbVcd

)
= −e−2iβ, (32)

where β is defined in Eq. (A9), and consequently

SψKS
= sin 2β, CψKS

= 0 . (33)

(Below the percent level, several effects modify this equation [6–9].)

When we consider extensions of the SM, we still do not expect any significant new con-

tribution to the tree level decay, b → cc̄s, beyond the SM W -mediated diagram. Thus,

the expression ĀψKS
/AψKS

= (VcbV
∗
cd)/(V

∗
cbVcd) remains valid, though the approximation of

neglecting sub-dominant phases can be somewhat less accurate than Eq. (31). On the other

hand, M12, the B
0 − B

0
mixing amplitude, can in principle get large and even dominant

contributions from new physics. We can parameterize the modification to the SM in terms

of two parameters, r2d signifying the change in magnitude, and 2θd signifying the change in

phase:

M12 = r2d e
2iθd MSM

12 (ρ, η). (34)

This leads to the following generalization of Eq. (33):

SψKS
= sin(2β + 2θd), CψKS

= 0 . (35)

The experimental measurements give the following ranges [10]:

SψKS
= +0.68± 0.02, CψKS

= +0.005± 0.017 . (36)

B. Self-consistency of the CKM assumption

The three generation standard model has room for CP violation, through the KM phase

in the quark mixing matrix. Yet, one would like to make sure that indeed CP is violated

by the SM interactions, namely that sin δKM ̸= 0. If we establish that this is the case, we

would further like to know whether the SM contributions to CP violating observables are

dominant. More quantitatively, we would like to put an upper bound on the ratio between

the new physics and the SM contributions.

As a first step, one can assume that flavor changing processes are fully described by the

SM, and check the consistency of the various measurements with this assumption. There
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are four relevant mixing parameters, which can be taken to be the Wolfenstein parameters

λ, A, ρ and η defined in Eq. (A4). The values of λ and A are known rather accurately [11]

from, respectively, K → πℓν and b→ cℓν decays:

λ = 0.2254± 0.0007, A = 0.811+0.022
−0.012. (37)

Then, one can express all the relevant observables as a function of the two remaining pa-

rameters, ρ and η, and check whether there is a range in the ρ− η plane that is consistent

with all measurements. The list of observables includes the following:

• The rates of inclusive and exclusive charmless semileptonic B decays depend on

|Vub|2 ∝ ρ2 + η2;

• The CP asymmetry in B → ψKS, SψKS
= sin 2β = 2η(1−ρ)

(1−ρ)2+η2 ;

• The rates of various B → DK decays depend on the phase γ, where eiγ = ρ+iη√
ρ2+η2

;

• The rates of various B → ππ, ρπ, ρρ decays depend on the phase α = π − β − γ;

• The ratio between the mass splittings in the neutral B and Bs systems is sensitive to

|Vtd/Vts|2 = λ2[(1− ρ)2 + η2];

• The CP violation in K → ππ decays, ϵK , depends in a complicated way on ρ and η.

The resulting constraints are shown in Fig. 2.

The consistency of the various constraints is impressive. In particular, the following

ranges for ρ and η can account for all the measurements [11]:

ρ = +0.131+0.026
−0.013, η = +0.345± 0.014. (38)

One can make then the following statement [13]:

Very likely, CP violation in flavor changing processes is dominated by the

Kobayashi-Maskawa phase.

In the next two subsections, we explain how we can remove the phrase “very likely” from

this statement, and how we can quantify the KM-dominance.
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FIG. 2: Allowed region in the ρ, η plane. Superimposed are the individual constraints from charm-

less semileptonic B decays (|Vub/Vcb|), mass differences in the B0 (∆md) and Bs (∆ms) neutral

meson systems, and CP violation in K → ππ (εK), B → ψK (sin 2β), B → ππ, ρπ, ρρ (α), and

B → DK (γ). Taken from [12].

C. Is the KM mechanism at work?

In proving that the KM mechanism is at work, we assume that charged-current tree-level

processes are dominated by the W -mediated SM diagrams (see, for example, [14]). This is

a very plausible assumption. I am not aware of any viable well-motivated model where this

assumption is not valid. Thus we can use all tree level processes and fit them to ρ and η, as

we did before. The list of such processes includes the following:

1. Charmless semileptonic B-decays, b→ uℓν, measure Ru [see Eq. (A8)].

2. B → DK decays, which go through the quark transitions b → cūs and b → uc̄s,

measure the angle γ [see Eq. (A9)].

3. B → ρρ decays (and, similarly, B → ππ and B → ρπ decays) go through the quark
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transition b → uūd. With an isospin analysis, one can determine the relative phase

between the tree decay amplitude and the mixing amplitude. By incorporating the

measurement of SψKS
, one can subtract the phase from the mixing amplitude, finally

providing a measurement of the angle γ [see Eq. (A9)].

In addition, we can use loop processes, but then we must allow for new physics con-

tributions, in addition to the (ρ, η)-dependent SM contributions. Of course, if each such

measurement adds a separate mode-dependent parameter, then we do not gain anything by

using this information. However, there is a number of observables where the only relevant

loop process is B0 − B0 mixing. The list includes SψKS
, ∆mB and the CP asymmetry in

semileptonic B decays:

SψKS
= sin(2β + 2θd),

∆mB = r2d(∆mB)
SM,

ASL = −Re
(
Γ12

M12

)SM sin 2θd
r2d

+ Im
(
Γ12

M12

)SM cos 2θd
r2d

. (39)

As explained above, such processes involve two new parameters [see Eq. (34)]. Since there

are three relevant observables, we can further tighten the constraints in the (ρ, η)-plane.

Similarly, one can use measurements related to Bs − Bs mixing. One gains three new

observables at the cost of two new parameters (see, for example, [15]).

The results of such fit, projected on the ρ− η plane, can be seen in Fig. 3. It gives [12]

η = 0.44+0.05
−0.23 (3σ). (40)

[A similar analysis in Ref. [16] obtains the 3σ range (0.31− 0.46).] It is clear that η ̸= 0 is

well established:

The Kobayashi-Maskawa mechanism of CP violation is at work.

Another way to establish that CP is violated by the CKM matrix is to find, within the

same procedure, the allowed range for sin 2β [16]:

sin 2βtree = 0.80± 0.03. (41)

Thus, β ̸= 0 is well established.

The consistency of the experimental results (36) with the SM predictions (33,41) means

that the KM mechanism of CP violation dominates the observed CP violation. In the next

subsection, we make this statement more quantitative.
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FIG. 3: The allowed region in the ρ− η plane, assuming that tree diagrams are dominated by the

Standard Model [12].

D. How much can new physics contribute to B0 −B0 mixing?

All that we need to do in order to establish whether the SM dominates the observed CP

violation, and to put an upper bound on the new physics contribution to B0 − B0 mixing,

is to project the results of the fit performed in the previous subsection on the r2d − 2θd

plane. If we find that θd ≪ β, then the SM dominance in the observed CP violation will be

established. The constraints are shown in Fig. 4(a). Indeed, θd ≪ β.

An alternative way to present the data is to use the hd, σd parametrization,

r2de
2iθd = 1 + hde

2iσd . (42)

While the rd, θd parameters give the relation between the full mixing amplitude and the

SM one, and are convenient to apply to the measurements, the hd, σd parameters give the

relation between the new physics and SM contributions, and are more convenient in testing

14



FIG. 4: Constraints in the (a) r2d−2θd plane, and (b) hd−σd plane, assuming that NP contributions

to tree level processes are negligible [12].
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theoretical models:

hde
2iσd =

MNP
12

MSM
12

. (43)

The constraints in the hd−σd plane are shown in Fig. 4(b). We can make the following two

statements:

1. A new physics contribution to B0 −B
0
mixing amplitude that carries a phase that is

significantly different from the KM phase is constrained to lie below the 20-30% level.

2. A new physics contribution to the B0 − B
0
mixing amplitude which is aligned with

the KM phase is constrained to be at most comparable to the CKM contribution.

One can reformulate these statements as follows:

1. The KM mechanism dominates CP violation in B0 −B
0
mixing.

2. The CKM mechanism is a major player in B0 −B
0
mixing.

V. THE NEW PHYSICS FLAVOR PUZZLE

Given that the SM is only an effective low energy theory, non-renormalizable terms must

be added to LSM of Eq. (4). These are terms of dimension higher than four in the fields
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TABLE I: Measurements related to neutral meson mixing

Sector CP-conserving CP-violating

sd ∆mK/mK = 7.0× 10−15 ϵK = 2.3× 10−3

cu ∆mD/mD = 8.7× 10−15 AΓ/yCP ∼< 0.2

bd ∆mB/mB = 6.3× 10−14 SψK = +0.67± 0.02

bs ∆mBs/mBs = 2.1× 10−12 Sψϕ = −0.04± 0.09

which, therefore, have couplings that are inversely proportional to the scale of new physics

ΛNP. As concerns quark flavor physics, consider, for example, the following dimension-six,

four-fermion, flavor changing operators:

L∆F=2 =
zsd
Λ2

NP

(dLγµsL)
2 +

zcu
Λ2

NP

(cLγµuL)
2 +

zbd
Λ2

NP

(dLγµbL)
2 +

zbs
Λ2

NP

(sLγµbL)
2. (44)

Each of these terms contributes to the mass splitting between the corresponding two neutral

mesons. For example, the term L∆B=2 ∝ (dLγµbL)
2 contributes to ∆mB, the mass difference

between the two neutral B-mesons. We use MB
12 =

1
2mB

⟨B0|L∆F=2|B
0⟩ and

⟨B0|(dLaγµbLa)(dLbγµbLb)|B
0⟩ = −1

3
m2
Bf

2
BBB. (45)

Analogous expressions hold for the other neutral mesons.2 This leads to ∆mB/mB =

2|MB
12|/mB ∼ (|zbd|/3)(fB/ΛNP)

2.

The experimental results for CP conserving and CP violating observables related to neu-

tral meson mixing (mass splittings and CP asymmetries in tree level decays, respectively)

are given in Table I.

The measurements quoted in Table I lead, for a given value of |zij| and zIij ≡ Im(zij), to

lower bounds on the scale ΛNP. In Table II we give the bounds that correspond to |zij| = 1

and to zIij = 1. The bounds scale like
√
zij and

√
zIij, respectively.

If the new physics has a generic flavor structure, that is zij = O(1), then its scale must

be above 103 − 104 TeV (or, if the leading contributions involve electroweak loops, above

2 The PDG [11] quotes the following values, extracted from leptonic charged meson decays: fK ≈ 0.16 GeV ,

fD ≈ 0.23 GeV , fB ≈ 0.18 GeV . We further use fBs ≈ 0.20 GeV .
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TABLE II: Lower bounds on the scale of new physics ΛNP, in units of TeV. The bounds from CP

conserving (violating) observables scale like
√
zij (

√
zIij).

ij CP-conserving CP-violating

sd 1× 103 2× 104

cu 1× 103 3× 103

bd 4× 102 8× 102

bs 7× 101 2× 102

102− 103 TeV).3 If indeed ΛNP ≫ TeV , it means that we have misinterpreted the hints from

the fine-tuning problem and the dark matter puzzle.

There is, however, another way to look at these constraints:

zsd ∼< 8× 10−7 (ΛNP/TeV )2,

zcu ∼< 5× 10−7 (ΛNP/TeV )2,

zbd ∼< 5× 10−6 (ΛNP/TeV )2,

zbs ∼< 2× 10−4 (ΛNP/TeV )2, (46)

zIsd ∼< 6× 10−9 (ΛNP/TeV )2,

zIcu ∼< 1× 10−7 (ΛNP/TeV )2,

zIbd ∼< 1× 10−6 (ΛNP/TeV )2,

zIbs ∼< 2× 10−5 (ΛNP/TeV )2. (47)

It could be that the scale of new physics is of order TeV, but its flavor structure is far from

generic. .Specifically, if new particles at the TeV scale couple to the SM fermions, then there

are two ways in which their contributions to FCNC processes, such as neutral meson mixing,

can be suppressed: degeneracy and alignment. Either of these principles, or a combination

of both, signifies non-generic structure.

3 The bounds from the corresponding four-fermi terms with LR structure, instead of the LL structure of

Eq. (44), are even stronger.
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One can use the language of effective operators also for the SM, integrating out all

particles significantly heavier than the neutral mesons (that is, the top, the Higgs and the

weak gauge bosons). Thus, the scale is ΛSM ∼ mW . Since the leading contributions to neutral

meson mixings come from box diagrams, the zij coefficients are suppressed by α2
2. To identify

the relevant flavor suppression factor, one can employ the spurion formalism. For example,

the flavor transition that is relevant to B0 − B0 mixing involves dLbL which transforms as

(8, 1, 1)SU(3)3q
. The leading contribution must then be proportional to (Y uY u†)13 ∝ y2t VtbV

∗
td.

Indeed, an explicit calculation (using VIA for the matrix element and neglecting QCD

corrections) gives4

2MB
12

mB

≈ −α
2
2

12

f 2
B

m2
W

S0(xt)(VtbV
∗
td)

2, (48)

where xi = m2
i /m

2
W and

S0(x) =
x

(1− x)2

[
1− 11x

4
+
x2

4
− 3x2 lnx

2(1− x)

]
. (49)

Similar spurion analyses, or explicit calculations, allow us to extract the weak and flavor

suppression factors that apply in the SM:

Im(zSMsd ) ∼ α2
2y

2
t |VtdVts|2 ∼ 1× 10−10,

zSMsd ∼ α2
2y

2
c |VcdVcs|2 ∼ 5× 10−9,

Im(zSMcu ) ∼ α2
2y

2
b |VubVcb|2 ∼ 2× 10−14,

zSMbd ∼ α2
2y

2
t |VtdVtb|2 ∼ 7× 10−8,

zSMbs ∼ α2
2y

2
t |VtsVtb|2 ∼ 2× 10−6. (50)

(We did not include zSMcu in the list because it requires a more detailed consideration. The

naively leading short distance contribution is ∝ α2
2(y

4
s/y

2
c )|VcsVus|2 ∼ 5 × 10−13. However,

higher dimension terms can replace a y2s factor with (Λ/mD)
2 [18]. Moreover, long distance

contributions are expected to dominate. In particular, peculiar phase space effects [19, 20]

have been identified which are expected to enhance ∆mD to within an order of magnitude

of the its measured value. The CP violating part, on the other hand, is dominated by short

distance physics.)

4 A detailed derivation can be found in Appendix B of [17].
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It is clear then that contributions from new physics at ΛNP ∼ 1 TeV should be suppressed

by factors that are comparable or smaller than the SM ones. Why does that happen? This

is the new physics flavor puzzle.

The fact that the flavor structure of new physics at the TeV scale must be non-generic

means that flavor measurements are a good probe of the new physics. Perhaps the best-

studied example is that of supersymmetry. Here, the spectrum of the superpartners and

the structure of their couplings to the SM fermions will allow us to probe the mechanism of

dynamical supersymmetry breaking.

VI. CONCLUSIONS

(i) Measurements of CP violating B-meson decays have established that the Kobayashi-

Maskawa mechanism is the dominant source of the observed CP violation.

(ii) Measurements of flavor changing B-meson decays have established the the Cabibbo-

Kobayashi-Maskawa mechanism is a major player in flavor violation.

(iii) The consistency of all these measurements with the CKM predictions sharpens the

new physics flavor puzzle: If there is new physics at, or below, the TeV scale, then its flavor

structure must be highly non-generic.

The huge progress in flavor physics in recent years has provided answers to many ques-

tions. At the same time, new questions arise. The LHC era is likely to provide more answers

and more questions.

APPENDIX A: THE CKM MATRIX

The CKM matrix V is a 3× 3 unitary matrix. Its form, however, is not unique:

(i) There is freedom in defining V in that we can permute between the various generations.

This freedom is fixed by ordering the up quarks and the down quarks by their masses, i.e.

(u1, u2, u3) → (u, c, t) and (d1, d2, d3) → (d, s, b). The elements of V are written as follows:

V =


Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

 . (A1)

(ii) There is further freedom in the phase structure of V . This means that the number

of physical parameters in V is smaller than the number of parameters in a general unitary
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3× 3 matrix which is nine (three real angles and six phases). Let us define Pq (q = u, d) to

be diagonal unitary (phase) matrices. Then, if instead of using VqL and VqR for the rotation

(21) to the mass basis we use ṼqL and ṼqR, defined by ṼqL = PqVqL and ṼqR = PqVqR, we still

maintain a legitimate mass basis since Mdiag
q remains unchanged by such transformations.

However, V does change:

V → PuV P
∗
d . (A2)

This freedom is fixed by demanding that V has the minimal number of phases. In the three

generation case V has a single phase. (There are five phase differences between the elements

of Pu and Pd and, therefore, five of the six phases in the CKM matrix can be removed.)

This is the Kobayashi-Maskawa phase δKM which is the single source of CP violation in the

quark sector of the Standard Model [1].

The fact that V is unitary and depends on only four independent physical parameters

can be made manifest by choosing a specific parametrization. The standard choice is [21]

V =


c12c13 s12c13 s13e

−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

 , (A3)

where cij ≡ cos θij and sij ≡ sin θij. The θij’s are the three real mixing parameters while

δ is the Kobayashi-Maskawa phase. It is known experimentally that s13 ≪ s23 ≪ s12 ≪ 1.

It is convenient to choose an approximate expression where this hierarchy is manifest. This

is the Wolfenstein parametrization, where the four mixing parameters are (λ,A, ρ, η) with

λ = |Vus| = 0.23 playing the role of an expansion parameter and η representing the CP

violating phase [22, 23]:

V =


1− 1

2
λ2 − 1

8
λ4 λ Aλ3(ρ− iη)

−λ+ 1
2
A2λ5[1− 2(ρ+ iη)] 1− 1

2
λ2 − 1

8
λ4(1 + 4A2) Aλ2

Aλ3[1− (1− 1
2
λ2)(ρ+ iη)] −Aλ2 + 1

2
Aλ4[1− 2(ρ+ iη)] 1− 1

2
A2λ4

 . (A4)

A very useful concept is that of the unitarity triangles. The unitarity of the CKM matrix

leads to various relations among the matrix elements, e.g.

VudV
∗
us + VcdV

∗
cs + VtdV

∗
ts = 0, (A5)

VusV
∗
ub + VcsV

∗
cb + VtsV

∗
tb = 0, (A6)

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0. (A7)
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VtdVtb*

VcdVcb*

α=ϕ2 β=ϕ1

γ=ϕ3

VudVub*

FIG. 5: Graphical representation of the unitarity constraint VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0 as a

triangle in the complex plane.

Each of these three relations requires the sum of three complex quantities to vanish and

so can be geometrically represented in the complex plane as a triangle. These are “the

unitarity triangles”, though the term “unitarity triangle” is usually reserved for the relation

(A7) only. The unitarity triangle related to Eq. (A7) is depicted in Fig. 5.

The rescaled unitarity triangle is derived from (A7) by (a) choosing a phase convention

such that (VcdV
∗
cb) is real, and (b) dividing the lengths of all sides by |VcdV ∗

cb|. Step (a) aligns

one side of the triangle with the real axis, and step (b) makes the length of this side 1.

The form of the triangle is unchanged. Two vertices of the rescaled unitarity triangle are

thus fixed at (0,0) and (1,0). The coordinates of the remaining vertex correspond to the

Wolfenstein parameters (ρ, η). The area of the rescaled unitarity triangle is |η|/2.

Depicting the rescaled unitarity triangle in the (ρ, η) plane, the lengths of the two complex

sides are

Ru ≡
∣∣∣∣VudVubVcdVcb

∣∣∣∣ = √
ρ2 + η2, Rt ≡

∣∣∣∣VtdVtbVcdVcb

∣∣∣∣ = √
(1− ρ)2 + η2. (A8)

The three angles of the unitarity triangle are defined as follows [24, 25]:

α ≡ arg

[
− VtdV

∗
tb

VudV ∗
ub

]
, β ≡ arg

[
−VcdV

∗
cb

VtdV ∗
tb

]
, γ ≡ arg

[
−VudV

∗
ub

VcdV ∗
cb

]
. (A9)

They are physical quantities and can be independently measured by CP asymmetries in B

decays. It is also useful to define the two small angles of the unitarity triangles (A6,A5):

βs ≡ arg

[
−VtsV

∗
tb

VcsV ∗
cb

]
, βK ≡ arg

[
− VcsV

∗
cd

VusV ∗
ud

]
. (A10)

The λ and A parameters are very well determined at present, see Eq. (37). The main
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effort in CKM measurements is thus aimed at improving our knowledge of ρ and η:

ρ = 0.131+0.026
−0.013, η = 0.345± 0.013. (A11)

The present status of our knowledge is best seen in a plot of the various constraints and the

final allowed region in the ρ− η plane. This is shown in Fig. 2.

APPENDIX B: CPV IN B DECAYS TO FINAL CP EIGENSTATES

We define decay amplitudes of B (which could be charged or neutral) and its CP conjugate

B to a multi-particle final state f and its CP conjugate f as

Af = ⟨f |H|B⟩ , Af = ⟨f |H|B⟩ , Af = ⟨f |H|B⟩ , Af = ⟨f |H|B⟩ , (B1)

where H is the Hamiltonian governing weak interactions. The action of CP on these states

introduces phases ξB and ξf according to

CP |B⟩ = e+iξB |B⟩ , CP |f⟩ = e+iξf |f⟩ ,

CP |B⟩ = e−iξB |B⟩ , CP |f⟩ = e−iξf |f⟩ , (B2)

so that (CP )2 = 1. The phases ξB and ξf are arbitrary and unphysical because of the flavor

symmetry of the strong interaction. If CP is conserved by the dynamics, [CP ,H] = 0, then

Af and Af have the same magnitude and an arbitrary unphysical relative phase

Af = ei(ξf−ξB)Af . (B3)

A state that is initially a superposition of B0 and B0, say

|ψ(0)⟩ = a(0)|B0⟩+ b(0)|B0⟩ , (B4)

will evolve in time acquiring components that describe all possible decay final states

{f1, f2, . . .}, that is,

|ψ(t)⟩ = a(t)|B0⟩+ b(t)|B0⟩+ c1(t)|f1⟩+ c2(t)|f2⟩+ · · · . (B5)

If we are interested in computing only the values of a(t) and b(t) (and not the values of

all ci(t)), and if the times t in which we are interested are much larger than the typical

strong interaction scale, then we can use a much simplified formalism [26]. The simplified
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time evolution is determined by a 2×2 effective Hamiltonian H that is not Hermitian, since

otherwise the mesons would only oscillate and not decay. Any complex matrix, such as H,

can be written in terms of Hermitian matrices M and Γ as

H =M − i

2
Γ . (B6)

M and Γ are associated with (B0, B0) ↔ (B0, B0) transitions via off-shell (dispersive) and

on-shell (absorptive) intermediate states, respectively. Diagonal elements of M and Γ are

associated with the flavor-conserving transitions B0 → B0 and B0 → B0 while off-diagonal

elements are associated with flavor-changing transitions B0 ↔ B0.

The eigenvectors of H have well defined masses and decay widths. We introduce complex

parameters p and q to specify the components of the strong interaction eigenstates, B0 and

B0, in the light (BL) and heavy (BH) mass eigenstates:

|BL,H⟩ = p|B0⟩ ± q|B0⟩ (B7)

with the normalization |p|2 + |q|2 = 1. The special form of Eq. (B7) is related to the fact

that CPT imposes M11 =M22 and Γ11 = Γ22. Solving the eigenvalue problem gives(
q

p

)2

=
M∗

12 − (i/2)Γ∗
12

M12 − (i/2)Γ12

. (B8)

If either CP or T is a symmetry of H, then M12 and Γ12 are relatively real, leading to(
q

p

)2

= e2iξB ⇒
∣∣∣∣∣qp
∣∣∣∣∣ = 1 , (B9)

where ξB is the arbitrary unphysical phase introduced in Eq. (B2).

The real and imaginary parts of the eigenvalues of H corresponding to |BL,H⟩ repre-

sent their masses and decay-widths, respectively. The mass difference ∆mB and the width

difference ∆ΓB are defined as follows:

∆mB ≡MH −ML, ∆ΓB ≡ ΓH − ΓL. (B10)

Note that here ∆mB is positive by definition, while the sign of ∆ΓB is to be experimentally

determined. The average mass and width are given by

mB ≡ MH +ML

2
, ΓB ≡ ΓH + ΓL

2
. (B11)
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It is useful to define dimensionless ratios x and y:

x ≡ ∆mB

ΓB
, y ≡ ∆ΓB

2ΓB
. (B12)

Solving the eigenvalue equation gives

(∆mB)
2 − 1

4
(∆ΓB)

2 = (4|M12|2 − |Γ12|2), ∆mB∆ΓB = 4Re(M12Γ
∗
12). (B13)

All CP-violating observables in B and B decays to final states f and f can be expressed in

terms of phase-convention-independent combinations of Af , Af , Af and Af , together with,

for neutral-meson decays only, q/p. CP violation in charged-meson decays depends only

on the combination |Af/Af |, while CP violation in neutral-meson decays is complicated by

B0 ↔ B0 oscillations and depends, additionally, on |q/p| and on λf ≡ (q/p)(Af/Af ).

For neutral D, B, and Bs mesons, ∆Γ/Γ ≪ 1 and so both mass eigenstates must be

considered in their evolution. We denote the state of an initially pure |B0⟩ or |B0⟩ af-

ter an elapsed proper time t as |B0
phys(t)⟩ or |B0

phys(t)⟩, respectively. Using the effective

Hamiltonian approximation, we obtain

|B0
phys(t)⟩ = g+(t) |B0⟩ − q

p
g−(t)|B0⟩,

|B0
phys(t)⟩ = g+(t) |B0⟩ − p

q
g−(t)|B0⟩ , (B14)

where

g±(t) ≡
1

2

(
e−imH t− 1

2
ΓH t ± e−imLt− 1

2
ΓLt
)
. (B15)

One obtains the following time-dependent decay rates:

dΓ[B0
phys(t) → f ]/dt

e−ΓtNf

=
(
|Af |2 + |(q/p)Af |2

)
cosh(yΓt) +

(
|Af |2 − |(q/p)Af |2

)
cos(xΓt)

+ 2Re((q/p)A∗
fAf ) sinh(yΓt)− 2 Im((q/p)A∗

fAf ) sin(xΓt) , (B16)

dΓ[B0
phys(t) → f ]/dt

e−ΓtNf

=
(
|(p/q)Af |2 + |Af |2

)
cosh(yΓt)−

(
|(p/q)Af |2 − |Af |2

)
cos(xΓt)

+ 2Re((p/q)AfA
∗
f ) sinh(yΓt)− 2 Im((p/q)AfA

∗
f ) sin(xΓt) , (B17)

where Nf is a common normalization factor. Decay rates to the CP-conjugate final state f

are obtained analogously, with Nf = Nf and the substitutions Af → Af and Af → Af in

Eqs. (B16,B17). Terms proportional to |Af |2 or |Af |2 are associated with decays that occur

without any net B ↔ B oscillation, while terms proportional to |(q/p)Af |2 or |(p/q)Af |2
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are associated with decays following a net oscillation. The sinh(yΓt) and sin(xΓt) terms of

Eqs. (B16,B17) are associated with the interference between these two cases. Note that, in

multi-body decays, amplitudes are functions of phase-space variables. Interference may be

present in some regions but not others, and is strongly influenced by resonant substructure.

One possible manifestation of CP-violating effects in meson decays [27] is in the interfer-

ence between a decay without mixing, B0 → f , and a decay with mixing, B0 → B0 → f

(such an effect occurs only in decays to final states that are common to B0 and B0, including

all CP eigenstates). It is defined by

Im(λf ) ̸= 0 , (B18)

with

λf ≡
q

p

Af
Af

. (B19)

This form of CP violation can be observed, for example, using the asymmetry of neutral

meson decays into final CP eigenstates fCP

AfCP
(t) ≡

dΓ/dt[B0
phys(t) → fCP ]− dΓ/dt[B0

phys(t) → fCP ]

dΓ/dt[B0
phys(t) → fCP ] + dΓ/dt[B0

phys(t) → fCP ]
. (B20)

For ∆Γ = 0 and |q/p| = 1 (which is a good approximation for B mesons), AfCP
has a

particularly simple form [28–30]:

Af (t) = Sf sin(∆mt)− Cf cos(∆mt),

Sf ≡ 2 Im(λf )

1 + |λf |2
, Cf ≡

1− |λf |2

1 + |λf |2
, (B21)

Consider the B → f decay amplitude Af , and the CP conjugate process, B → f ,

with decay amplitude Af . There are two types of phases that may appear in these decay

amplitudes. Complex parameters in any Lagrangian term that contributes to the amplitude

will appear in complex conjugate form in the CP-conjugate amplitude. Thus their phases

appear in Af and Af with opposite signs. In the Standard Model, these phases occur only

in the couplings of the W± bosons and hence are often called “weak phases”. The weak

phase of any single term is convention dependent. However, the difference between the weak

phases in two different terms in Af is convention independent. A second type of phase can

appear in scattering or decay amplitudes even when the Lagrangian is real. Their origin is

the possible contribution from intermediate on-shell states in the decay process. Since these
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phases are generated by CP-invariant interactions, they are the same in Af and Af . Usually

the dominant rescattering is due to strong interactions and hence the designation “strong

phases” for the phase shifts so induced. Again, only the relative strong phases between

different terms in the amplitude are physically meaningful.

The ‘weak’ and ‘strong’ phases discussed here appear in addition to the ‘spurious’ CP-

transformation phases of Eq. (B3). Those spurious phases are due to an arbitrary choice of

phase convention, and do not originate from any dynamics or induce any CP violation. For

simplicity, we set them to zero from here on.

It is useful to write each contribution ai to Af in three parts: its magnitude |ai|, its

weak phase ϕi, and its strong phase δi. If, for example, there are two such contributions,

Af = a1 + a2, we have

Af = |a1|ei(δ1+ϕ1) + |a2|ei(δ2+ϕ2),

Af = |a1|ei(δ1−ϕ1) + |a2|ei(δ2−ϕ2). (B22)

Similarly, for neutral meson decays, it is useful to write

M12 = |M12|eiϕM , Γ12 = |Γ12|eiϕΓ . (B23)

Each of the phases appearing in Eqs. (B22,B23) is convention dependent, but combinations

such as δ1 − δ2, ϕ1 − ϕ2, ϕM − ϕΓ and ϕM + ϕ1 − ϕ1 (where ϕ1 is a weak phase contributing

to Af ) are physical.

In the approximations that only a single weak phase contributes to decay, Af =

|af |ei(δf+ϕf ), and that |Γ12/M12| = 0, we obtain |λf | = 1 and the CP asymmetries in decays

to a final CP eigenstate f [Eq. (B20)] with eigenvalue ηf = ±1 are given by

AfCP
(t) = Im(λf ) sin(∆mt) with Im(λf ) = ηf sin(ϕM + 2ϕf ). (B24)

Note that the phase so measured is purely a weak phase, and no hadronic parameters are

involved in the extraction of its value from Im(λf ).
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