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Chapter 1

Representations

1.1 Basic Definitions

Groups are intended to describe symmetries of geometric and other mathemat-
ical objects. Representations are symmetries of some of the most basic objects
in geometry and algebra, namely vector spaces.

Representations have three different aspects — geometric, numerical and
algebraic — and manifest themselves in corresponding form. We begin with
the numerical form.

In a general context we write groups G in multiplicative form. The group
structure (multiplication) is then a map G × G → G, (g, h) 7→ g · h = gh, the
unit element is e or 1, and g−1 is the inverse of g.

An n-dimensional matrix representation of the group G over the field
K is a homomorphism ϕ : G→ GLn(K) into the general linear group GLn(K)
of invertible (n, n)-matrices with entries in K. Two such representations ϕ,ψ
are said to be conjugate if there exists a matrix A ∈ GLn(K) such that the
relation Aϕ(g)A−1 = ψ(g) holds for all g ∈ G. The representation ϕ is called
faithful if ϕ is injective. If K = C,R,Q, we talk about complex, real, and
rational representations.

The group GL1(K) will be identified with the multiplicative group of non-
zero field elements K∗ = K r {0}. In this case we are just considering homo-
morphisms G→ K∗.

Next we come to the geometric form of a representation as a symmetry
group of a vector space. The field K will be fixed.

A representation of G on the K-vector space V , a KG-representation for
short, is a map

ρ : G× V → V, (g, v) 7→ ρ(g, v) = g · v = gv

with the properties:
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(1) g(hv) = (gh)v, ev = v for all g, h ∈ G and v ∈ V .
(2) The left translation lg : V → V, v 7→ gv is a K-linear map for each

g ∈ G.
We call V the representation space. Its dimension as a vector space is the
dimension dimV of the representation (sometimes called the degree of the
representation). The rules (1) are equivalent to lg ◦ lh = lgh and le = idV .
They express the fact that ρ is a group action – see the next section. From
lglg−1 = lgg−1 = le = id we see that lg is a linear isomorphism with inverse
lg−1 .

Occasionally it will be convenient to define a representation as a map

V ×G→ V, (v, g) 7→ vg

with the properties v(hg) = (vh)g and ve = v, and K-linear right translations
rg : v 7→ vg. These will be called right representations as opposed to left
representations defined above. The map rg : v 7→ vg is then the right trans-
lation by g. Note that now rg ◦ rh = rhg (contravariance). If V is a right
representation, then (g, v) 7→ vg−1 defines a left representation. We work with
left representations if nothing else is specified.

One can also use both notions simultaneously. A (G,H)-representation
is a vector space V with the structure of a left G-representation and a right
H-representation, and these structures are assumed to commute (gv)h = g(vh).

A morphism f : V →W between KG-representations is a K-linear map f
which is G-equivariant, i.e., which satisfies f(gv) = gf(v) for g ∈ G and v ∈
V . Morphisms are also called intertwining operators. A bijective morphism
is an isomorphism. The vector space of all morphisms V → W is denoted
HomG(V,W ) = HomKG(V,W ). Finite-dimensional KG-representations and
their morphisms form a category KG-Rep.

Let V be an n-dimensional representation of G over K. Let B be a basis
of V and denote by ϕB(g) ∈ GLn(K) the matrix of lg with respect to B.
Then g 7→ ϕB(g) is a matrix representation of G. Conversely, from a matrix
representation we get in this manner a representation.

(1.1.1) Proposition. Let V,W be representations of G, and B,C bases of
V,W . Then V,W are isomorphic if and only if the corresponding matrix rep-
resentations ϕB , ϕC are conjugate.

Proof. Let f : V → W be an isomorphism and A its matrix with respect to
B,C. The equivariance f ◦ lg = lg ◦ f then translates into AϕB(g) = ϕC(g)A;
and conversely. 2

Conjugate 1-dimensional representations are equal. Therefore the isomor-
phism classes of 1-dimensional representations correspond bijectively to homo-
morphisms G → K∗. The aim of representation theory is not to determine
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matrix representations. But certain concepts are easier to explain with the
help of matrices.

Let V be a representation of G. A sub-representation of V is a subspace
U which is G-invariant, i.e., gu ∈ U for g ∈ G and u ∈ U . A non-zero
representation V is called irreducible if it has no sub-representations other
than {0} and V . A representation which is not irreducible is called reducible.

(1.1.2) Schur’s Lemma. Let V and W be irreducible representations of G.
(1) A morphism f : V →W is either zero or an isomorphism.
(2) If K is algebraically closed then a morphism f : V → V is a scalar

multiple of the identity, f = λ · id.

Proof. (1) Kernel and image of f are sub-representations. If f 6= 0, then the
kernel is different from V hence equal to {0} and the image is different from
{0} hence equal to W .

(2) Algebraically closed means: Non-constant polynomials have a root.
Therefore f has an eigenvalue λ ∈ K (root of the characteristic polynomial).
Let V (λ) be the eigenspace and v ∈ V (λ). Then f(gv) = gf(v) = g(λv) = λgv.
Therefore gv ∈ V (λ), and V (λ) is a sub-representation. By irreducibility,
V = V (λ). 2

(1.1.3) Proposition. An irreducible representation of an abelian group G over
an algebraically closed field is one-dimensional.

Proof. Since G is abelian, the lg are morphisms and, by 1.1.2, multiples of the
identity. Hence each subspace is a sub-representation. 2

(1.1.4) Example. Let Sn be the symmetric group of permutations of
{1, . . . , n}. We obtain a right(!) representation of Sn on Kn by permutation
of coordinates

Kn × Sn → Kn, ((x1, . . . , xn), σ) 7→ (xσ(1), . . . , xσ(n)).

This representation is not irreducible if n > 1. It has the sub-representations
Tn = {(xi) |

∑n
i=1 xi = 0} and D = {(x, . . . , x) | x ∈ K}. 3

Schur’s lemma can be expressed in a different way. Recall that an alge-
bra A over K consists of a K-vector space together with a K-bilinear map
A × A → A, (a, b) 7→ ab (the multiplication of the algebra). The algebra is
called associative (commutative), if the multiplication is associative (commu-
tative). An associative algebra with unit element is therefore a ring with the
additional property that the multiplication is bilinear with respect to the scalar
multiplication in the vector space. In a division algebra (also called skew
field) any non-zero element has a multiplicative inverse. A typical example of
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an associative algebra is the endomorphism algebra HomG(V, V ) of a represen-
tation V ; multiplication is the composition of endomorphisms. Other examples
are the algebra Mn(K) of (n, n)-matrices with entries in K and the polynomial
algebra K[x]. The next proposition is a reformulation of Schur’s lemma.

(1.1.5) Proposition. Let V be an irreducible G-representation. Then the
endomorphism algebra A = HomG(V, V ) is a division algebra. If K is alge-
braically closed, then K → A, λ 7→ λ · id is an isomorphism of K-algebras. 2

Let V be an irreducible G-representation over R. A finite-dimensional divi-
sion algebra over R is one of the algebras R,C,H. We call V of real, complex,
quaternionic type according to the type of its endomorphism algebra.

The third form of a representation — namely a module over the group
algebra — will be introduced later.

(1.1.6) Cyclic groups. The cyclic group of order n is the additive group
Z/nZ = Z/n of integers modulo n. We also use a formal multiplicative notation
for this group Cn = 〈 a | an = 1 〉; this means: a is a generator and the n-th
power is the unit element.

Homomorphisms α : Cn → H into another group H correspond bijectively
to elements h ∈ H such that hn = 1, via a 7→ α(a). Hence there are n
different 1-dimensional representations over the complex numbers C, given by
a 7→ exp(2πit/n), 0 ≤ t < n.

The rotation matrices D(α)

D(α) =
(

cosα − sinα
sinα cosα

)
B =

(
1 0
0 −1

)
satisfy D(α)D(β) = D(α + β) and BD(α)B−1 = D(−α). We obtain a 2-
dimensional real representation ϕt : a 7→ D(2πt/n). The representations ϕt

and ϕ−t = ϕn−t are conjugate. 3

(1.1.7) Dihedral groups. Groups can be presented in terms of generators
and relations. We do not enter the theory of such presentations but consider
an example. Let

D2n = 〈 a, b | an = 1 = b2, bab−1 = a−1 〉.

This means: The group is generated by two elements a and b, and these
generators satisfy the specified relations. The universal property of this
presentation is: The homomorphisms α : D2n → H into any other group
H correspond bijectively to pairs (A = α(a), B = α(b)) in H such that
An = 1 = B2, BAB−1 = A−1.

Thus 1-dimensional representations over C correspond to complex numbers
A,B such that An = B2 = A2 = 1. If n is odd there are two pairs (1,±1); if n
is even there are four pairs (±1,±1).
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A 2-dimensional representation on the R-vector space C is specified by
a · z = λz, b · z = z where λn = 1. Complex conjugation shows that the
representations which correspond to λ and λ are isomorphic. Denote the rep-
resentation obtained from λ = exp(2πit/n) by Vt.

The group D2n has order 2n and is called the dihedral group of this
order. From a geometric viewpoint, D2n is the orthogonal symmetry group of
the regular n-gon in the plane. A faithful matrix representation D2n → O(2) is
obtained by choosing λ = exp(2πi/n). The powers of a correspond to rotations,
the elements atb to reflections. 3

(1.1.8) Example. The real representations ϕt, 1 ≤ t < n/2, of Cn in 1.1.6
are irreducible. A nontrivial sub-representation would be one-dimensional and
spanned by an eigenvector of ϕt(a).

If we consider ϕt as a complex representation, then it is no longer irre-
ducible, since eigenvectors exist. In terms of matrices

PD(α)P−1 =
(

exp(iα) 0
0 exp(−iα)

)
, P =

1√
2

(
1 i
i 1

)
.

The representations Vt, 1 ≤ t < n/2 of D2n in 1.1.7 are irreducible, since they
are already irreducible as representations of Cn. But this time they remain
irreducible when considered as complex representations. The reason is, that
PBP−1 does not preserve the eigenspaces. 3

Problems

1. The dihedral group D2n has the presentation 〈 s, t | s2 = t2 = (st)n = 1 〉.
2. Recall the notion of a semi-direct product of groups and show that D2n is the
semi-direct product of Cn by C2.
3. Let Q4n = 〈 a, b | an = b2, bab−1 = a−1 〉, n ≥ 2. Deduce from the relation
b4 = a2n = 1. Show that Q4n is a group of order 4n. Show that a 7→ exp(πi/n), b 7→ j
induces an isomorphism of Q4n with a subgroup of the multiplicative group of the
quaternions. The group Q4n is called a quaternion group. Show that Q4n has
also the presentation 〈 s, t | s2 = t2 = (st)n 〉. Construct a two-dimensional faithful
irreducible (matrix) representation over C.
4. Let A4 be the alternating group of order 12 (even permutations in S4). Show:
A4 has 3 elements of order 2, 8 elements of order 3. Show that A4 is the semi-direct
product of C2 ×C2 by C3. Show A4 = 〈 a, b | a3 = b3 = (ab)2 = 1 〉; show that s = ab
and t = ba are commuting elements of order 2 which generate a normal subgroup.
Show that the matrices

a =

0@0 0 1
1 0 0
0 1 0

1A b =

0@ 0 −1 0
0 0 1
−1 0 0

1A
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define a representation on R3 as a symmetry group of a regular tetrahedron.
5. A representation of C2 on V amounts to specifying an involution T : V → V , i.e.,
a linear map T with T 2 = id. If the field K has characteristic different from 2 show
that V is the direct sum of the ±1-eigenspaces of T . (Consider the operators 1

2
(1+T )

and 1
2
(1− T ).)

1.2 Group Actions and Permutation Represen-
tations

In this section we collect basic terminology about group actions. We use group
actions to construct the important class of permutation representations.

Let G be a multiplicative group with unit element e. A left action of a
group G on a set X is a map

ρ : G×X → X, (g, x) 7→ ρ(g, x) = g · x = gx

with the properties g(hx) = (gh)x and ex = x for g, h ∈ G and x ∈ X. The
pair (X, ρ) is called a (left) G-set. Each g ∈ G yields the left translation
lg : X → X, x 7→ gx by g. It is a bijection with inverse the left translation by
g−1. An action is called effective, if lg for g 6= e is never the identity. We also
use (right) actions X × G → X, (x, g) 7→ xg. They satisfy (xh)g = x(hg)
and xe = x. Usually we work with left G-actions.

A subset A of a G-set X is called G-stable or G-invariant, if g ∈ G and
a ∈ A implies ga ∈ A.

Recall that we defined a representation as a group action on a vector space
with the additional property that the left translations are linear maps. We now
use group actions to construct representations.

Let S be a finite (left) G-set and denote by KS the vector space with K-
basis S. Thus elements in KS are linear combinations

∑
s∈S λss with λs ∈ K.

The left action of G on S is extended linearly to KS

g · (
∑

s∈S λss) =
∑

s∈S λs(g · s) =
∑

x∈S λg−1xx.

The resulting representation is called the permutation representation of S.
An important example is obtained from the group G = S with left action by
group multiplication. The associated permutation representation is the left
regular representation of the finite group G. Right multiplication leads to
the right regular representation.

Let X be a G-set. Then R = {(x, gx) | x ∈ X, g ∈ G} is an equivalence
relation on X. Let X/G denote the set of equivalence classes. The class of
x is Gx = {gx | g ∈ G} and called the orbit through x. We call X/G the
orbit set or (orbit space) of the G-set X. An action is called transitive, if
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it consists of a single orbit. For systematic reasons it would be better to denote
the orbit set of a left action by G\X. If right and left actions occur, we use
both notations.

A group acts on itself by conjugation G×G→ G, (g, h) 7→ ghg−1. Elements
are conjugate if they are in the same orbit. The orbits are called conjugation
classes. A function on G is called a class function, if it is constant on
conjugacy classes.

Let H be a subgroup of G. We have the set G/H of right cosets gH with
left G-action by left translation

G×G/H → G/H, (k, gH) 7→ kgH.

G-sets of this form are called homogeneous G-sets. Similarly, we have the set
H\G of left cosets Hg with an action by right translation.

We write H ≤ G, if H is a subgroup of G, and H < G, if it is a proper
subgroup. On the set Sub(G) of subgroups of G the relation ≤ is a partial
order.

The group G acts on Sub(G) by conjugation (g,H) 7→ gHg−1 = gH. The
orbit through H consists of the subgroups H of G which are conjugate to H.
We write K ∼ L or K ∼G L, if there exists g ∈ G such that gKg−1 = L. We
denote by (H) the conjugacy class of H. Let Con(G) be the set of conjugacy
classes of subgroups of G. We say H is subconjugate to K in G, if H is
conjugate in G to a subgroup of K. We denote this fact by (H) ≤ (K); and by
(H) < (K), if equality is excluded.

The stabilizer or isotropy group of x ∈ X is the subgroup Gx = {g ∈
G | gx = x}. We have Ggx = gGxg

−1. An action is called free, if all isotropy
groups are trivial. The set of isotropy groups of X is denoted Iso(X).

A family F of subgroups is a subset of Sub(G) which consists of complete
conjugacy classes. If F and G are families, we write F ◦ G for the family of
intersections {K∩L | K ∈ F , L ∈ G}. We call F multiplicative, if F ◦F = F ,
and G is called F-modular, if F◦G ⊂ G. A family is called closed, if it contains
with a group all supergroups, and it is called open, if it contains with a group
all subgroups. Let (F) denote the set of conjugacy classes of F . Suppose
Iso(X) ⊂ F , then we call X an F-set. We denote by X(F) the subset of points
in X with isotropy groups in F .

A G-map f : X → Y between G-sets, also called a G-equivariant map, is
a map which satisfies f(gx) = gf(x) for all g ∈ G and x ∈ X. Left G-sets and
G-equivariant maps form the category G-SET. By passage to orbits, a G-map
f : X → Y induces f/G : X/G → Y/G. The category G-SET of G-sets and
G-maps has products: If (Xj | j ∈ J) is a family of G-sets, then the Cartesian
product

∏
j∈J Xj with so-called diagonal action g(xj) = (gxj) is a product

in this category.
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(1.2.1) Proposition. Let C be a transitive G-set and c ∈ C. Then G/Gc →
C, gGc 7→ gc is a well-defined isomorphism of G-sets (a simple algebraic verifi-
cation). The orbits of a G-set are transitive. Therefore each G-set is isomorphic
to a disjoint sum of homogeneous G-sets. 2

For a G-set X and a subgroup H of G we use the following notations

XH = {x ∈ X | Gx = H},
X(H) = {x ∈ X | (Gx) = (H)}
XH = {x ∈ X | hx = x, h ∈ H},
X>H = XH rXH

X(H) = GXH = {x ∈ X | (H) ≤ (Gx)},
X>(H) = X(H) rX(H).

We call XH the H-fixed point set of X. If f : X → Y is a G-map, then
f(XH) ⊂ Y H . The left translation lg : X → X induces a bijection XH → XK ,
K = gHg−1. The subset X(H) is G-stable; it is called the (H)-orbit bundle
of X.

(1.2.2) Example. The permutation representation KS is always reducible
(|S| > 1). The fixed point set is a non-zero proper sub-representation. The
dimension of (KS)G is |S/G|; a basis of (KS)G consists of the xC =

∑
s∈C s

where C runs through the orbits of S. 3

Suppose X is a right and Y a left H-set. Then X×H Y denotes the quotient
of X×Y with respect to the equivalence relation (xh, y) ∼ (x, hy), h ∈ H. This
is the orbit set of the action (h, (x, y)) 7→ (xh−1, hy) of H on X × Y .

Let G and H be groups. A (G,H)-set X is a set X together with a left G-
action and a right H-action which commute (gx)h = g(xh). If we form X×HY ,
then this set carries an induced G-action g · (x, y) = (gx, y). If f : Y1 → Y2 is
an H-map, then we obtain an induced G-map X ×H f : X ×H Y1 → X ×H Y2.
This construction yields a functor ρ(X) : H- SET→ G- SET.

We apply this construction to the (G,H)-set G = X with action by left
G-translation and right H-translation for H ≤ G. The resulting functor is
called induction functor

indG
H : H- SET→ G- SET .

It is left adjoint to the restriction functor

resG
H : G- SET→ H- SET,

given by considering a G-set as an H-set. The adjointness means that there is
a natural bijection

HomG(indG
H X,Y ) ∼= HomH(X, resG

H Y ).
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It assigns to an H-map f : X → Y the G-map G×H X → Y, (g, x) 7→ gf(x).
One can obtain interesting group theoretic results by counting orbits and

fixed points. We give some examples.

(1.2.3) Proposition. Let P be a p-group and X a finite P -set; then |X| ≡
|XP | mod p. Let C be cyclic of order pt and D ≤ C the unique subgroup of
order p; then |X| ≡ |XD| mod pt.

Proof. Each orbit in X r XP has cardinality divisible by p. Each orbit in
X rXD has cardinality pt. 2

(1.2.4) Proposition. Let P 6= 1 be a p-group. Then P has a non-trivial
center Z(P ) = {x ∈ P | ∀y ∈ P, xy = yx}.

Proof. Let P act on itself by conjugation (x, y) 7→ xyx−1. The fixed point set
is the center. Since 1 ∈ Z(P ), we see from 1.2.3 that |Z(P )| is non-zero and
divisible by p. 2

(1.2.5) Proposition. Let P be a p-group. There exists a chain of normal
subgroups Pi � P

1 = P0 � P1 � . . .� Pr = P

such that |Pi/Pi−1| = p.

Proof. Induct on |P |. Since subgroups of the center are normal, there exists
by 1.2.4 a normal subgroup P1 of order p. Apply the induction hypothesis to
the factor group P/P1 and lift a normal series to P . 2

(1.2.6) Proposition. Let K be a field of characteristic p and V a KP -
representation for a p-group P . Then V P 6= {0}.

Proof. Let P have order p with generator x. Then lx : V → V has eigenvalues
a root of Xp − 1 = (X − 1)p. Hence 1 is the only eigenvalue. In the general
case choose a normal subgroup Q � P and observe that V Q is a K(P/Q)-
representation. 2

A group A is called elementary abelian of rank n if it is isomorphic to
the n-fold product (Cp)n of cyclic groups Cp of prime order p. We can view
this group as n-dimensional vector space over the prime field Fp.

(1.2.7) Proposition. Let the p-group P act on the elementary abelian p-group
A of rank n by automorphisms. Then there exists a chain 1 = A0 < . . . < An =
A of subgroups which are P -invariant and |Ai/Ai−1| = p. 2

(1.2.8) Counting lemma. Let G be a finite group, M a finite G-set, and
〈 g 〉 the cyclic subgroup generated by g ∈ G. Then |G| · |M/G| =

∑
g∈G |M 〈 g 〉|.
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Proof. Let X = {(g, x) ∈ G×M | gx = x}. Consider the maps

p : X → G, (g, x) 7→ g, q : X →M/G, (g, x) 7→ Gx.

Since p−1(g) = |{g}×M 〈 g 〉|, the right hand side is the sum of the cardinalities
of the fibres of p. Since |q−1(Gx)| = |Gx||Gx| = |G|, the left hand side is the
sum of the cardinalities of the fibres of q. 2

Problems

1. Let X and Y be G-sets. The set Hom(X, Y ) of all maps X → Y carries a left
G-action (g · f)(x) = gf(g−1x). The G-fixed point set Hom(X, Y )G is the subset
HomG(X, Y ) of G-maps X → Y .
2. Let X be a G-set and H ≤ G. Then G ×H X → G/H ×X, (g, x) 7→ (gH, gx) is
a bijection of G-sets. If Y is a further H-set, then we have an isomorphism of G-sets
G×H (X × Y ) ∼= X × (G×H Y ).
3. Determine the conjugacy classes of D2n and Q4n.
4. The orbits of G/K×G/L correspond bijectively to the double cosets K\G/L; the
maps

G\(G/K ×G/L)→ K\G/L, G · (uK, vL) 7→ Ku−1vL

K\G/L→ G\(G/K ×G/L), v 7→ G · (eK, vL)

are inverse bijections.

1.3 The Orbit Category

The full subcategory of G-SET with object the homogeneous G-sets is called
the orbit category Or(G) of G.

(1.3.1) Proposition. Let H and K be subgroups of G.
(1) There exists a G-map G/H → G/K if and only if (H) is subconjugate

to (K).
(2) Each G-map G/H → G/K has the form Ra : gH 7→ gaK for an a ∈ G

such that a−1Ha ⊂ K.
(3) Ra = Rb if and only if a−1b ∈ K.
(4) G/H and G/K are G-isomorphic if and only if H and K are conjugate

in G.

Proof. Let f : G/H → G/K be equivariant and suppose f(eH) = aK. By
equivariance, we have for all h ∈ H the equalities aK = f(eH) = f(hH) =
hf(eH) = haK and hence a−1Ha ⊂ K. The other assertions are easily verified.

2
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We denote by NGH = NH = {n ∈ G | nHn−1 = H} the normalizer of
H in G and by WG(H) = WH the associated quotient group NH/H (Weyl-
group). Suppose G is finite. Then n−1Hn ⊂ H implies n−1Hn = H. Hence
each endomorphism of G/H is an automorphism. A G-map f : G/H → G/H
has the form gH 7→ gnfH for a uniquely determined coset nf ∈ WH. The
assignment f 7→ n−1

f is an isomorphism AutG(G/H) ∼= WH.

(1.3.2) Proposition. The right action of the automorphism group

G/H ×WH → G/H, (gH, nH) 7→ gnH

is free. Hence for each K ≤ G the set G/HK carries a free WH-action and
the cardinality |G/HK | is divisible by |WH|. We have G/HH = WH. 2

(1.3.3) Example. The assignment

ΨL : HomG(G/L,X)→ XL, α 7→ α(eL)

is a bijection. The inverse sends x ∈ XL to gL 7→ gx. We have

G/LK = {sL | s−1Ks ≤ L}.

Given sL ∈ G/LK then Rs : G/K → G/L, gK 7→ gsL is the associated mor-
phism. The diagram

HomG(G/L,X)
ΨL //

R∗
s��

XL

ls
��

HomG(G/K,X)
ΨK // XK

is commutative. We view the ΨL as a natural isomorphism from the Hom-
functor HomG(−, X) to the fixed point functor. The left translation by
n ∈ NK maps XK into itself. In this way, XK becomes a WK-set. 3

Let G be a finite group. The fixed point set G/LK is the set {sL | s−1Ks ≤
L}. Let A ≤ L be G-conjugate to K. Consider the subset

G/LK(A) = {tL | t−1Kt ∼L A}.

The set G/LK has a left NGK-action (n, sL) 7→ nsL. The subsets G/LK(A)
are NGK-invariant.

(1.3.4) Proposition. Suppose s−1Ks = A. The assignment

NG(A)/NL(A)→ G/LK(A), nNL(A) 7→ snL

is a bijection.
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Proof. Since n−1s−1Ksn = n−1An = A ≤ L the element snL is contained in
G/LK . The map is well-defined, because NL(A) ≤ A. If snL = smL, then
m−1n ∈ L ∩NG(A) = NL(A), and we see that the map is injective.

Suppose A ∼L t−1Kt ≤ L. Then there exists l ∈ L such that t−1Kt =
l−1Al, hence s−1tl−1 ∈ NG(A), and tL = snL. We see that the map is surjec-
tive. 2

We can rewrite this result in terms of the NG(K)-action on G/LK . The sub-
set G/LK(A) is an NG(K)-orbit; and the isotropy group at sL is sNL(A)s−1.
The fixed point set G/LK is the disjoint union of the G/LK(A) where (A) runs
over the L-conjugacy classes of the subgroups A ≤ L which are G-conjugate to
K.

Since the homogeneous G-sets correspond to the subgroups of G we can
consider a modified orbit category: The objects are the subgroups of G and the
morphisms K → L are the G-maps G/K → G/L. Since we are working with
left actions we denote this category by •Or(G). There is a similar category
Or•(G) where the morphisms K → L are the G-maps K\G → L\G. If we
assign to Rs : G/K → G/L the map Ls−1 : K\G → L\G,Kg 7→ Ls−1g, then
we obtain an isomorphism •Or(G)→ Or•(G).

The transport category Tra(G) of G has as object set the subgroups of G,
and the morphism set Tra(K,L) consists of the triples (K,L, s) with s ∈ G and
sKs−1 ⊂ L. We denote Tra(K,L) also as {s ∈ G | sKs−1 ≤ L} and pretend
that the morphism sets are disjoint. Composition is defined by multiplication
of group elements. In this context we work with the orbit category Or•(G) of
right homogeneous G-sets. We have a functor

q : Tra(G)→ Or•(G).

It is the identity on objects and sends (K,L, s) to ls : K\G→ L\G, Kg 7→ Lsg.
The endomorphism sets in both categories are groups

Tra(K,K) = NK, Or•(K,K) = WK.

Via composition, Tra(K,L) carries a left action of NL = Tra(L,L) and a right
action of NK = Tra(K,K). These actions commute. Similarly for the category
Or•(G). The functor q is surjective on Hom-sets and induces a bijection

L\Tra(K,L) ∼= Or•(K,L).

Let

(K,L)∗ = {A | A ≤ L,A ∼G K} (1.1)
(K,L)∗ = {B | K ≤ B,B ∼G L}. (1.2)

(These sets can be empty.) We have bijections

Tra(K,L)/NK ∼= (K,L)∗, s ·NK 7→ sKs−1,
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NL\Tra(K,L) ∼= (K,L)∗, NL · s 7→ s−1Ls.

They imply the counting identities

|(K,L)∗| · |NK| = |(K,L)∗| · |NL| = |G/LK | · |L|. (1.3)

The integers ζ∗(K,L) = |(K,L)∗| and ζ∗(K,L) = |(K,L)∗| depend only on
the conjugacy classes of K and L. The Con(G) × Con(G)-matrices ζ∗ and ζ∗
have the property that their entries at (K), (L) are zero if (K) 6≤ (L), and the
diagonal entries are 1. They are therefore invertible over Z, and their respective
inverses µ∗ and µ∗ have similar properties. In order to see this, ones solves the
equation ∑

(A) ζ
∗(K,A)µ∗(A,L) = δ(K),(L) (1.4)

inductively for µ∗(K,L); the induction is over |{(A) | (K) ≤ (A) ≤ (L)}|. The
matrices µ∗ and µ∗ are called the Möbius-matrices of Con(G). Let N denote
the diagonal matrix with entry |NK| at (K), (K). Then (1.3) says

ζ∗N = Nζ∗, Nµ∗ = µ∗N.

Let G be abelian. Then

ζ∗(K,L) = ζ∗(K,L) = ζ(K,L) = 1, for (K) ≤ (L).

Hence also µ∗ = µ∗ = µ in this case.

(1.3.5) Proposition. Let G ∼= (Z/p)d be elementary abelian. Then µ(1, G) =
(−1)dpd(d−1)/2.

Proof. The direct proof from the definition is a classical q-identity. For an
indeterminate q we define the quantum number

[n]q =
qn − 1
q − 1

= 1 + q + q2 + · · ·+ qn−1,

and the q-binomial coefficient

[n]q! = [1]q[2]q · · · [nq],
(
n

a

)
q

=
[n]q!

[a]q![n− a]q!
.

With a further indeterminate z the following generalized binomial identity holds

n∑
j=0

(−1)j

(
n

j

)
q

qj(j−1)/2zj =
n−1∏
k=0

(1− qkz). (1.5)

A proof can be given by induction over n, as in the case of the classical binomial
identity. If q is a prime, then

(
n
j

)
q

is the number of j-dimensional subspaces of
Fn

q . For z = 1 the identity (1.5) yields inductively the values of the µ-function
as claimed. 2
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There are two more quotient categories of the transport category. The
homomorphism category Sc(G) has as morphism set the homomorphisms
K → L which are of the form k 7→ gkg−1 for some g ∈ G. Two elements of G
define the same homomorphism if they differ by an element of the centralizer
ZK of K in G. We can therefore identify the morphism set Sc(K,L) with
Tra(K,L)/ZK.

Finally we can combine the orbit category and the homomorphism cate-
gory. In the category Sci(G) we consider homomorphisms K → L up to inner
automorphisms of L; thus the morphism set Sci(K,L) can be identified with
the double coset L\Tra(K,L)/ZK.

Problems

1. S be a G-set and K ≤ G. We have a free left WK-action on SK via left translation.
The inclusion SK ⊂ S(K) induces a bijection SK/WK ∼= S(K)/G. The map

G/K ×WK SK → S(K), (gK, x) 7→ gx

is a bijection of G-sets.

2. Suppose D ≤ G is cyclic. Then |D||G/DA| = |NGA| if (A) ≤ (D). Hence

ζ∗(A, D) = 1 for (A) ≤ (D). If µ : N→ Z denotes the classical Möbius-function, then

µ∗(A, D) = µ(|D/A|) and µ∗(A, D) = NA/NDµ(|D/A|). (The function µ is defined

inductively by µ(1) = 1 and
P
d|n µ(d) = 0 in the case that n > 1.)

1.4 Möbius Inversion

We discuss in this section the Möbius matrices from a combinatorial view point.
Let (S,≤) be a finite partially ordered set (= poset). The Möbius-function of
this poset is the function µ : S × S → Z with the properties

µ(x, x) = 1,
∑

y,x≤y≤z µ(x, y) = 0 for x < z, µ(x, y) = 0 for x 6≤ y.

These properties allow for an inductive computation of µ. We use the Möbius-
function for the Möbius-inversion: Let f, g : S → Z be functions such that

g(x) =
∑

y,x≤y f(y). (1.6)

Then

f(x) =
∑

y,x≤y µ(x, y)g(y). (1.7)
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A more general combinatorial formalism uses the associative incidence algebra
with unit I(S,≤) of a poset. It consists of all functions f : S × S → Z such
that f(x, y) = 0 if x 6≤ y with pointwise addition and multiplication

(f ∗ g)(x, y) =
∑

z,x≤z≤y f(x, z)g(z, y).

(One can, more generally, define a similar algebra for functions into a commu-
tative ring R.) The unit element of this algebra is the Kronecker-delta

δ(x, y) = 1, for x = y, δ(x, y) = 0, otherwise.

If we define the function ζ by ζ(x, y) = 1 for x ≤ y, then the Möbius-function is
the inverse of ζ in this algebra µ = ζ−1. The group of functions α : S → Z be-
comes a left module over the incidence algebra via (f ∗α)(x) =

∑
y f(x, y)α(y).

We can now write (1.6) and (1.7) in the form g = ζ ∗ f , f = ζ−1 ∗ g = µ ∗ g.
Let G be a finite group. We apply this to the poset (Sub(G),≤) and write

µ(1,H) = µ(H), with the trivial group 1. Conjugation of subgroups yields an
action of G on this poset by poset automorphisms. Let ICon(G) denote the
subalgebra of I(Sub(G),≤) of invariant functions f(K,L) = f(gKg−1, gLg−1).
We also have the poset (Con(G),≤) of conjugacy classes. For f ∈ ICon(G)
we define f∗(K,L) =

∑
{f(A,L) | A ∈ (K,L)∗} and f∗(K,L) =

∑
{f(K,B) |

B ∈ (K,L)∗}; see (1.1) and (1.2) for the notation. One verifies that f∗(K,L)
and f∗(K,L) only depend on the conjugacy classes of K and L. Moreover:

(1.4.1) Proposition. The assignments

c∗ : ICon(G)→ I(Con(G)), f 7→ f∗, c∗ : ICon(G)→ I(Con(G)), f 7→ f∗

are unital algebra homomorphisms. 2

With these notations c∗(ζ) = ζ∗, c∗(ζ) = ζ∗ In particular, since ζ ∈ ICon,
we have in I(Con(G)) the inverses µ∗ of ζ∗ and µ∗ of ζ∗. Recall that ζ∗(K,L) =
|(K,L)∗| and ζ∗(K,L) = |(K,L)∗|.

Let S be a finite G-set. Then we have SH =
∐

H≤K SK and hence

|SH | =
∑

K,H≤K µ(H,K)|SK |.

Since S(H)
∼= G/H ×WH SH , we see that the number mH(S) of orbits of type

H in S is given by

mH(S) = 1
|WH|

∑
K,H≤K µ(H,K)|SK |;

note that |S(H)/G| = |SH/WH|, and WH acts freely on SH . We rewrite this
in terms of conjugacy classes:

mH(S) = 1
|WH|

∑
(K),(H)≤(K) µ

∗(H,K)|SK |.
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1.5 The Möbius Function

In this section we investigate the Möbius-function by combinatorial methods.

(1.5.1) Lemma. Let 1 6= N�G and N ≤ K ≤ G. Then
∑

X,XN=K µ(X) = 0.

Proof. By definition of µ, this holds for K = N . We assume inductively, that
the assertion holds for all proper subgroups Y of K which do not contain N .
The computation

0 =
∑

X≤K

µ(K) =
∑

X,XN=K

µ(X) +
∑

N≤Y <K

( ∑
XN=Y

µ(X)
)

=
∑

X,XN=K

µ(X)

yields the claim. 2

(1.5.2) Proposition. Let N � G and let Co(G,N) = {K ≤ G | KN =
G,K ∩N = 1} be the set of complements of N in G. Then

µ(G) = µ(G/N) ·
∑

K∈Co(G,N)

µ(K,G).

Proof. (An empty sum yields zero.) The assertion is trivial in the case that
N = 1; hence assume N > 1. By 1.5.1,

µ(G) = −
∑

X<G,XN=G

µ(X).

We use induction over the order of G. This yields for the summand µ(X)

µ(X) = µ(X/X ∩N) ·
∑

K∈Co(X,X∩N)

µ(K,X).

Since XN = G we have G/N ∼= X/X ∩N . Therefore µ(G) equals

−µ(G/N) ·
∑

X<G,XN=G

( ∑
K∈Co(X,X∩N)

µ(K,X)

)
.

One verifies that the following conditions (1) and (2) on X,K are equivalent:
(1) X < G, XN = G, K ∈ Co(X,X ∩N)
(2) K ≤ X < G, K ∈ Co(G,N).

For (1) says K ≤ X < G,K ∩ N = 1;XN = G,K · (X ∩ N) = X, and (2)
says K ≤ X < G,K ∩ N = 1;K · N = G. In order to prove (1) ⇒ (2) we
multiply the last equation in (1) with N . In order to prove (2) ⇒ (1) we use
the modular property of the subgroup lattice which says in general terms: For
A,B,C ≤ G and A ≤ C the equality AB ∩C = A(B ∩C) holds. By definition
of µ we know ∑

X,K≤X<G

µ(K,X) = −µ(K,G).

Now we put everything together and obtain the claim. 2
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(1.5.3) Proposition. Let G be a group with µ(G) 6= 0. Let N ≤ M �G and
N �G. Then M/N has a complement in G/N .

Proof. By the previous note, µ(G/N) 6= 0. Therefore it suffices to treat the
case N = 1. But then, again by 1.5.2, Co(G,M) 6= ∅. 2

The Frattini-subgroup Φ(G) of G is the intersection of its maximal sub-
groups. The first assertion of the next note follows immediately from the def-
inition of Φ(G). For the second one we use the fact that a maximal subgroup
of a p-group is a normal subgroup of index p. See [?, III.3.2 and III.3.14].

(1.5.4) Proposition. (1) Let N �G. Then there exists H < G with G = NH
if and only if N is not contained in Φ(G).
(2) Let G be a p-group. Then G/Φ(G) is elementary abelian, and Φ(G) is the
smallest normal subgroup N such that G/N is elementary abelian. 2

(1.5.5) Corollary. 1.5.3 and 1.5.4 imply:
(1) Let µ(G) 6= 0. Then Φ(G) = 1.
(2) If G is a p-group and µ(G) 6= 0, then G is elementary abelian.

Proof. (1) Suppose µ(G) 6= 0. Then we know from 1.5.3 that Φ(G) has a
complement in G, and this is impossible, by 1.5.4(1), if Φ(G) 6= 1.

(2) If G is not elementary abelian, then Φ(G) 6= 1, by 1.5.4(2), and therefore
µ(G) = 0. 2

We now reprove 1.3.5.

(1.5.6) Proposition. Let P be a p-group. Then µ∗(1,H) 6= 0 if and only if
H ≤ P is elementary abelian. If H is elementary abelian of order |H| = pd,
then µ∗(1,H) = (−1)dpd(d−1)/2|P/NH|.

Proof. We have just seen a proof of the first assertion. It remains to determine
µ(G) for elementary abelian G. We induct over |G|. Suppose A ≤ G, |A| = p,
and |G| = pd. Among the (pd − 1)/(p − 1) = b maximal subgroups exactly
(pd−1 − 1)/(p− 1) = a contain the subgroup A. Therefore A has b− a = pd−1

complements. By 1.5.2, µ(G) = −pd−1µ(G/A), since µ(K,G) = −1 for a
maximal subgroup K. 2

Problems

1. The function H 7→ µ(H, A5) is displayed in the next table.

1 Z/2 Z/3 Z/5 D2 D3 D5 A4 A5

−60 4 2 0 0 −1 −1 −1 1
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1.6 One-dimensional Representations

We study in some detail the simplest type of representations, namely one-
dimensional representations of finite groups G over the complex numbers; these
are just the homomorphisms G→ C∗. These representations do not need much
theory, and they will be used at various occasions, e.g., as input for the con-
struction of more complicated representations (later called induced representa-
tions). The set X(G) = G∗ of these homomorphisms becomes an abelian group
with product (α · β)(g) = α(g)β(g). A homomorphism ϕ : A → B induces a
homomorphism X(ϕ) : X(B) → X(A), β 7→ β ◦ ϕ. In this manner X yields
a contravariant functor from finite groups to finite abelian groups. The group
X(G) will be called the character group of G, and α ∈ X(G) is a (linear)
character of G.

Since C∗ is abelian, a homomorphism α : G → C∗ maps the commutator
subgroup [G,G] = G′, generated by the commutators uvu−1v−1, to 1 and
induces α : G/[G,G] → C∗. The factor group G/[G,G] is abelian and it is
called the abelianized quotient Gab of G.

For the cyclic group Cm = 〈 c | cm = 1 〉 the character group X(Cm) is
the cyclic group of order m generated by ρ : c 7→ exp(2πi/m). Let G and
H be groups. Let α : G → C∗ and β : H → C∗ be homomorphisms. Then
α� β : G×H → C∗, (g, h) 7→ α(g)β(h) is again a homomorphism, and

� : G∗ ×H∗ −→ (G×H)∗, (α, β) 7−→ α� β

is a homomorphism between character groups. One verifies that � is an iso-
morphism1.

For a finite abelian group A the group A∗ is isomorphic to A. This fol-
lows from the previous remarks and the structure theorem about finite abelian
groups which says that each such group is isomorphic to a product of cyclic
groups.

Let H �G be a normal subgroup of G. Then the group G acts as a group
of automorphisms on X(H) by (g · γ)(h) = γ(ghg−1). If γ is the restriction
of a homomorphism α ∈ X(G), then g · γ = γ. Therefore the restriction
homomorphism X(G)→ X(H) has an image in the fixed point group X(H)G;
its elements are called G-invariant. Note that the G-action on X(H) factors
over G/H.

Let G be the semi-direct product of the normal subgroup A and a group P ,
i.e. G = AP and A ∩ P = 1. Let

Γ: X(G)→ X(A)P ×X(P )

be the product of the restriction homomorphisms.

1Recall the categorical notion: sum in the category of abelian groups.
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(1.6.1) Proposition. Γ is an isomorphism.

Proof. Since γ ∈ X(G) is determined by the restrictions to A and P , the map
Γ is injective. Given α ∈ X(A)P , i.e. α(a) = α(xax−1) for a ∈ A, x ∈ P , and
β ∈ X(P ). Define a map γ : G→ C∗ by γ(ax) = α(a)β(x). We verify that γ is
a homomorphism

γ(axa1x1) = γ(axa1x
−1xx1)

= α(axa1x
−1)β(xx1)

= α(a)α(xa1x
−1)β(x)β(x1)

= α(a)β(x)α(a1)β(x1)
= γ(ax)γ(a1x1).

By construction, Γ(γ) = (α, β). 2

A homomorphism α ∈ X(A) is P -invariant if and only if it vanishes on the
normal subgroup AP generated by the elements axa−1x−1 for a ∈ A and x ∈ P .
Thus the quotient map π : A → A/AP induces an isomorphism X(A/AP ) →
X(A)P .

(1.6.2) Proposition. Let the group P act on the abelian group A by automor-
phisms (x, a) 7→ x �a. Suppose (|A|, |P |) = 1. Let AP ≤ A denote the subgroup
generated by the elements a · (x � a)−1. Then the inclusion ι : AP 7→ A/AP is
an isomorphism.

Proof. For a ∈ A set µ(a) =
∏

x∈P (x � a). Then µ(a) ∈ AP , and for a ∈ AP

we have µ(a) = a|P |. Since |P | is prime to the order of A, the map a 7→ a|P | is
an automorphism of A and AP . The group AP is contained in the kernel of µ,
since, by construction, µ(y � a) = µ(a) for a ∈ A and x ∈ P . Hence we obtain
an induced map ν : A/AP → AP , and ν ◦ ι is an isomorphism. On the other
hand ιν(a) = a|P |

∏
((x � a)a−1), and this shows that ι ◦ ν is an isomorphism

too. 2

As a consequence of 1.6.1 and 1.6.2 we obtain the next result which will
later be used in the proof of the Brauer induction theorem 4.6.5.

(1.6.3) Proposition. Let G = AP be the semi-direct product of the abelian
subgroup A by P . Suppose (|A|, |P |) = 1. Then the restriction X(G) →
X(AP × P ) is an isomorphism. 2

We continue the study of one-dimensional representations and demonstrate
their use in group theory. Let H ≤ G and α ∈ X(H). We associate to α an
element mG

Hα ∈ X(G). For this purpose we choose a representative system
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g1, . . . , gr of G/H. For each g ∈ G we have ggi = gσ(i)hi with a permutation
σ ∈ Sr and certain hi ∈ H. We set

(mG
Hα)(g) =

r∏
i=1

α(g−1
σ(i)ggi) =

r∏
i=1

α(hi).

One verifies that mG
Hα is a well-defined homomorphism and that, moreover,

mG
H : X(H) → X(G) is a homomorphism. We call it multiplicative induc-

tion.
We use this construction to deal with the question: Given α ∈ X(H), when

does there exist an extension β ∈ X(G) such that β|H = α? Suppose it exists.
Then for h ∈ H, u ∈ G and g = uhu−1 we have β(g) = β(h). Thus a necessary
condition for the existence of β is that α is trivial on the subgroup H0 generated
by {xy−1 | x ∼G y, x, y ∈ H}.

(1.6.4) Proposition. Suppose H and G/H have coprime order. Then an
extension β exists if and only if α vanishes on H0.

Proof. Let α have the stated property. We compute mG
Hα(h) for h ∈ H. For

this purpose we make a special choice of the coset representatives: The cyclic
group 〈h 〉 acts on G/H; let gH, hgH, . . . , ht−1gH be an orbit, and suppose
htg = gh̃. Then this orbit contributes α(h̃) = α(g−1htg) = α(h)t to the
product in the definition of mG

Hα. Altogether we obtain resG
H mG

Hα = α|G/H|.
Hence if H and G/H have coprime order, then resG

H mG
H is an automorphism

because |X(H)| is coprime to |G/H|. Therefore there exists an extension. 2

(1.6.5) Proposition. Let H be a Sylow p-subgroup of G. Then H0 = H ∩G′.

Proof. If y = g−1xg, then xy−1 = xg−1x−1g, so that P ′ ≤ P0 ≤ P ∩ G′. It
remains to show P ∩ G′ ≤ P0. Given x ∈ P r P0, there exists λ ∈ X(P )
such that λ(x) 6= 1 with trivial λ|P0. By the previous proposition, λ has an
extension θ : G→ C∗. Since θ(x) 6= 1, we see that x 6∈ P ∩G′. 2

The previous considerations lead to a simple proof of the so-called normal
complement theorem.

(1.6.6) Proposition. Let G(p) be an abelian Sylow p-group of G and assume
that NG(p) = G(p). Then there exists a normal subgroup H � G such that
N ∩G(p) = 1.

Proof. The quotient G/G′ has Sylow group G(p) if G′ ∩ P = P0 = 1. This
means: Suppose x, y ∈ P are conjugate in G, then x = y. This is a consequence
of the next lemma. Since G/G′ is abelian, there exists a complement of G(p),
and the pre-image in G is the required complement. 2

(1.6.7) Lemma. Let G have abelian Sylow p-group P . Suppose x, y ∈ P are
conjugate in G. Then they are conjugate in NGP .
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Proof. Let y = gxg−1. Since P is abelian, P is a subgroup of the central-
izer CG(y) of y in G, moreover g(CG(x))g−1 = CG(y). Hence gPg−1 and
P are Sylow groups of CG(y). Therefore there exists n ∈ CG(y) such that
ngPg−1n−1 = P . Hence ng ∈ NG(P ) and y = ny−1 = ngxg−1n−1. 2

Problems

1. Let B be a subgroup of the finite abelian group A. Show that for each a ∈ A r B

there exists α ∈ X(A) with α(a) 6= 1.

2. The isomorphism between G and G∗ is not natural, but there exists a canonical

and natural isomorphism G→ X(X(G)), G abelian. (This is analogous to the double

dual of finite dimensional vector spaces.)

3. Let 1 → A
ϕ→ B

ψ→ C → 1 be an exact sequence of finite abelian groups. Then

the functor X transforms it into an exact sequence. Exactness at X(B) and X(C)

is formal; for the exactness at X(A) one can use the knowledge of the order of this

group.

1.7 Representations as Modules

The vector space KG has more structure than just carrying the left and right
regular representation.

There is a bilinear map KG×KG→ KG which extends the group multi-
plication (g, h) 7→ gh of the basis elements. This bilinear map defines on KG
the structure of an associative algebra with unit. This algebra is called the
group algebra KG of G over K. The multiplication in the group algebra is
therefore defined by the formula

(
∑

g∈G λ(g)g) · (
∑

h∈G µ(h)h) =
∑

g,h λ(g)µ(h)gh =
∑

u∈G γ(u)u

with γ(u) =
∑

g∈G λ(g)µ(g−1u). Another model for the group algebra is the
vector space C(G,K) of functions G→ K with convolution product

(α ∗ β)(u) =
∑

g∈G α(g−1)β(u−1g).

The assignment C(G,K) → KG,ϕ 7→
∑

g ϕ(g−1)g is an isomorphism of alge-
bras. Under this isomorphism the natural left-right action on C(G,K), given
by

(g · ϕ · h)(x) = ϕ(hxg),

corresponds to the left-right action on KG.
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(1.7.1) Example. The group algebra of the cyclic group Cn = 〈x | xn = 1 〉
is the quotient K[x]/(xn − 1) of the polynomial algebra K[x] by the principal
ideal (xn − 1). 3

We now come to the third form of a representation, that of a module over
the group algebra. Let V be a KG-representation. The bilinear map

KG× V → V, (
∑

g λ(g)g, v) 7→
∑

g λ(g)(g · v)

is the structure of a unital KG-module on the vector space V . The element∑
g λ(g)g ∈ KG acts on V as the linear combination

∑
g λ(g)g. A morphism

V → W of representations becomes a KG-linear map. Conversely, given a
KG-module M we obtain a representation on M by defining lg as the scalar
multiplication by g ∈ KG in the module. In this manner, the category KG-
Rep of finite-dimensional KG-representations becomes the category KG- Mod
of left KG-modules which are finite-dimensional as vector spaces. Direct sums
correspond in these categories. A module M over an algebra A is irreducible,
if it has no submodules different from 0 and M .

The view point of modules allows for an algebraic construction of repre-
sentations. Consider KG as a left module over itself. Then a left ideal is a
representation. A non-zero left ideal yields an irreducible module, if it is a min-
imal left ideal with respect to inclusion. Let M be an irreducible KG-module
and 0 6= x ∈ M . Then KG → M,λ 7→ λx is KG-linear; its kernel I is a left
ideal and the induced map KG/I →M an isomorphism, since M is irreducible;
the ideal I is then a maximal ideal.

(1.7.2) Example. The maximal ideals in the group algebra KCn =
K[x]/(xn − 1) correspond to principal ideals (q) ⊂ K[x] where q is an irre-
ducible factor of xn− 1. If K is a splitting field for xn− 1, then the irreducible
factors are linear, and irreducible representations one-dimensional. Over Q,
the polynomial is the product

∏
d|n Φd(x) of the irreducible cyclotomic poly-

nomials Φd. The complex roots of Φd are the primitive d-th roots of unity. As
an example

x6 − 1 = (x− 1)(x+ 1)(x2 + x+ 1)(x2 − x+ 1).

The representation on Q[x]/(x2−x+1) is given in the basis 1, x by the matrix(
0 −1
1 1

)
∈ SL2(Z).

Thus we know that this matrix has order 6; this can, of course, be checked by
a calculation. One the other hand, it is a nontrivial task to find matrices in
SL2(Z) of order 6. 3
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1.8 Linear Algebra of Representations

Standard constructions of linear algebra may be used to obtain new represen-
tations from old ones. We begin with direct sums.

Let V1, . . . Vr be vector spaces over K. Their (external) direct sum V1⊕· · ·⊕
Vr consists of all r-tuples (v1, . . . , vr), vj ∈ Vj with component-wise addition
and scalar multiplication. If the Vj are subspaces of a vector space V , we
say, V is the (internal) direct sum of these subspaces, if each v ∈ V has a
unique presentation of the form v =

∑r
j=1 vj with vj ∈ Vj . We also use the

notation V = ⊕r
j=1Vj , because V is canonically isomorphic to the external

direct sum of the Vj . A subspace U of W is a direct summand, if there exists
a complementary subspace V , i.e., a subspace V such that U ⊕ V = W .

Let (Vj | j ∈ J) be a family of subspaces of V . The sum
∑

j∈J Vj is the
subspace of V generated by the Vj . It is the smallest subspace containing the
Vj and consists of the elements which are sums of elements in the various Vj .
We use the following fact from linear algebra.

(1.8.1) Proposition. Let V1, . . . , Vn be subspaces of V . The following are
equivalent:

(1) V is the internal direct sum of the Vj.
(2) V is the sum of the Vj, and Vj ∩

∑
i 6=j Vi = {0} for all j. 2

We now apply these concepts to representations. We use two simple obser-
vations. If (Vj | j ∈ J) are sub-representations of V , then their sum is again a
sub-representation. The direct sum U ⊕ V of representations becomes a repre-
sentation with respect to the component-wise group action g·(u, v) = (g·u, g·v).
Similarly for an arbitrary number of summands. This defines the direct sum
of representations. If g 7→ A(g) and g 7→ B(g) are matrix representations
associated to U and V , then the block matrices(

A(g) 0
0 B(g)

)
yield a matrix representation for U ⊕ V . A representation is called inde-
composable, if it is not the direct sum of non-zero sub-representations. An
irreducible representation is clearly indecomposable, but the converse does not
hold in general.

(1.8.2) Example. In 1.1.4 we defined two sub-representations Tn, D of the
permutation representation of Sn on Kn. Given (x1, . . . , xn) ∈ Kn write x =
n−1

∑
j xj . Then (x1−x, . . . , xn−x) ∈ Tn and (x, . . . , x) ∈ D. Hence Tn+D =

Kn. The intersection Tn∩D consists of the (y, . . . , y) with ny = 0. This implies
y = 0. Hence Tn⊕D = Kn. But note: This argument requires that n−1 makes
sense in K, i.e., the characteristic of K does not divide n.
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If n = 2 and K = F2 is the field with two elements, then V = W ! The
regular representation is not irreducible, because it has a one-dimensional fixed
point set. If this fixed point set had a complement it would be a one-dimensional
representation, hence a trivial representation. Therefore the regular represen-
tation is indecomposable. 3

Here is another result from linear algebra.

(1.8.3) Proposition. A sub-representation W of V is a direct factor if and
only if there exists a projection morphism q : V → V with image W . A projec-
tion is a morphism q such that q ◦ q = q. If q is a projection, then V is the
direct sum of the image and the kernel of q. 2

Let V and W be representations of G. The tensor product representation
V ⊗K W has the action g(v ⊗ w) = gv ⊗ gw. If v1, . . . , vn is a basis of V and
w1, . . . , wm is a basis of W , then the vi ⊗wk form a basis of V ⊗W . The map
V ×W → V ⊗W, (v, w) 7→ v⊗w is bilinear. If g acts on V and W via matrices
(rij) and (skl), then g acts on V ⊗W via the matrix (rijskl) whose entry in the
(i, k)-th row and (j, l)-th column is rijskl. More explicitely, if gvj =

∑
i rijvi

and gwl =
∑

k sklwk, then

g(vj ⊗ wl) =
∑

i,k rijsklvi ⊗ wk.

If V is one-dimensional and given by a homomorphism α : G → K∗, then
we simply multiply the matrix (skl) with α(g) in order to obtain the tensor
product.

Let V and W be G-representations. We have a G-action on the vector space
Hom(V,W ) of K-linear maps, given by (g · ϕ)(v) = gϕ(g−1v). The fixed point
set is Hom(V,W )G = HomG(V,W ). When W = K is the trivial representation
we obtain the dual representation V ∗ = Hom(V,K) of V . If g 7→ A(g) is the
matrix representation of V with respect to a basis, then g 7→ tA(g)−1 (inverse
of the transpose) is the matrix representation of V ∗ with respect to the dual
basis.

(1.8.4) Note. There is a canonical isomorphism

V ∗ ⊗W
∼=−→ Hom(V,W ), ϕ⊗ w 7→ (u 7→ ϕ(u)w).

One verifies that it is a morphism of G-representations. 2

In some of the constructions one can also use representations for different
groups. Let V be a G-representation and W an H-representation. Then V ⊗W
becomes a G × H-representation via (g, h)(v ⊗ w) = gv ⊗ hw. Similarly, we
have a G×H-action on Hom(V,W ) defined as ((g, h) ·ψ)(v) = hψ(g−1v). With
these actions, 1.8.4 is an isomorphism of G×H-representations.
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(1.8.5) Example. Let S and T be finite G-sets. There are canonical isomor-
phisms

K(S q T ) ∼= K(S)⊕K(T ), K(S × T ) ∼= K(S)⊗K(T ), K(S)∗ ∼= K(S).

They are induced by a G-equivariant bijection of the canonical bases. We
combine with 1.8.4 and obtain

Hom(K(S),K(T )) ∼= K(S)∗ ⊗K(T ) ∼= K(S)⊗K(T ) ∼= K(S × T ).

Together with 1.2.2 we get

dimK HomG(K(S),K(T )) = |(S × T )/G|.

The representation 1.1.4 of Sn on Kn by permutation of coordinates (made
into a left representation by inversion) is isomorphic to K(Sn/Sn−1) where
Sn−1 is the subgroup of Sn which fixes 1 ∈ {1, . . . , n}. The action of Sn−1

on Sn/Sn−1 has two orbits, of length 1 and n − 1. Hence HomSn(Kn,Kn) is
two-dimensional. 3

1.9 Semi-simple Representations

The topic of this section is the decomposition of a representation into a direct
sum of sub-representations.

We begin with a simple and typical example. Let α : G → K∗ be a homo-
morphism. Consider xα =

∑
g∈G α(g−1)g ∈ KG. The computation

h · xα =
∑

g α(g−1)hg =
∑

g α(h)α(g−1h−1)hg = α(h)xα

shows that xα spans a one-dimensional sub-representation V (α) of the regular
representation. Let K = C and G = Cn = 〈 a | an = 1 〉 the cyclic group.
There are n different homomorphisms α(j) : Cn → C∗, 1 ≤ j ≤ n. The vec-
tors xα(j) are different eigenvectors of la. Therefore we have a decomposition
CCn = ⊕jV (α(j)) into one-dimensional representations. A similar decomposi-
tion exists for finite abelian groups G, since we still have |G| homomorphisms
G→ C∗. Our aim is to find analogous decompositions for general finite groups.

(1.9.1) Theorem. Let V be the sum of irreducible representations (Uj | j ∈ J)
and let U be a sub-representation. Then there exist a finite subset E ⊂ J such
that V is the direct sum of U and the Uj , j ∈ E.

Proof. If W 6= V is any sub-representation, then there exists k ∈ J such that
Vk 6⊂W , since V is the sum of the Vj . Then Vk∩W = 0, and W+Vk = W⊕Vk.
If now E ⊂ J is a maximal subset such that the sum W of U and the Vj , j ∈ E
is direct, then necessarily W = V . 2
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(1.9.2) Theorem. The following assertions about a representation M are
equivalent:

(1) M is a direct sum of irreducible sub-representations.
(2) M is a sum of irreducible sub-representations.
(3) Each sub-representation is a direct summand.

Proof. (1)⇒ (2) as special case; and (2)⇒ (3) is a special case of 1.9.1.
(3) ⇒ (1). Let {M1, . . . ,Mn} be a set of irreducible sub-representations

such that their sum N is the direct sum of the Mj . If N 6= M then, by
hypothesis, there exists a sub-representation L such that M = N ⊕ L. Each
sub-representation contains an irreducible one. If Mn+1 ⊂ L is irreducible,
then the sum of the {M1, . . . ,Mn+1} is direct. 2

A representation is called semi-simple or completely reducible if it has
one of the properties (1)-(3) in 1.9.2.

(1.9.3) Proposition. Sub-representations and quotient representations of
semi-simple representations are semi-simple.

Proof. Let M be semi-simple and F ⊂ N ⊂M sub-representations. A projec-
tion M → M with image F restricts to a projection N → N with image F .
Hence F is a direct summand in N .

Suppose N ⊕ P = M ; then the quotient M/N ∼= P is semi-simple. 2

(1.9.4) Proposition. Let V be the sum of irreducible sub-representations (Vj |
J). Then each irreducible sub-representation W is isomorphic to some Vj.

Proof. There exists a surjective homomorphism β : V →W , by 1.8.3 and 1.9.2.
If W were not isomorphic to some Vj , then the restriction of β to each Vj would
be zero, by Schur’s lemma, hence β would be the zero morphism. 2

We write
〈U, V 〉 = dimK HomG(U, V )

for G-representations U and V . This integer depends only on the isomorphism
classes of U and V . Note the additivity 〈U1 ⊕ U2, V 〉 = 〈U1, V 〉 + 〈U2, V 〉,
and similarly for the second argument.

(1.9.5) Proposition. Suppose V = V1⊕· · ·⊕Vr is a direct sum of irreducible
representations Vj. Let W be any irreducible representation and denote by
n(W,V ) the number of Vj which are isomorphic to W . Then

〈W,W 〉n(W,V ) = 〈W,V 〉 = 〈V,W 〉.

Therefore n(W,V ) is independent of the decomposition of V into irreducibles.
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Proof. For a direct sum as above, we have a canonical isomorphism

HomG(W,V ) ∼=
∏r

j=1 HomG(W,Vj).

This expresses the fact that a morphism W → V is nothing else but an r-
tuple of morphisms W → Vj . The assertion is now a direct consequence of
Schur’s lemma. For the second assertion we use the canonical isomorphism
HomG(V,W ) ∼=

∏
j HomG(Vj ,W ). (In conceptual terms: We are using the

fact that ⊕jVj is the sum and the product of the Vj in the category of repre-
sentations.) 2

We call the integer n(W,V ) in 1.9.5 the multiplicity of the irreducible
representation W in the semi-simple representation V . We say W occurs in
V or is contained in V if n(W,V ) 6= 0. In fact, if n(W,V ) 6= 0, then V
has a sub-representation which is isomorphic to W : take a non-zero morphism
W → V and apply Schur’s lemma. The irreducible representation W appears
in V if and only if HomG(W,V ) or HomG(V,W ) is non-zero.

Let W be irreducible and denote by V (W ) the sum of the irreducible
sub-representations of V which are isomorphic to W . We call V (W ) the W -
isotypical part of V , if V (W ) 6= 0, and the decomposition in 1.9.6 is the
isotypical decomposition of V . Let I = Irr(G;K) denote a complete set of
pairwise non-isomorphic irreducible representations of G over K.

(1.9.6) Theorem. A semi-simple representation V is the direct sum of its
isotypical parts.

Proof. Since V is semi-simple it is the direct sum of irreducible sub-
representations and therefore the sum of its isotypical parts. Let A ∈ I and
let Z be the sum of the V (B), B ∈ I,B 6= A. We refer to 1.8.1 and have to
show: V (A)∩Z = 0. Suppose this is not the case. Then the intersection would
contain an irreducible sub-representation, and by 1.9.4 it would be isomorphic
to A and to some B 6= A. Contradiction. 2

1.10 The Regular Representation

We now consider KG as left and right regular representation. For each repre-
sentation U the vector space HomG(KG,U) becomes a left G-representation
via (g · ϕ)(x) = ϕ(x · g).

(1.10.1) Lemma. The evaluation HomG(KG,U) → U, ϕ 7→ ϕ(e) is an iso-
morphism of representations.



1.10 The Regular Representation 31

Proof. We use the fact that KG is a free KG-module with basis e. It is verified
from the definitions that the evaluation is a morphism. Clearly, a morphism
KG→ U is determined by its value at e, and this value can be any prescribed
element of U . 2

(1.10.2) Theorem. Suppose the left regular representation is semi-simple.
Then each irreducible representation U appears in KG with multiplicity nU =
〈U,U 〉−1 dimK U .

Proof. Since U ∼= HomG(KG,U) is non-zero, each irreducible representation
U appears in KG, see the remarks after 1.9.5. Suppose KG ∼=

⊕
W∈I nWW

where nWW denotes the direct sum of nW copies of W . Then

dimU = 〈KG,U 〉 =
∑

W∈I nW 〈W,U 〉 = nU 〈U,U 〉,

the latter by Schur’s lemma. 2

(1.10.3) Proposition. Suppose the left regular representation is semi-simple.
(1) The number of isomorphism classes of irreducible representations is

finite.
(2) |G| =

∑
V ∈I〈V, V 〉−1(dimV )2.

(3) If K is algebraically closed, then |G| =
∑

V ∈I(dimV )2.

Proof. (1) is a corollary of 1.10.2.
(2) Let KG ∼=

⊕
W∈I nWW . We insert the values of nW obtained in 1.10.2.

(3) If the field K is algebraically closed then, by Schur’s lemma, 〈V, V 〉 = 1
for an irreducible representation V . 2

Part (3) of 1.10.3 gives us a method to decide whether a given set of pairwise
non-isomorphic irreducible representations is complete. If G is abelian then
irreducible representations over C are 1-dimensional. By 1.10.3 we see that
there are |G| non-isomorphic such representations; we know this, of course,
from a direct elementary argument.

(1.10.4) Proposition. A finite group G is abelian if and only if the irreducible
complex representations are one-dimensional.

Proof. A one-dimensional complex representation is given by a homomorphism
G→ C∗. The regular representation is faithful. If the regular representation is
a sum of one-dimensional representations, then G has an injective homomor-
phism into an abelian group. The reversed implication was proved in 1.1.3. 2

There remains the question: When is KG semi-simple? Recall some ele-
mentary algebra. For n ∈ N and x ∈ K, an expression nx stands for an n-fold
sum x + · · · + x. A relation nx = 1 exists in K if and only if either K has
characteristic zero or the characteristic p > 0 of K does not divide n. In this
case we say, n is invertible in K. We denote this inverse as usual by n−1.
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(1.10.5) Proposition. If KG is semi-simple, then |G| is invertible in K.

Proof. Suppose KG is semi-simple. Then the fixed set F = {λΣ | λ ∈ K,Σ =∑
g∈G g} is a sub-representation. Hence there exists a projection p : KG→ F .

Since p is G-equivariant, it is determined by the value p(e), say p(e) = µΣ.
Since p is a projection we obtain Σ = p(Σ) =

∑
g∈G p(e) =

∑
g∈G µΣ = |G|µΣ.

Thus we have shown: If KG is semi-simple, then |G| is invertible in K. 2

(1.10.6) Theorem (Maschke). Suppose |G| is invertible in K. Then G-
representations are semi-simple.

Proof. We show that each sub-representation W of a representation V is a
direct summand (see 1.9.2). There certainly exists a K-linear projection
p : V → V with image W . We make it equivariant by an averaging process.
Namely we define

q(v) = 1
|G|
∑

g∈G g
−1p(gv).

At this point we use the fact that |G|−1 makes sense in K. By construction, q
is K-linear as a linear combination of linear maps. For h ∈ G we compute

q(hv) = 1
|G|
∑

g∈G g
−1p(ghv) = 1

|G|h
∑

g∈G h
−1g−1p(ghv) = hq(v),

and this verifies the equivariance. By hypothesis, p(w) = w for w ∈ W , hence
p(gw) = gw and therefore q(w) = w. The values q(v) are contained in W ,
hence W = q(V ) and q2 = q. 2

(1.10.7) Proposition. Suppose V is semi-simple. Then 〈V, V 〉 = 1 implies
that V is irreducible.

Proof. Decompose into irreducibles V =
∑
nWW . Then 1 = 〈V, V 〉 =∑

n2
W 〈W,W 〉, by Schur’s lemma. Hence one of the nW is 1 and the others are

0. 2

Assume that |G| is invertible in K. In order that 1.10.3 holds, it is necessary
to assume that 〈V, V 〉 = 1 for each V ∈ I. If K ⊂ L is a field extension,
then we can view a K-representation as an L-representation (just take the
same matrices). However, an irreducible representation over K may become
reducible over a larger field. This already happens for cyclic groups, as we have
seen in the first section. If KG is semi-simple, then also LG. If the relation
1.10.3 holds forK-representations, then it also holds for L-representations. The
relation 1.10.3 is equivalent to 〈V, V 〉 = 1 for all V ∈ I. If this is the case, we
call K a splitting field for G.

We now present the isotypical decomposition in a more canonical form.
Let V be semi-simple. For each U ∈ I we let D(U) be its endomorphism
algebra. Evaluation of endomorphisms makes U into a left D(U)-module. The
vector space HomG(U, V ) becomes a right D(U)-module via composition of
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endomorphisms. The evaluation HomG(U, V )⊗ U → V, ϕ⊗ u 7→ ϕ(u) induces
a linear map ιU : HomG(U, V )⊗D(U) U → V .

(1.10.8) Theorem. Let ι :
⊕

U∈I HomG(U, V )⊗D(U)U → V have components
ιU . Then ι is an isomorphism. The image of ιU is the U -isotypical component
of V .

Proof. The maps ι constitute, in the variable V , a natural transformation on the
category of semi-simple representations, and they are compatible with directs
sums. Thus it suffices to consider irreducible V . In that case, by Schur’s
lemma, only the summand HomG(V, V ) ⊗D(V ) V is non-zero, and evaluation
is the canonical isomorphism D(V )⊗D(V ) V ∼= V . By construction, ιU has an
image in the U -isotypical part. 2

Problems

1. Let U∗ = HomK(U, K) be the dual vector space. This becomes a right G-
representation via (g · ϕ)(u) = ϕ(gu). The vector space HomG(U, KG) becomes a
right representation via (ϕ · g)(u) = ϕ(u) · g. Show: The linear map

U∗ → HomG(U, KG), ϕ 7→ (u 7→
P
g∈G ϕ(g−1u)g)

is an isomorphism of right representations. An inverse morphism assigns to α ∈
HomG(U, KG) the linear form U → K which maps u to the coefficient of e in α(u).

Let KG be semi-simple. Then the isotypical decomposition ?? of KG assumes
the form L

U∈I U∗ ⊗D(U) U → KG, ϕ⊗ u 7→
P
g∈G ϕ(g−1u)g.

This is an isomorphism of left and right G-representations.

2. Use 1.10.3 in order to show that we found (in section 1) enough irreducible complex

representations of the dihedral group D2n. In the case that n is odd there are 2 one-

dimensional and (n − 1)/2 two-dimensional irreducibles. In the case that n is even

there are 4 one-dimensional and n/2− 1 two-dimensional irreducibles.

3. Use 1.10.7 in order to show that the representation of Sn on Tn = {(xi) ∈ Kn |P
i xi = 0} by permutation of coordinates is irreducible (K characteristic zero).

4. Let V be a KG-representation. Let VG denote the subrepresentation spanned by

the vectors v − gv, v ∈ V, g ∈ G. Consider α : V G → V/VG induced by the inclusion

V G ⊂ V . Show that α is an isomorphism if the characteristic of K does not divide

|G|, and give an example where α is not bijective.



Chapter 2

Characters

2.1 Characters

We assume in this chapter that K has characteristic zero. It is then no essential
restriction to assume moreover that Q is a subfield of K.

(2.1.1) Proposition. Let U be a G-representation. Then the linear map

p : U → U, u 7→ |G|−1∑
g∈G gu

is a G-equivariant projection onto the fixed point space UG.

Proof. The map p is the identity on UG, equivariant by construction, and the
image is contained in UG. 2

Let V be a G-representation. We denote the trace of lg : V → V by χV (g).
The character of V is the function χV : G → K, g 7→ χV (g). The character
of an irreducible representation is an irreducible character.

The trace of a projection operator is the dimension of its image. Therefore
2.1.1 yields the identity

dimUG = |G|−1∑
g∈G χU (g). (2.1)

Recall from linear algebra: The trace of a matrix is the sum of the diagonal
elements, and conjugate matrices have the same trace. If we express lg in matrix
form with respect to a basis, then the trace does not depend on the chosen basis.
Since conjugate matrices have the same trace, isomorphic representations have
the same character 1.1.1. Conjugation invariance also yields:

χV (ghg−1) = χV (h), g, h ∈ G.
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Thus characters are class functions. From the matrix form of representations
we derive some properties of characters:

χV⊕W = χV + χW , (2.2)
χV⊗W = χV χW , (2.3)

χV ∗(g) = χV (g−1). (2.4)

Let V and W be G-representations. In section 1.8 we introduced the represen-
tation HomK(V,W ) with fixed point set HomKG(V,W ).

(2.1.2) Proposition. The character of HomK(V,W ) is g 7→ χV (g−1)χW (g).

Proof. This is a consequence of 1.8.4, (2.3) and (2.4). We also prove it by a
direct calculation with matrices, thus avoiding 1.8.4. We express the necessary
data in matrix form. Let v1, . . . , vm be a basis of V and w1, . . . , wn a basis
of W . We set l−1

g (vi) =
∑

j ajivj and lg(wk) =
∑

l blkwl. Then a basis of
HomK(V,W ) is ers : vi 7→ δsiwr. We compute:

(g · ers)(vi) = gers(g−1vi) = gers(
∑

j ajivj) = g(
∑

j ajiδsjwr)
=

∑
j,l δsjajiblrwl =

∑
l asiblrwl =

∑
l asiblreli(vi).

The trace is the sum of the diagonal elements
∑

r,s assbrr = χV (g−1)χW (g). 2

We now combine 2.1.1 and 2.1.2 and obtain

〈V,W 〉 = dimK HomG(V,W ) = |G|−1
∑

g∈G χV (g−1)χW (g). (2.5)

This formula tells us that we can compute 〈V, V 〉 from the character. The
character does not change under field extensions. We know that 〈V, V 〉 = 1
implies that V is irreducible; it then remains irreducible under field extensions.
If this is the case, we call the representation absolutely irreducible. When
K is algebraically closed, Schur’s lemma says 〈V, V 〉 = 1. Therefore V is
absolutely irreducible if and only if 〈V, V 〉 = 1.

(2.1.3) Theorem. Two representations of G are isomorphic if and only if
they have the same character.

Proof. Let V and V ′ have the same character. Then, by (2.5), the values 〈W,V 〉
and 〈W,V ′〉 are equal for all W . From 1.9.5 we now see that the multiplicities
of W ∈ Irr(G,K) in V and V ′ are equal. 2

The previous theorem has an interesting consequence; it roughly says, that
cyclic subgroups detect representations. If V is a G-representation and H a
subgroup of G, we can view V as an H-representation by restriction of the
group action. Denote it resG

H V for emphasis. The character value ϕV (g) only
depends on the restriction to the cyclic subgroup generated by g. Therefore:
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(2.1.4) Theorem. G-representations V and W are isomorphic if and only if
resG

H V and resG
H W are isomorphic for each cyclic subgroup H of G. 2

(2.1.5) Proposition. Let V = KS be the permutation representation of the
finite G-set S. Then χV (g) = |Sg|. Here Sg = {s ∈ S | gs = s}.

Proof. Consider the matrix of lg with respect to the basis S. A basis element
s ∈ S yields a non-zero entry on the diagonal if and only if gs = s, and this
entry is 1. 2

(2.1.6) Proposition. Let K be a splitting field for G and H. Then

Irr(G;K)× Irr(H;K)→ Irr(G×H;K), (V,W ) 7→ V ⊗W

is a well-defined bijection.

Proof. In the statement of the proposition we view V ⊗ W as G × H-
representation, as explained in section 1.8. From χV⊗W (g, h) = χV (g)χW (h)
and (2.5) we obtain

〈V1 ⊗W1, V2 ⊗W2 〉G×H = 〈V1, V2 〉G〈W1,W2 〉H .

This shows that V ⊗W is irreducible, if we start with irreducible representations
V and W . It also shows that the map in question is injective. We use 1.10.3
and see that we got the right number of irreducible G×H-representations. 2

Problems

1. Let H � G and V a G-representation. Then V H is a G/H-representation. Its
character is given by χVH (gH) = |H|−1 P

h∈H χV (gh).

2.2 Orthogonality

We derive orthogonality properties of characters and show that the irreducible
characters form an orthonormal basis in the ring of class functions. We assume
that K has characteristic zero and is a splitting field for G.

Let Cl(G,K) = Cl(G) be the ring of class functions G → K (pointwise
addition and multiplication). We define on Cl(G) a symmetric bilinear form

〈α, β 〉 =
1
|G|

∑
g∈G

α(g−1)β(g). (2.6)

Bilinearity is clear and the reason for symmetry is that we can replace summa-
tion over g by summation over g−1. By (2.5), 〈V,W 〉 = 〈χV , χW 〉. This gives
us together with Schur’s lemma the orthogonality properties of characters:
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(2.2.1) Proposition. The irreducible characters form an orthonormal system
with respect to the bilinear form (2.6). 2

The main result 2.2.5 of this section says that the irreducible characters are
a basis of the vector space Cl(G). We prepare for the proof.

(2.2.2) Proposition. The linear map qα =
∑

g∈G α(g)lg : V → V is a mor-
phism for each representation V if and only if α : G→ K is a class function.

Proof. Let α be a class function. We compute

qα(hv) =
∑
α(g)lg(hv) =

∑
α(g)ghv =

∑
α(h−1gh)h(h−1gh) = hqα(v).

For the converse we evaluate the equation qα(h) = hqα(e) in the regular repre-
sentation and compare coefficients. 2

(2.2.3) Proposition. Let α be a class function. Then pα =
∑

g∈G α(g−1)lg
acts on V as the multiplication by the scalar |G|(dimV )−1〈α, χV 〉.

Proof. By 2.2.2, pα is an endomorphism of V , and 〈V, V 〉 = 1 tells us that pα

is the multiplication with some scalar λ. The computation (Tr = Trace)

λ dimV = Tr(λ · id) = Tr
(∑

α(g−1)lg
)

=
∑
α(g−1) Tr(lg) =

∑
α(g−1)χV (g)

= |G|〈α, χV 〉.

determines λ. 2

(2.2.4) Lemma. Let α ∈ Cl(G) be orthogonal to the characters of irreducible
representations. Then α = 0.

Proof. The hypothesis of the lemma and 2.2.3 imply that pα acts as zero mor-
phism in each irreducible representation, hence in each representation. In the
regular representation we have 0 = pα(e) =

∑
g α(g−1)g. Hence α(g) = 0 for

all g ∈ G. 2

(2.2.5) Theorem. The irreducible characters of G are an orthonormal basis
of of Cl(G). The number of irreducible representations is equal to the number
of conjugacy classes of G.

Proof. Let U ⊂ Cl(G) be a linear subspace. If U 6= Cl(G) then the orthogonal
complement U⊥ with respect to 〈−,−〉 is different from zero, since U⊥ is the
kernel of the linear map Cl(G) → Hom(U,K), x 7→ (u 7→ 〈x, u 〉). For the
subspace U generated by characters, U⊥ = 0, by 2.2.4, hence U = Cl(G). Now
recall 2.2.1.

The dimension of Cl(G) is the number of conjugacy classes, because a basis
of Cl(G) consists of those functions which have value 1 on one class and value
0 on all the other classes. 2
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There exist more general orthogonality relations. They are concerned with
the entries of matrix representations and are consequences of the next result.

(2.2.6) Proposition. Let V be irreducible and suppose that 〈V, V 〉 = 1. Then
for each linear map f ∈ Hom(V, V )

1
|G|

∑
g∈G

lgfl
−1
g =

Tr(f)
dimV

· id .

Proof. The left hand side is contained in HomG(V, V ) and has the form λ · id,
since 〈V, V 〉 = 1. We apply the trace operator

λ dimV = Tr(λ · id) = |G|−1
∑

g∈G Tr(lgfl−1
g ) = |G|−1

∑
g∈G Tr(f) = Tr(f)

and determine λ. 2

For v ∈ V and ϕ ∈ V ∗ we obtain from 2.2.6∑
g∈G ϕ(gf(g−1v)) = (dimV )−1|G|Tr(f)ϕ(v).

We apply this to the linear map f : v 7→ ψ(v)w, w ∈ V , ψ ∈ V ∗ with trace
Tr(f) = ψ(w) and obtain

|G|−1
∑

g∈G ψ(g−1v)ϕ(gw) = (dimV )−1ϕ(v)ψ(w). (2.7)

Note that we can use the definition (2.6) of 〈α, β 〉 for arbitrary functions
α, β : G → K. This remark can be applied to the left hand side of (2.7).
Let v1, . . . , vn be a basis of V and ϕ1, . . . , ϕn the dual basis. In a matrix
representation gvi =

∑
j r

V
ji(g)vj we have ϕj(gvi) = rV

ji(g). We apply (2.7) to
this situation and arrive at the following:

(2.2.7) Orthogonality for matrix entries. Let V and W be irreducible
representations of G. Then

〈 rV
lk, r

W
ji 〉 =

1
dimV

δliδjkδV W . (2.8)

We have treated the case V = W . If V is not isomorphic to W and f ∈
Hom(V,W ), then the left hand side of the equality in (2.8) is zero. 2

Problems

1. Let V1, . . . Vr be a complete set of pairwise non-isomorphic irreducible KG-

representations. Let (ajrs) denote a matrix representation of Vj . Then the functions

ajrs are an orthogonal basis of the space of functions G→ K with respect to the form

(2.6).
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2.3 Complex Representations

We begin with some special and useful properties of representations over the
complex numbers.

An (Hermitian) inner product V × V → C, (u, v) 7→ 〈u, v 〉 on a G-
representation V is called G-invariant if 〈 gu, gv 〉 = 〈u, v 〉 for g ∈ G and
u, v ∈ V . A representation together with a G-invariant inner product is a uni-
tary representation. A real representation together with a G-invariant inner
product is an orthogonal representation.

(2.3.1) Proposition. A complex representation V of a finite group possesses
a G-invariant inner product.

Proof. Let b : V × V → C be any inner product (conjugate-linear in the first
variable) and define

c(u, v) = 1
|G|

∑
g∈G

b(gu, gv).

Then c is linear in v, conjugate linear in u, and G-invariant because of the
averaging process. Also it is positive definite and c(u, v) = c(v, u). 2

Let U be a sub-representation of a unitary representation V . Then the
orthogonal complement U⊥ is again a sub-representation an V = U⊕U⊥. This
gives another proof that complex representations are semi-simple. Similarly
for orthogonal representations. If we choose an orthonormal basis in an n-
dimensional unitary representation, then the associated matrix representation
is a homomorphism into the unitary group G → U(n). In terms of matrix
representations, 2.3.1 has the interesting consequence that a homomorphism
G→ GLn(C) of a finite group G is conjugate to a homomorphism G→ U(n).

Let V be a complex representation. There is associated the complex-
conjugate representation G×V → V on the conjugate vector space V (the
same underlying set and vector addition, but λ ∈ C now acts as multiplication
with λ).

We consider a Hermitian form on V as a bilinear map V × V → C. Asso-
ciated is the adjoint V → V ∗, v 7→ (u 7→ 〈 v, u 〉) into the dual vector space.
It is an isomorphism of G-representations, in the case of a G-invariant inner
product. In terms of characters this means χV (g−1) = χV (g). For complex
class functions we define a Hermitian form on Cl(G) by

(α, β) = 1
|G|

∑
g∈G

α(g)β(g). (2.9)

The relation χV (g−1) = χV (g) shows (χV , χW ) = 〈V,W 〉. Therefore the
irreducible characters are also an orthonormal basis for this form. Recall the
notation I = Irr(G; C).
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Let C ⊂ G be a representing system for the conjugacy classes. From |C| =
|I| we see that X : C × I → K, (c, V ) 7→ χV (c) is a square matrix. It is called
the character table of G.

We express the orthogonality relations in terms of the character table. Let
X∗ : I×C → C, (V, c) 7→ χV (c) be the conjugate-transpose and D : C×C → C
the diagonal matrix (c, d) 7→ δc,d|c|, where |c| denotes the cardinality of the
conjugacy class of c. The orthogonality relation (χV , χW ) = δV,W then reads:

(2.3.2) First orthogonality relation. For irreducible complex representa-
tions V and W the relation∑

c∈C

|c|χV (c)χW (c) = |G|δV,W

holds. 2

In matrix form 2.3.2says X∗DX = |G|E (unit matrix E). This implies

XX∗D = XX∗DXX−1 = X(|G|E)X−1 = |G|E

and then XX∗ = |G|D−1. Let Z(c) = {g ∈ G | gcg−1 = c} denote the
centralizer of c in G. Then |c| = |G/Z(c)|. We write out the last matrix
equation:

(2.3.3) Second orthogonality relation. For c, d ∈ C the relation∑
V ∈I

χV (c)χV (d) = δc,d|Z(c)|

holds. 2

(2.3.4) Proposition. Let (V, 〈−,−〉V ) and (W, 〈−,−〉W ) be unitary repre-
sentations. Suppose V and W are isomorphic as complex representations. Then
they are isomorphic as unitary representations, i.e., there exists a G-morphism
f : V →W such that 〈 f(v1), f(v2) 〉W = 〈 v1, v2 〉V .

Proof. Let ϕ : V → W be a G-morphism. We use ϕ to pull 〈−,−〉W back
to V , i.e., we define a second inner product 〈−,−〉′ on V by 〈 v1, v2 〉′ =
〈ϕ(v1), ϕ(v2) 〉W . It suffices to produce a G-morphism γ : V → V such that
〈 γ(v1), γ(v2) 〉 = 〈 v1, v2 〉′. We choose an orthonormal basisB of V with respect
to 〈−,−〉 and express everything with respect to this basis. Then 〈−,−〉
becomes the standard inner product. There exists a positive definite Hermitian
matrix A such that 〈u, v 〉′ = 〈u,Av 〉 = utAv. Since 〈−,−〉′ is G-invariant,
lgA = Alg. Let C =

√
A be a positive definite Hermitian matrix. The matrix

C also commutes with lg, since it is a limit of polynomials in A. Then C defines
a morphism γ with the desired properties. 2
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(2.3.5) Corollary. Let α, β : G → U(n) be unitary representations which are
conjugate in GLn(C). Then they are conjugate in U(n). The conjugation
matrix can be chosen in SU(n), i.e., to have determinant one. 2

We list a few more properties of complex characters.

(2.3.6) Proposition. Let χ be the character of a complex representation V .
Then:

(1) χ(1) = dimV .
(2) |χ(g)| ≤ χ(1).
(3) |χ(g)| = χ(1) if and only if lg is the multiplication by a scalar.
(4) χ(g) = χ(1) if and only if g is contained in the kernel of V .

Proof. (1) The trace of the identity is dimV .
(2) Let λ1, . . . , λn be the eigenvalues of lg. They are roots of unity, and

χ(g) = λ1 + · · ·+ λn. Hence |χ(g)| = |
∑
λj | ≤

∑
|λj | = χ(1).

(3) If equality holds, then λ1 = · · · = λn = λ and lg is multiplication by λ.
(4) By (3), lg is the multiplication by 1, if χ(g) = χ(1). 2

(2.3.7) Remark. If G has a normal subgroup different from 1 and G, then
there exists a nontrivial irreducible character χ and 1 6= g ∈ G such that
χ(g) = χ(1). Conversely, from ?? we see, that if χ and g with these properties
exist, then G has a nontrivial normal subgroup. We see that one can obtain
group theoretic information from the character table. 3

The values of complex characters are very special complex numbers. The
value χV (g) is the sum of the eigenvalues of lg, and these eigenvalues are |g|-
roots of unity (|g| order of g). Let Z[ζ] be the subring of the field Q(ζ) generated
by ζ. The exponent of a group is the least common multiple of the orders
of its elements. Let ζ be a primitive n-root of unity, say ζ = exp(2πi/n), n
the exponent of G. Then χV has values in Z[ζ]. In number theory, the ring
Z[ζ] is the ring of algebraic integers in the cyclotomic field Q(ζ). (An algebraic
integer is the root of a monic polynomial with coefficients in Z.)

Problems

1. Express the orthogonality relations ?? for complex representations using the Her-

mitian form (2.9).

2. Let V, W be orthogonal representations of G which are isomorphic as real repre-

sentations. Then they are isomorphic as orthogonal representations.

3. Let V, W be real representations. If they are isomorphic, considered as complex

representations, then they are isomorphic as real representations. What does this

imply for matrix representations?

4. The character table is a square matrix. Determine the absolute value of its deter-

minant.
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2.4 Examples

We study in some detail the groups A4, S4, A5. The symmetric group Sn is
the permutation group of [n] = {1, . . . , n}. The alternating group is the nor-
mal subgroup of Sn of even permutations. The geometric significance of the
groups in question comes from Euclidean geometry: A4, S4, A5 are the symme-
try groups of the tetrahedron, octahedron (cube), icosahedron (dodecahedron),
respectively (as far as rotations are concerned , i.e., as subgroups of SO(3)).

We begin with some general remarks about permutations. Let π ∈ Sn. The
cyclic group generated by π acts on [n]. We decompose [n] into orbits under
this action. An orbit has the form

(x, π(x), π2(x), . . . , πt−1(x)), πt(x) = x

where t is the length of the orbit. We call an orbit a cycle of the permutation.
A permutation can be recovered from its cycles. Therefore we use the cycles
to denote the permutation. As an example, the permutation (318496527) ∈ S9

has the cycles
(1, 3, 8, 2), (4), (5, 9, 7).

This means, e.g., that 5 7→ 9, 9 7→ 7, 7 7→ 5. A cyclic permutation of the entries
in a cycle does not change its meaning; thus (5, 9, 7) = (9, 7, 5) = (7, 5, 9). In
practice it is not necessary to write cycles of length one, since they just describe
fixed points of the permutations. The conceptual significance of the cycles is:

(2.4.1) Proposition. Permutations in Sn are conjugate elements of the group
if and only if for each k ∈ N they have the same number of cycles of length
k. 2

A partition of n is a sequence of integers λ = (λ1, λ2, . . . , λr) with
λ1 ≥ λ2 ≥ . . . ≥ λr ≥ 1 and

∑r
j=1 λj = n. A conjugacy class of Sn is de-

termined by its associated partition; the λj are the lengths of the cycles in
the permutation. Thus we have found a combinatorial method to determine
the number of irreducible complex representations of Sn; it is the number of
partitions of n. The partitions 3, 21, 111 of 3 tell us that S3 has 3 irreducible
representations.

(2.4.2) Proposition. Suppose π ∈ Sn has k(j) cycles of length j. The the
automorphism group of [n]π has order 1k(1) ·k(1)! ·2k(2) ·k(2)! · . . . ·nk(n) ·k(n)!.
This is the order of the centralizer; hence n!, divided by this number, is the size
of the conjugacy class of π. 2

(2.4.3) Representations of S4. There exist 5 partitions 1111, 211, 22, 31, 4.
We list representing elements of the conjugacy classes and the cardinality of
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the conjugacy class in the next table. The second row can be obtained from
2.4.2.

1 (12) (12)(34) (123) (1234)
1 6 3 8 6

We turn to the determination of the character table and to the construction of
irreducible representations. Names for the five representations and their char-
acters are Vj , 1 ≤ j ≤ 5. We already know 2 one-dimensional representations,
the trivial representation V1 and the sign-representation V2. Their characters
are easily computed.

Character table of S4

1 (12) (12)(34) (123) (1234)
V1 1 1 1 1 1
V2 1 −1 1 1 −1
V3 2 0 2 −1 0
V4 3 1 −1 0 −1
V5 3 −1 −1 0 1

We also know already a three-dimensional representation on the space V4 =
{(x1, x2, x3, x4) |

∑
xi = 0} by permutation of coordinates. We check again

that it is irreducible by computing its character. The character of the permu-
tation representation on C4 is easily determined by 2.1.5 to have the values
4, 2, 0, 1, 0. We have to subtract the character of the trivial representation; the
result is given in the table. The computation

〈V4, V4 〉 = 1
24

∑
g |χV4(g)|2 = 32 + 6 · 12 + 3 · (−1)2 + 8 · 02 + 6 · (−1)2 = 1

shows that V4 is irreducible. The character of V5 = V4 ⊗ V2 is seen to be as in
the table. Thus we found another irreducible representation. We know that the
remaining representation must be two-dimensional 1.10.3. It turns out that S4

has a quotient S3, the kernel contains (12)(34). We can lift a two-dimensional
representation of S3 to S4. We lift the analogue of V4 for S3. 3

(2.4.4) Representations of A5. We begin again with the determination of
the conjugacy classes. We use the cycle notation and have to start with even
permutations. But now it is only allowed to conjugate with even permutations,
and this has the effect that some of the conjugacy classes of S5 can split in A5

into two classes.

(2.4.5) Proposition. Let c ∈ An. Then the Sn-conjugacy class of c is con-
tained in An. The Sn-conjugacy class of c split into two An-conjugacy classes
if and only if the centralizers of c in An and Sn coincide. This happens if and
only if the partition associated to c consists of different odd numbers. 2
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Character table of A5

1 (12)(34) (123) (12345) (13524)
V1 1 1 1 1 1
V2 3 −1 0 α β
V3 3 −1 0 β α
V4 4 0 1 −1 −1
V5 5 1 −1 0 0

Let ζ be a primitive 5-th root of unity; then −α = ζ + ζ−1 and −β = ζ2 +
ζ−2. The representation V1 is trivial. V4 is the permutation representation
on {(x1, . . . , x5) |

∑
xj = 0}. The group A5 has a subgroup H ∼= D10. The

representation V5 is obtained from the permutation representation C(A5/H)
by subtracting the trivial representation. The remaining two representations
must be three-dimensional, since 60−12−42−52 = 18 = 32 +32. It is possible
to determine the characters without construction of the representations; one
uses the fact that the representations cannot have a kernel; and that zj and
z−j are conjugate, so that the character values are real and sums of 5-th roots
of unity. The group A5 has an outer automorphism which interchanges z =
(12345) and z2 = (13524); it is obtained by conjugation with (2354); one verifies
(2354) ◦ z ◦ (4532) = z2. The representation V3 is obtained from V2 by this
automorphism; and V2 has a realization over R as orthogonal symmetry group
of the icosahedron. 3

Problems

1. S4 acts by conjugation on the set of even permutations of order two. Show that

this induces a surjection S4 → S3.

2. Compute the number of elements in A5 of a given order.

3. Determine the irreducible representations and the character table for A4.

4. Decompose the tensor product of irreducible representations for G = A4, S4, A5.

5. Show that S5 has seven conjugacy classes and irreducible complex representations

of dimensions 1, 1, 4, 4, 5, 5, 6.

6. For a partition (λ1, . . . , λr) of n let S(λ) = S(λ1) × · · · × S(λr). Set V (λ) =

C(Sn/S(λ)). Decompose these permutation representations in the cases S4 and S5

into irreducibles.
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2.5 Real and Complex Representations

Let W be a KG-representation. The involution T : W ⊗W →W ⊗W,x⊗ y 7→
y ⊗ x is a morphism of representations. If K has characteristic different from
2, we split W ⊗W into the ±1-eigenspaces,

S2(W ) = (W ⊗W )+, Λ2(W ) = (W ⊗W )−.

S2(W ) is the second symmetric power of W and Λ2(W ) the second exterior
power. Suppose now that K = C. If w1, . . . , wn is a basis of W , then gij =
1
2 (wi⊗wj+wj⊗wi), i ≤ j is a basis of S2(W ) and wij = 1

2 (wi⊗wj−wj⊗wi), i <
j is a basis of Λ2(W ). From this information we compute the characters

χW⊗W (g) = χW (g)2

χS2W (g) =
1
2
(χW (g)2 + χW (g2))

χΛ2W (g) =
1
2
(χW (g)2 − χW (g2)).

Let W be irreducible. Then W ∗ ∼= W is irreducible too. Therefore
〈W ⊗W, 1 〉 = 〈W,W ∗ 〉 is 1 if W ∼= W ∗ and 0 otherwise. An isomorphism
W ∼= W exists if and only if χW is real-valued. In that case we call W self-
conjugate. Elements in HomG(S2W,C) are symmetric G-invariant bilinear
forms, and elements in HomG(Λ2W,C) are skew-symmetric G-invariant bilin-
ear forms. Hence W carries a non-zero G-invariant bilinear form if and only
if W is self-conjugate. Suppose W is self-conjugate. From 〈W ⊗ W, 1 〉 =
〈S2W, 1 〉 + 〈Λ2W, 1 〉 we see that there two cases: Either 〈S2W, 1 〉 = 1,
〈Λ2W, 1 〉 = 0 or 〈S2W, 1 〉 = 0, 〈Λ2W, 1 〉 = 1.

(2.5.1) Proposition. Let W be irreducible. Then

σ(W ) = 1
|G|

∑
g∈G

χW (g2) =

 0 W 6∼= W ∗

1 〈S2W, 1 〉 = 1
−1 〈Λ2W, 1 〉 = 1

Proof. By the computation above the sum on the left equals 〈S2W, 1 〉 −
〈Λ2W, 1 〉. 2

Suppose W is the complexification of a real representation U , i.e., W ∼=
C ⊗ U = UC. Then U is irreducible and carries a symmetric G-invariant R-
bilinear form. This form extends to a symmetric G-invariant C-bilinear form
on W . Hence in this case σ(W ) = 1. The converse is also true.

(2.5.2) Proposition. Suppose W ∈ Irr(G,C) carries a G-invariant symmetric
form. Then W is the complexification of a real representation.
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The Group Algebra

3.1 The Theorem of Wedderburn

Assume that the characteristic of K does not divide the order of G. Then the
group algebra A = KG, considered as a left KG-representation, is semi-simple
and hence a direct sum of its isotypical parts. Recall that sub-representations
of KG are the same thing as left ideals or as submodules.

(3.1.1) Proposition. Let A(V ) denote the V -isotypical part of A belonging
to V ∈ Irr(G;K). The A(V ) is a two-sided ideal, and every two-sided ideal is
a direct sum of isotypical parts.

Proof. Let V ⊂ A be irreducible and a ∈ A. Then W = V a is a left ideal, and
by Schur’s lemma ra : V →W,x 7→ xa is either zero or an isomorphism. Hence
W ⊂ A(V ).

Let V,W be isomorphic irreducible left ideals. Since A is semi-simple, there
exists a projection f : A → V . Let s : V → W be an isomorphism. Then
fs(x) = fs(x · 1) = x · sf(1) = x · a, a = sf(1). If x ∈ V , then f(x) = x and
hence sf(x) = s(x) = xa, i.e., W = V a.

Let B ⊂ A be a two-sided ideal. Let V ⊂ B be irreducible and also
W ⊂ A(V ). Then W = V a. Since B is a right ideal, W ⊂ B and hence
A(V ) ⊂ B. 2

The isotypical parts are therefore the minimal two-sided ideal. A two-sided
ideal is itself an associative algebra, with addition and multiplication inherited
from A.

(3.1.2) Proposition. Let A = A1 ⊕ · · · ⊕ Ar be the decomposition into the
minimal two-sided ideal. Then AiAj = 0 for i 6= j.
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Proof. Let I ⊂ Ai and J ⊂ Aj be irreducible left ideals. Then Ai ⊃ IJ ⊂ Aj ,
since Ai, Aj are two-sided. From Ai ∩Aj = 0 we see IJ = 0. 2

Let 1 = e1 + · · · + er, ej ∈ Aj be the decomposition of the unit element.
Then e2i = ei and eiej = 0 for i 6= j. This follows from∑

ej = 1 = 1 · 1 = (
∑
ej)(

∑
ek) =

∑
ejek =

∑
e2j .

A consequence: ej is the unit element of the algebra Aj .
Let B be a minimal two-sided ideal of A. A linear subspace V of B is a

B-submodule if and only if it is an A-submodule. The map

r : B → HomB(B,B), x 7→ rx

is because of rxry = ryx an anti-isomorphism of algebras. Let B ∼= V n, where
V is an irreducible submodule of B. Then HomB(B,B) ∼= HomB(V n, V n).
The latter is, by the rules of linear algebra, a matrix algebra. Let ij : V → V n

be the inclusion of the j-the summand and pk : V n → V be the projection
onto the k-summand. We associate to f ∈ HomB(V n, V n) the matrix (fjk),
fjk = pkfij ∈ EndB(V ) = D. Since V is irreducible, D is a division algebra.
Therefore HomB(V n, V n) is isomorphic to the matrix algebra Mn(D) of (n, n)-
matrices with entries in D. Passage to the transposed matrix is an isomorphism
Mn(D)◦ ∼= Mn(D◦). (Notation: C◦ the algebra opposite to C, i.e., order of
the multiplication interchanged.) Therefore we have shown in our context:

(3.1.3) Theorem (Theorem of Wedderburn). The minimal left ideals of the
group algebra are isomorphic to matrix-algebras Mn(D◦); here D = End(V ) if
B is the V -isotypical part, and n is the multiplicity of V in B. 2

If K = C, then the division algebras appearing are just the field C itself. In
the next section we describe the decomposition into matrix algebras in a more
explicit manner and relate it to character theory.

3.2 The Structure of the Group Algebra

We assume in this section that K is a splitting field for G of characteristic zero.
We write dimV = |V |.

(3.2.1) Proposition. Let V ∈ Irr(G;K). The assignment

tV : Hom(V, V )→ KG, α 7→ |V |
|G|
∑

g∈G Tr(l−1
g α)g

is a homomorphism of algebras.
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Proof. By comparing coefficients in KG we see that the statement amounts to
|V |
|G|
∑

g∈G Tr(l−1
g α) Tr(l−1

x lgβ) = Tr(l−1
x αβ)

for α, β ∈ Hom(V, V ) and x ∈ G. It suffices to prove this for x = e.
We use the relation 2.2.6

|V |
|G|
∑

g∈G lgβlg−1 = Tr(β) idV , β ∈ Hom(V, V ) (3.1)

and compute
σ = |V |2

|G|2
∑

g,u∈G lgβlulg−1 lu−1α

in two ways. We apply (3.1) to
∑

u lulg−1 lu−1 and use the definition of χV ; this
shows us that σ is equal to

|V |
|G|
∑

g χV (g−1)lgβα.

The endomorphism |V |
|G|
∑

g χV (g−1)lg is the identity on V . Hence σ = βα. We
now apply (3.1) to

∑
g lgβlulg−1 and obtain

σ = |V |
|G|
∑

u Tr(βlu)lu−1α.

Finally we apply the trace operator to this equation and arrive at

Tr(βα) = |V |
|G|
∑

u Tr(luβ) Tr(lu−1α),

and this was to be shown. 2

The homomorphism tV is moreover a morphism of (G,G)-representations,
i.e., one verifies directly from the definitions that tV (lgαlh) = gtV (α)h.

(3.2.2) Proposition. The image of tV is the V -isotypical part of KG. The
(G,G)-representation Hom(V, V ) is irreducible and the image of tV is the
Hom(V, V )-isotypical part of KG as a (G,G)-representation.

Proof. The canonical map V ∗⊗V → Hom(V, V ) is an isomorphism of represen-
tations. By 2.1.6, these representations are irreducible. Since tV is non-zero,
tV is injective. Certainly tV has an image in the V -isotypical part. We know
already that it has dimension |V |2 = dim Hom(V, V ). Therefore tV maps iso-
morphically onto the V -isotypical part. 2

The homomorphisms tV combine to an isomorphism of algebras

t :
⊕

V ∈I Hom(V, V )→ KG, (xV ) 7→
∑

V ∈I tV (xV ).

This isomorphism induces an isomorphism of the centers of the algebras. The
center of Hom(V, V ) consists of the multiples of the identity. Let Z(A) denote
the center of the algebra A. We obtain a homomorphism of algebras

τV = prV ◦t−1 : Z(KG)→ Z(Hom(V, V )) ∼= {λ · id | λ ∈ K} ∼= K.
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(3.2.3) Proposition. τV (
∑

g∈G α(g)g) = |V |−1
∑

g∈G α(g)χV (g).

Proof. The elements tV (idV ) = eV are, by 3.2.2, a vector space basis of Z(KG).
Hence it suffices to verify the assertion for these elements. The verification
amounts to |W |

|G|
1
|V |
∑

g χW (g−1)χV (g) = δV W , and this we know by 2.2.6. 2

(3.2.4) Proposition. The element
∑

g∈G α(g)g ∈ KG is contained in the
center of KG if and only if α is a class function. 2

An element e ∈ A in an algebra A is called idempotent, if it satisfies
e2 = e. Idempotents e, f are orthogonal, if ef = fe = 0. The elements
eV ∈ KG,V ∈ I are pairwise orthogonal, central idempotents. A central
idempotent is called primitive if it is not the sum of two orthogonal (non-
zero) idempotents. Since the eV form a basis of the center of KG, it is easy to
verify that the eV are primitive.

(3.2.5) Proposition. The multiplication by eV is in each representation the
projection onto the V -isotypical part. 2

(3.2.6) Proposition. Suppose V,W ∈ I(G; C). Then the orthogonality rela-
tion

∑
g∈G χV (g−1)χW (xg) = |V |

|G| 〈V,W 〉χV (x) holds.

Proof. The relation eV eW = 〈V,W 〉eV says

|V ||W |
|G|2

∑
g,h χV (g−1)χW (h−1)gh = |V |

|G| 〈V,W 〉
∑

x∈G χV (x−1)x.

Now we compare the coefficients of x−1. 2
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Induced Representations

4.1 Basic Definitions and Properties

We compare representations of different groups. The ground field K is fixed.
Let H be a subgroup of G and V an H-representation. Recall the construc-

tion X ×H Y for a right H-set X and a left H-set Y ; it is the quotient of the
product X × Y under the equivalence relation (x, y) ∼ (xh−1, hy). We denote
equivalence classes by their representatives in X × Y . We apply this construc-
tion to the right cosets gH, considered as H-sets by right multiplication. We
use the bijection ig : V → gH ×H V, v 7→ (g, v) to transport the vector space
structure from V to gH ×H V . If we choose another representative gh ∈ gH
of the coset gH, then iglh = igh, and therefore the vector space structure is
well-defined. (Although this vector space is just a model of V , we want this
model to depend on the coset.) We define a G-action on

⊕
gH∈G/H gH ×H V ;

the element u ∈ G acts as follows

gH ×H V → ugH ×H V, (g, v) 7→ (ug, v).

We see that G permutes the summands gH ×H V transitively. The resulting
G-representation is called the induced representation, and is denoted by

indG
H V =

⊕
gH∈G/H gH ×H V. (4.1)

(4.1.1) Example. Suppose |G/H| = 2. Let h 7→ A(h) be a matrix represen-
tation of H. Fix an element g ∈ GrH. Then a matrix representation for indG

H

is

h 7→
(
A(h) 0

0 A(g−1hg)

)
, gh 7→

(
0 A(ghg)

A(h) 0

)
.

Verify this, using the bijections ie and ig. 3
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There exist other constructions of the induced representation, from the
view point of set-theory or algebra. Therefore we characterize it by a universal
property. The bijection ie : V → H ×H V, v 7→ (e, v) preserves the H-action.
We thus obtain an H-morphism

iGH : V → indG
H V.

IfW is a G-representation, we denote by resG
H W theH-representation obtained

from W by restricting the group action to H. The universal property is:

(4.1.2) Proposition. The assignment

HomG(indG
H V,W )→ HomH(V, resG

H W ), Φ 7→ Φ ◦ iGH

is a natural isomorphism of vector spaces. In terms of dimensions this implies
〈 indG

H V,W 〉G = 〈V, resG
H W 〉H .

Proof. From the construction of indG
H V we see that a G-morphism from indG

H V
is determined by its restriction to the summand H ×H V . Therefore the map
in question is injective.

Conversely, given ϕ : V → resG
H W , we define a G-morphism Φ: indG

H V →
W on the summand gH ×H V by (g, v) 7→ g · ϕ(v). Another representative
(gh−1, hv) leads to the same value gh−1ϕ(hv), because ϕ is an H-morphism.
Therefore Φ is well-defined, a G-morphism by construction, and Φ◦iGH = ϕ. 2

We refer to 4.1.2 as Frobenius reciprocity. Suppose jG
H : V → Ṽ is an H-

morphism into a G-representation Ṽ such that Φ 7→ Φ ◦ jG
H induces a bijection

HomG(Ṽ ,W ) ∼= HomH(V, resG
H W ). Then there exists a unique isomorphism

γ : indG
H V → Ṽ of G-representations such that jG

H = γ ◦ iGH . This expresses
the fact, that 4.1.2 determines the induced representation. One consequence of
this fact is the transitivity of induction:

(4.1.3) Proposition. Let A ⊂ B ⊂ C be groups. Then there exists a canonical
C-isomorphism indC

B indB
A V
∼= indC

A V for A-representations V , since iCBi
B
A has

the universal property. 2

Given a G-representation, we often ask whether it can be induced from a
subgroup H. From the construction of indG

H V we obtain the following answer.

(4.1.4) Proposition. Let V be an H-sub-representation of the G-
representation W . The subspace gV ⊂ W depends only on the coset gH. We
denote it therefore by gHV . Suppose W is the direct sum of the subspaces
gHV . Then the canonical map indG

H V → W associated by 4.1.3 to the inclu-
sion V ⊂W is an isomorphism. 2
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An H-morphism α : V1 → V2 induces a G-morphism

indG
H α : indG

H V1 → indG
H V2, (g, v) 7→ (g, α(v)).

In this manner indG
H becomes a functor from the category of KH-

representations to the category of KG-representations. The isomorphism 4.1.3
is compatible with induced morphisms in the variables V and W . In category
theory one says that the induction functor indG

H is left adjoint to the restriction
functor resG

H .
Induction preserves direct sums; we have a natural isomorphism

indG
H(V1 ⊕ V2) ∼= indG

H V1 ⊕ indG
H V2. (4.2)

Let W be a G-representation. Then the bijections

gH ×H (V ⊗ resG
H W )→ (gH ×H V )⊗W, (g, v ⊗ w) 7→ (g, v)⊗ gv

combine to a natural isomorphism of G-representations

indG
H(V ⊗ resG

H W ) ∼= (indG
H V )⊗W. (4.3)

(4.1.5) Example. Let 1H denote the trivial one-dimensional H-
representation. Then indG

H 1H is the permutation representationK(G/H). The
basis element gH ∈ K(G/H) corresponds to (g, 1) ∈ gH ×H K.

If V happens to be the restriction of a G-representation V = resG
H W , then

indG
H(V ) ∼= indG

H(1H ⊗ V ) ∼= (indG
H 1H)⊗W ∼= K(G/H)⊗W.

In general one can think of indG
H V as a kind of mixture of the permutation

representation K(G/H) with V . 3

We compute the character of an induced representation in the case that K
has characteristic zero.

(4.1.6) Proposition. Let W = indG
H V . Then the character of W is given by

the formula

χW (u) =
∑

gH∈F (u,G/H)

χV (g−1ug) =
1
|H|

∑
g∈C(u,H)

χV (g−1ug)

where C(u,H) = {g ∈ G | g−1ug ∈ H} and F (u,G/H) = G/Hu = {gH |
ugH = gH}. An empty sum is zero.

Proof. Since u ∈ G sends gH ×H V to ugH ×H V , we see that the direct
summand gH ×H V contributes to the trace if and only if ugH = gH; and
in that case lu is transformed via the canonical isomorphism ig into lh, h =
g−1ug. 2
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We define a linear map for class functions by the same formula

indG
H : Cl(H,K)→ Cl(G,K), (indG

H α)(u) =
1
|H|

∑
g∈C(u,H)

α(g−1ug).

We leave it to the reader to verify the next proposition. We use the standard
bilinear form (2.6) on class functions. The restriction of β ∈ Cl(G) to H is
given by composition with H ⊂ G.

(4.1.7) Proposition. Class functions have the following properties:
〈 indG

H α, β 〉G = 〈α, resG
H β 〉H , indG

H(α · resG
H β) = (indG

H α) · β, indC
B indB

A =
indC

A. 2

Problems

1. The character of indGH V assumes the value 0 at g if g is not conjugate to an
element of H.
2. Verify directly that the assignment in 4.1.1 is a homomorphism and that different
choices of g lead to conjugate matrix representations.
3. Apply 4.1.1 to the dihedral and quaternion groups D2n and Q4n and compare the
result with our earlier constructions.
4. Verify 4.1.7. Verify that indGH α is a class function.
5. Here is another dual construction of the induced representation, that is also called
coinduction. The vector space MapH(G, V ) of H-equivariant maps G → V carries
a G-action (u · ϕ)(g) = ϕ(gu). The decomposition of G into H-orbits, G = qHg,
shows MapH(G, V ) ∼=

L
Hg MapH(Hg, V ). The assignment

α : MapH(G, V )→
L

gH ×H V, ϕ 7→
P
gH(g, ϕ(g−1))

is an isomorphism of G-representations; it sends MapH(Hg, V ) to g−1H ×H V .
6. The induced representation has, of course, a description in terms of modules. The
regular representation KG is a left KG-module and a right KH-module. Let V be
a left KH-module. Then the tensor product KG ⊗KH V is a left KG-module. Re-
late this definition to our first definition of the induced representation; in particular
explain from this view point the direct sum decomposition (4.1)of the induced repre-
sentation.
7. Let A and B be groups. An (A, B)-set S is a set S with a left A-action and a
right B-action which commute (as)b = a(sb), (a, b) inA × B, s ∈ S. Given a finite
(A, B)-set S we associate to an A-representation V the vector space MapA(S, V ) of A-
equivariant maps ϕ : S → V . This vector space carries a B-action (b · ϕ)(s) = ϕ(sb).
A morphism α : V → W of A-representations yields a morphism MapA(S, V ) →
MapA(S, W ), ϕ 7→ α ◦ ϕ. Let A- Rep denote the category of finite-dimensional left
A-representations (over K). The construction above yields a functor

ρ(S) : A- Rep→ B- Rep
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for each finite (A, B)-set S. Let γ : S1 → S2 be a morphism of (A, B)-sets. Composi-
tion with γ yields a morphism

ρ(γ) : MapA(S2, V )→ MapA(S1, V ),

and the family of these morphisms is a natural transformation ρ(γ) : ρ(S2)→ ρ(S1).
Altogether we obtain a contravariant functor

ρ : A-Set-B → [A- Rep, B- Rep]

of the category A-Set-B of finite (A, B)-sets into the functor category.
The composition of functors ρ(S) is again a functor of the same type.

(4.1.8) Proposition. Let S be an (A, B)-set and T be a (B, C)-set. Then there
exists a canonical isomorphism of functors ρ(T ) ◦ ρ(S) ∼= ρ(S ×B T ).

One has to provide a natural isomorphism

MapA(S ×B T, V ) ∼= MapB(T, MapA(S, V ))

of C-representations. It will be induced by the adjunction isomorphism

Map(S × T, V )→ Map(T, Map(S, V )), ϕ 7→ ϕ̂, ϕ̂(t)(s) = ϕ(s, t).

4.2 Restriction to Normal Subgroups

Let H be a subgroup of G. The g-conjugate gV of the H-representation V is
a gHg−1-representation with the same underlying vector space and with action

gHg−1 × V → V, (x, v) 7→ x ·g v = (g−1xg) · v.

The representation gV is irreducible if and only if V is irreducible. For a, b ∈ G
the relation a(bV ) = abV holds, and g-conjugation is compatible with direct
sums and tensor products. For h ∈ H the map lh : V → V is an isomorphism
ghV → gV of gHg−1-representations. The bijections

gH ×H
uV → guH ×H V, (g, v) 7→ (gu, v)

combine to an isomorphism of G-representations

indG
H

uV ∼= indG
H V.

Now suppose that H is a normal subgroup of G, in symbols H �G. Then
gHg−1 = H, and gV is again an H-representation which only depends on
the coset gH, up to isomorphism. The group G acts on the set Irr(H,K)
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of isomorphism classes of KH-representations by (g, V ) 7→ gV . This action
factors over an action of G/H since gV only depends on the coset gH. Let

G(V ) = {g ∈ G | gV ∼= V }

be the isotropy group at V of this G-action; it contains H.
Let W be a G-representation and V ⊂ resG

H W be an H-sub-representation.
The left translation lg : gV → gV satisfies

lg(h ·g v) = g(g−1hgv) = hgv = h · lgv,

and this relation shows that gV is an H-sub-representation which is isomorphic
to gV by lg.

Assume, moreover, that W and V are irreducible. The sum of the gV is a
G-sub-representation of W , hence equal to W . Since gV ∼= gV is irreducible,
resG

H W is the sum of irreducible H-representations and therefore semi-simple.
Thus we have shown:

(4.2.1) Proposition. The restriction of a semi-simple G-representation to a
normal subgroup H is a semi-simple H-representation. 2

Let again W and V ⊂ resG
H W be irreducible. From our analysis of semi-

simple representations we know that resG
H W is the direct sum of its isotypical

parts, and each irreducible sub-representation of resG
H W is isomorphic to some

gV . Let W (V ) be the V -isotypical part of resG
H W . The gV, g ∈ G(V ) are

contained in W (V ), and W (V ) is the sum of these gV . Therefore W (V ) is a
G(V )-sub-representation of W . The inclusion W (V ) ⊂ resG

G(V )W gives us, by
the universal property 4.1.2 of induced representations, a G-morphism

ι : indG
G(V )W (V )→W.

In our model of the induced representation, ι maps gG(V ) ×G(V ) W (V ) to
gW (V ). The subspace gW (V ) is another isotypical summand of resG

H W . From
4.1.4 we obtain:

(4.2.2) Proposition. ι is an isomorphism of G-representations. 2

Suppose W (V ) is isomorphic to r copies of V . Then

resG
H W ∼= r

⊕
gG(V )∈G/G(V )

gV.

The gV , gG(V ) ∈ G/G(V ) are pairwise non-isomorphic. The integer r is called
the ramification index of W with respect to the normal subgroup H.

Let V ∈ Irr(H;K). The summand gH ×H V of indG
H V is isomorphic

to gV ; the assignment gV → gH ×H V, v 7→ (g, v) is an isomorphism of H-
representations. This shows:

resG
H indG

H V ∼= |G(V )/H|
⊕

gV. (4.4)
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The summation is over gG(V ) ∈ G/G(V ). We apply Frobenius reciprocity and
Schur’s lemma to (4.4) and obtain

〈 indG
H V, indG

H V 〉G = |G(V )/H|
∑
〈V, gV 〉H = |G(V )/H|〈V, V 〉H . (4.5)

From this relation we deduce:

(4.2.3) Proposition. Let K be algebraically closed of characteristic not di-
viding |G|. Then indG

H V is irreducible if and only if G(V ) = H.

Proof. indG
H V = W is irreducible if and only if 〈W,W 〉G = 1, and this is, by

4.5, the case if and only if |G(V )/H| = 1 and 〈V, V 〉H = 1. 2

(4.2.4) Theorem. Let K be algebraically closed of characteristic zero. Let
H � G and V ∈ Irr(H;K). Suppose indG(V )

H V =
⊕k

j=1mjVj with pairwise
non-isomorphic G(V )-representations Vj. Then:

(1) indG
G(V ) Vj = Wj is irreducible.

(2) Let W ∈ Irr(G;K) and 〈V, resG
H W 〉 6= 0. Then W ∼= Wj for some j.

(3) The Wj are pairwise non-isomorphic.
(4) mj is the ramification index of Wj with respect to H.
(5) Let IG(V ) = {W1, . . . ,Wr} ⊂ Irr(G;K). Then IG(gV ) = IG(V ) and

Irr(G;K) is the disjoint union of the sets IG(V ) where V runs through
a representative system of conjugation orbits Irr(H;K)/G.

Proof. Restriction to H and (4.4) yields⊕k
j=1mj resG(V )

H Vj = resG(V )
H indG(V )

H V = |G(V )/H|V. (4.6)

Therefore resG(V )
H Vj = njV for some nj ∈ N. Frobenius reciprocity yields

nj = 〈njV, V 〉H = 〈V, resG(V )
H Vj 〉H

= 〈 indG(V )
H V, Vj 〉G(V )

= mj〈Vj , Vj 〉G(V ) = mj .

Therefore resG(V )
H Vj = mjV , and together with (4.6) we obtain

|G(V )/H| =
∑k

j=1m
2
j . (4.7)

Let now W ∈ Irr(G,K) be such that

〈 indG
G(V ) Vi,W 〉G 6 = 0. (4.8)

We want to show that W ∼= Wi = indG
G(V ) Vi; this shows in particular that

Wi is irreducible, since there exist W such that (4.8) holds. By Frobenius
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reciprocity 0 6= 〈 indG
G(V ) Vi,W 〉G = 〈Vi, resG

G(V )W 〉G(V ). Therefore Vi occurs
in resG

G(V )W and hence 〈U, Vi 〉 ≤ 〈U, resG
G(V )W 〉 for each G(V )-representation

U . In particular

〈V, resG
H W 〉 = 〈 indG(V )

H V, resG
G(V )W 〉

≥ 〈 indG(V )
H V, Vi 〉 = 〈V, resG(V )

H Vi 〉 = mi.

This implies, for each g ∈ G,

〈 resG
H W, gV 〉 = 〈 resG

H(g−1
W ), V 〉 = 〈 resG

H W,V 〉 ≥ mi.

Therefore each gV occurs in resG
H V at least with multiplicity mi. From (4.8)

we obtain

dimW ≤ dim indG
G(V ) Vi. (4.9)

Since gV occurs in resG
H V at least with multiplicity mi and since there exist

|G/G(V )| different gV , we see

dimW ≥ mi|G/G(V )|dimV = |G/G(V )|dimVi = dim indG
G(V ) Vi. (4.10)

From (4.9) and (4.10) we obtain equality of dimensions and therefore W ∼=
indG

G(V ) Vi, since W occurs in indG
G(V ) Vi. Frobenius reciprocity again yields

〈V, resG
H W 〉 = 〈 indG

H V,W 〉 =
∑

j mj〈 indG
G(V ) Vj ,W 〉.

Therefore W ∈ Irr(G,K) is of the form indG
G(V ) Vj for some j ∈ {1, . . . , k} if

and only if 〈V, resG
H W 〉 6= 0. There are exactly k G-representations of this

type if we show Wi 6∼= Wj for i 6= j. Suppose that W1
∼= W2. Then

indG
H V = (m1 +m2) indG

G(V ) V2 +m3 indG
G(V ) V3 + · · · (4.11)

and, together with (4.7) and 4.2.3, we arrive at the contradiction∑
j m

2
j = |G(V )/H| = 〈 indG

H V, indG
H V 〉 ≥ (m1 +m2)2 +m2

3 + · · ·+m2
k;

the inequality ≥ is a consequence of (4.11) and 〈Wi,Wi 〉 = 1.
The ramification index of Wj with respect to H is 〈V, resG

H Wj 〉. By Frobe-
nius reciprocity this is equal to 〈 indG

H V,Wj 〉 = 〈
∑

tmtWt,Wj 〉 = mj .
Suppose W ∈ IG(V1) ∩ IG(V2). Then

0 6= 〈 indG
H V1, indG

H V2 〉 = 〈V1, res indV2 〉.

Since resG
H indG

H V2 contains only conjugates of V2, we see that V1 and V2 are
conjugate. Part (2) and IG(V ) = IG(gV ) now shows that Irr(G;K) is the
disjoint union of the IG(V ) as stated. 2



58 4 Induced Representations

(4.2.5) Remark. Theorem 4.2.4 gives a kind of recipe for the construction of
irreducible G-representations starting from the irreducible representations of a
normal subgroup H.

The situation is easy to survey if V happens to be a restriction of a G(V )-
representation Ṽ . In that case indG(V )

H V = indG
H 1H ⊗ Ṽ , see ??. Since

H � G(V ), the representation indG(V )
H 1H is obtained from the regular rep-

resentation K(G(V )/H) by composition with the quotient homomorphism
G(V ) → G(V )/H. The decomposition of the regular representation now de-
termines the Vj in 4.2.4. 3

The next proposition gives conditions under which the lifting property holds
for all irreducible representations of H. For the proof go back to 1.6.1.

(4.2.6) Proposition. Let K be algebraically closed. Suppose H is an abelian
normal subgroup and G the semi-direct product of H and P , i.e. G = HP
and H ∩P = 1. Then each irreducible H-representation V has an extension to
G(V ). 2

(4.2.7) Remark. We now combine 4.2.4 - 4.2.6. The hypotheses are as in
4.2.6. The irreducible representations of G are obtained as follows. Start with
η ∈ Irr(H). Let Pη ≤ P be the isotropy group of η under the conjugation
action of P on Irr(H). Extend η to η̃ by 4.2.6. Let U ∈ Irr(Pη) and lift to a
representation Ũ of HPη. Then form W = indG

HPη
(η̃ ⊗ Ũ). The isomorphism

class of W uniquely determines the P -orbit of η and the isomorphism class of
the Pη-representation U . 3

4.3 Monomial Groups

The induced representation of a one-dimensional representation is called a
monomial representation. A group is called monomial if each V ∈
Irr(G; C) is monomial.

Let ρ : H → K∗ be a one-dimensional representation. A basis of indG
H ρ

consists of the (gj , 1) = xj where 1 = g1, . . . , gr is a representative system of
G/H. Suppose ggj = gσ(j)hj with σ ∈ Sr and hj ∈ H. The computation

gxj = (ggj , 1) = (gσ(j)hj , 1) = (gσ(j), ρ(hj)) = ρ(hj)xσ(j)

shows: The matrix representation of indG
H ρ with respect to the basis above

consists of matrices which have in each row and column exactly one non-zero
entry. Matrices of this type are called monomial.

A group G is said to be supersolvable if there exists a string of normal
subgroups 1 = G0 < G1 < . . . < Gr = G such hat Gj/Gj−1 is a group of
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prime order. Subgroups and factor groups of supersolvable groups are super-
solvable. Groups of prime power order are supersolvable. If H is cyclic and
G/H supersolvable, then G is supersolvable.

(4.3.1) Theorem. Supersolvable groups are monomial.

The proof needs some preparation and will be finished after 4.3.4.

(4.3.2) Proposition. Suppose G has an abelian normal subgroup A which is
not central. Then a faithful irreducible CG-representation is induced from a
proper subgroup.

Proof. Let W ∈ Irr(G; C) be faithful and suppose V ∈ Irr(H; C) is an H-
sub-representation of W . It suffices to show G(V ) 6= G; see 4.2.2. Suppose
G(V ) = G. Then resG

A W is a multiple of the one-dimensional representation
V . Therefore each a ∈ A acts on V as multiplication by a scalar, hence la
commutes with lg for each g ∈ G. Since W is faithful this fact implies that a
is contained in the center of G. 2

(4.3.3) Lemma. Let G be a non-abelian supersolvable group. Then G contains
a non-central normal abelian subgroup.

Proof. Let Z < G be the center of G. Since G is supersolvable, so is G/Z. Let
1 6= H/Z�G/Z be a cyclic normal subgroup. Then H is an abelian non-central
normal subgroup. 2

We need a formal property of induced representations. Let α : A→ B be a
homomorphism. We associate to a KB-representation V a KA representation
α∗V with the same underlying vector space V and with action

A× V → V, (a, v) 7→ α(a) · v.

In the case that α : A ⊂ B we have α∗V = resB
A V . If α is surjective, we say

that α∗V is obtained from V by lifting the group action along α. We show
that induction is compatible with lifting. Consider

α̃−1(A) = P

α
��

⊂ // Q

α̃
��

A
⊂ // B

α̃ surjective and α = α̃|P . Then

(4.3.4) Lemma. α̃∗(indB
A V ) ∼= indQ

P (α∗V ) for each A-representation V .

Proof. α induces a bijection Q/P → B/A by passing to quotients. The iso-
morphism is induced by qP ×P α∗V → α(q)A×A V, (q, v) 7→ (α(q), v). 2
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Proof. (Of 4.3.1.) Let W be a faithful irreducible CG-representation. If G is
abelian, then dimW = 1, and nothing is to prove. Otherwise W is, by 4.3.2
and 4.3.3, induced from a proper subgroup W = indG

H V . By induction we can
assume that V is monomial, and by transitivity of induction, W is monomial.

If W is not faithful, let L be its kernel, and consider W as G/L-
representation W . By induction again, W is monomial. Now use 4.3.4. 2

Problems

1. Consider the semi-direct product G of the quaternion group Q8 = 〈 a, b | a2 =
b2, bab−1 = a−1 〉 by C3 = 〈h 〉 with respect to the automorphism hah−1 = b, hbh−1 =
ab. The faithful representation G→ SU(2)

a 7→
„

i 0
0 −i

«
, b 7→

„
0 −1
1 0

«
, h 7→ i− 1

2

„
1 −i
1 i

«
is not monomial: The group G has no subgroup of index 2. The group G has the

quotient A4 and is solvable. (G is called the binary tetrahedral group.)

4.4 The Character Ring and the Representation
Ring

Let K be a field of characteristic zero. Recall that the characters of the irre-
ducible KG-representations are linearly independent in the ring of class func-
tions Cl(G;K). The additive subgroup CH(G;K) of Cl(G;K) generated by
the characters of irreducible representations is therefore a free abelian group of
rank | Irr(G;K)|. The relation χV⊕W = χV +χW shows that each character is
contained in this group. And the relation χV⊗W = χV χW is used to show that
CH(G;K) is a subring of Cl(G;K). This ring is called the character ring of
KG-representations.

The character ring can be constructed formally. It is then called the repre-
sentation ring or Green ring. In this context K can be an arbitrary field.
Let R(G;K)+ denote the set of isomorphism classes of KG-representations.
Direct sum and tensor product induces on R(G;K)+ two composition laws
(addition and multiplication), and with these structures R(G;K)+ is almost a
commutative ring, except that inverses for the additive structure are missing.
In situations like this, there exists a universal ring R(G;K) together with a
homomorphism

ι : R(G;K)+ → R(G;K)

of semi-rings which is determined, up to a unique isomorphism, by a universal
property: Let ϕ : R(G;K)+ → A be a homomorphism into an abelian group.
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Then there exists a unique homomorphism of abelian groups Φ: R(G;K)→ A
such that Φ ◦ ι = ϕ. If, moreover, A is a commutative ring and ϕ a homomor-
phism of semi-rings, then the universal homomorphism Φ is a homomorphism
of rings. The universal property is used to show that additive constructions
with representations extend to the representation ring. Elements in R(G;K)
are formal differences [V ]− [W ] of representations V,W , called virtual repre-
sentations, and [V ]−[W ] = [V ′]−[W ′] if and only if V ⊕W ′⊕Z ∼= V ′⊕W⊕Z
for some representation Z.

(4.4.1) Proposition. If K has characteristic zero, then the homomorphism
R(G;K)+ → CH(G;K), V 7→ χV is a model for the universal ring. If the
characteristic of K does not divide the order of the group, then R(G;K) has a
Z-basis of isomorphism classes of irreducible representations. 2

Typical additive constructions are restriction and induction.

(4.4.2) Proposition. Suppose H ≤ G. Restriction induces a ring homomor-
phism resG

H : R(G;K) → R(H;K). Induction induces an additive homomor-
phism indG

H : R(H;K)→ R(G;K). The relation (4.3) shows indG
H(x · resG

H y) =
(indG

H x) · y. It implies that the image of indG
H is an ideal. 2

(4.4.3) Example. Let G = Cm = 〈 a | am = 1 〉 and ρ : a 7→ exp(2πi/m) the
standard representation. Then R(G; C) is the free abelian group with basis
1, ρ, ρ2, . . . , ρm−1. The multiplicative properties of the ρk, namely ρk ⊗ ρl ∼=
ρk+l, show that the ring R(G; C) is isomorphic to Z[ρ]/(ρm−1). More formally:
For a finite abelian group G with character group G∗ the representation ring
R(G; C) is isomorphic to the group ring Z[G∗]. 3

(4.4.4) Example. We determine R(Cm; Q) for Cm = 〈x | xm = 1 〉. De-
compose xm − 1 ∈ Q[x] into irreducible factors xm − 1 =

∏
d|m Φd(x). The

cyclotomic polynomial Φd(x) has the primitive d-th roots of unity as its roots.
The quotient Vd = Q[x]/(Φd(x), viewed as a module over the group ring
QCm = Q[x]/(xm − 1), is an irreducible QCm-representation. The Vd, d|m
form a Z-basis of R(Cm,Q). There is another Z-basis which consists of the
permutation representations Q(Cm/Cn) = Pm/n. The representation Pm/n

contains the irreducible representations which have Cn in its kernel. The ker-
nel of Vd is Cm/d. Hence Pk =

∑
d|k Vd. By Möbius-inversion one obtains

Vk =
∑

d|k µ(k/d)Pd. 3

(4.4.5) Example. Suppose the characteristic of K does not divide the order
of G. We describe R(Cm;K). Let L = K(ε) be the field extension, ε a
primitive m-th root of unity. Then, as in 4.4.3, R(Cm;L) ∼= Z[ρ]/(ρm − 1)
where ρ : Cm → L∗ is given by ρ(a) = ε. Field extension yields an injective
homomorphism ι : R(Cm;K) → R(Cm;L). Let Γ = Gal(L|K) be the Galois
group of L over K. An element γ ∈ Γ is determined by its value γ(ε) = εt; and
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t is determined modulo m; hence γ 7→ t yields an injection Γ ⊂ Z/m∗. The
group Γ acts on {1, ε, . . . , εm−1}. If C is an orbit, then qC =

∏
α∈C(X − α) is

an irreducible factor of xm − 1 ∈ K[x]. These irreducible factors correspond
to the irreducible KCm-representations. The group Γ acts on Irr(G;L) = {ρt |
t ∈ Z/m} by (γρ)(a) = γ(ρ(a)), and hence on R(G;L) by ring automorphisms.
The homomorphism ι induces an isomorphism ι : R(Cm;K) ∼= R(Cm;L)Γ with
the Γ-fixed subring. 3

Problems

1. Compute R(D2n; C) and study the restriction to R(Cn; C). Compare R(D2n; R)

via complexification with R(D2n; C).

2. Let x ∈ R(G; C) be a unit of finite order. Then the character values of x are roots

of unity. This implies that 〈x, x 〉 = 1. One concludes that x = ±χ, where χ is a

one-dimensional representation.

3. The group ring ZG of a finite abelian group G is isomorphic to the representation

ring R(G; C). Hence the units of finite order in ZG are precisely the elements ±g for

g ∈ G. ??

4. The complexifications of representations induces an injective homomorphism

c : R(G; R)∗ → R(G; C)∗. If x ∈ R(G; R) is a positive unit of finite order (posi-

tive: x(1) > 0), then c(x) is a one-dimensional character with real values, hence a

homomorphism G → Z∗ = {±1}. Hence: Hom(G, Z∗) is canonically isomorphic to

the group of positive units of finite order in R(G; R). Since these units are rational

representations, R(G; Q) has the same units of finite order as R(G; R).

4.5 Cyclic Induction

Let F be a set of subgroups of G. A general question of induction theory is:
For which sets F is the induction map

iF = 〈 indG
H | H ∈ F 〉 :

⊕
H∈F R(H;K)→ R(G;K)

surjective? We know that the image of iF is an ideal. Therefore iF is surjective
if and only if the unit element 1G of R(G;K) is contained in the image of iF .
It is also interesting to look for integral multiples of 1G in the image of iF .

Let K be a field of characteristic zero. In this section we prove Artin’s
induction theorem which says that |G|1G is in the image of iC for the set C of
cyclic subgroups. The proof is based on a character calculation.

We rewrite the basic orthogonality relation

|G|dimV G =
∑

g∈G χV (g). (4.12)
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Let C# denote the set of generators of the cyclic group C. Since each element
generates a unique cyclic subgroup we can write the right hand side of (4.12)
as a sum over the cyclic subgroups C of G

|G|dimV G =
∑

C(
∑

g∈C# χV (g)). (4.13)

We apply this to the cyclic subgroup C itself.
Let µ : N → Z be the Möbius-function, defined inductively by1 µ(1) = 1

and
∑

d|n µ(d) = 0 for n > 1. Let f and g be functions from N into some
(additive) abelian group such that f(n) =

∑
d|n g(d); then Möbius inversion

tells us that g(n) =
∑

d|n µ(n/d)f(d).
Note that for each divisor d of |C| = n there exists a unique subgroup

D ≤ C with |D| = d. We obtain by Möbius inversion from (4.13)∑
c∈C# χV (c) =

∑
D≤C µ(|C/D|)(

∑
d∈D χV (d)). (4.14)

The inner sum in (4.14) equals |D|dimV D. Therefore we obtain altogether:

|G|dimV G =
∑

C(
∑

D≤C µ(|C/D|)|D|dimV D). (4.15)

This equality has the form |G|dimV G =
∑

C aC dimV C with suitable integers
aC . We use 〈K(G/H), V 〉G = dimV H in (4.15) and see that 〈 |G|K(G/G) −∑

C aCK(G/C), V 〉G = 0 for each representation V . This implies that the left
argument of the bracket is zero.

(4.5.1) Proposition. |G|[K(G/G)] =
∑

C aC [K(G/C)] in R(G;K). Note
that 1G = [K(G/G)] is the unit element in R(G;K). 2

We know that indG
C resG

C : R(G;K) → R(G;K) is multiplication by
[K(G/C)], see 4.1.5. Hence we obtain from 4.5.1:

(4.5.2) Theorem. For x ∈ R(G;K) the identity
∑

C aC indG
C resG

C x = |G|x
holds. This implies Artin’s induction theorem: |G|R(G;K) is contained in
the image of iC. 2

(4.5.3) Theorem. Let V and W be QG-representations. Suppose that for
each cyclic subgroup C ⊂ G we have dimV C = dimWC . Then V and W are
isomorphic.

Proof. It suffices to show resG
C V

∼= resG
C W for each cyclic subgroup C of G,

since we know that representations are determined by their restriction to cyclic
subgroups. From our analysis of irreducible QC-representations we conclude
that they are determined up to isomorphism by fixed point dimensions of sub-
groups. 2

1d|n means, d divides n.
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(4.5.4) Proposition. The rank of R(G; Q) equals the number of conjugacy
classes of cyclic subgroups of G.

Proof. Since conjugate subgroups have fixed points of equal dimension we con-
clude from 4.5.3 that the rank is at most the number of cyclic conjugacy classes.

We show that the permutations representations UC = Q(G/C), (C) cyclic
conjugacy class, are linearly independent. Suppose

∑
(C) aCUC = 0. Let C be

maximal such that aC 6= 0, and let g ∈ C be a generator. The character of∑
(C) aCUC at g is aC |G/CC | 6= 0; a contradiction. 2

(4.5.5) Proposition. Let α ∈ Cl(G;K). Suppose for each cyclic subgroup C
the restriction resG

C α ∈ R(C;K). Then |G|α ∈ R(G;K).

Proof. This is a direct consequence of 4.5.2. 2

Problems

1. Let G = A5. The virtual permutation representation associated to [G/C5] +

[G/C3] + [G/C2]− [G/C1] realizes 2 · 1G ∈ R(G; Q).

4.6 Induction Theorems

In order to state further induction theorems we have to specify suitable sets of
subgroups. Let p be a prime number. A p-group is a group of p-power order.
Let |G| = ptq with (p, q) = 1. Then there exists a subgroup G(p) ≤ G of
order pt, and all such groups are conjugate; they are called Sylow p-groups
of G. A p-hyperelementary group H is the semi-direct product of a cyclic
group and a p-group P of coprime order; S is a normal subgroup of H and
H/S ∼= P . Let H(p,G) denote the set of p-hyperelementary subgroups of G.
The set H(G) = ∪pH(p,G) is the set of hyperelementary subgroups of G.
Hyperelementary groups are monomial. A p-elementary group H is the direct
product S×P of a cyclic group S and a p-group P of coprime order. We denote
by E(p,G) the set of p-elementary subgroups of G and by E(G) = ∪pcalE(p,G)
the set of elementary subgroups of G.

As in the case of Artin’s induction theorem, the hyperelementary induction
theorem is a consequence of a result about permutation representations.

(4.6.1) Theorem. Let K be a field of characteristic zero. There exists in
R(G;K) a relation of the type |G/G(p)|1G =

∑
E∈H(p,G) hE [K(G/E)] with

suitable integers hE.
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We defer the proof to a later section where we deal systematically with such
results; see ??.

(4.6.2) Theorem (Hyperelementary induction). Let K be a field of charac-
teristic zero. Then |G/G(p)|R(G;K) is contained in the image of iH(p,G). The
induction map iH(G) is surjective.

Proof. The first assertion is a consequence of 4.6.1. The integers |G/G(p)|, p
a divisor of |G|, have no common divisor. Hence there exist integers np such
that

∑
p np|G/G(p)| = 1. We conclude that 1G is in the image of iH(G). 2

Hyperelementary groups are supersolvable. Therefore the next theorem is
a consequence of 4.6.2.

(4.6.3) Theorem (Monomial induction). R(G; C) is generated by monomial
representations, i.e., each element x ∈ R(G; C) is of the form x = [V ]−[W ] with
representations V and W which are direct sums of monomial representations.

2

(4.6.4) Proposition. Let H = SP be a p-hyperelementary group. Then
iE(p,H) is surjective (K = C).

Proof. By induction on |H| we can assume that irreducible representations of
dimension greater than one are in the image of the induction map. Let α ∈
X(H) be a one-dimensional representation. Consider the elementary subgroup
E = SP × P . We claim: If γ ∈ X(H) occurs in indG

E resG
E α, then α = γ and

α occurs with multiplicity one. By Frobenius reciprocity this is a consequence
of 1.6.3. Thus modulo representations of dimensions greater that one, each
element of X(H) is in the image of the induction map. 2

We combine 4.6.2 and 4.6.4 and obtain:

(4.6.5) Theorem (Brauer’s induction theorem). Let K = C. Then
|G/G(p)|R(G; C) is contained in the image of iE(p,G), and iE(G) is surjec-
tive. 2

We now derive an interesting consequence of the monomial induction the-
orem. The exponent e(G) of a group G is the least common multiple of the
order of its elements; it divides |G|.

(4.6.6) Theorem (Splitting field). Let ε be a primitive e(G)-th root of unity.
Then Q(ε) is a splitting field for G, i.e., each irreducible CG-representation
has a realization with matrices having entries in Q(ε).

Proof. One-dimensional representations of subgroups of G are certainly real-
izable over Q(ε) and therefore also monomial representations, being induced
from one-dimensional ones. From 4.6.3 we infer: LetM be a CG-representation.
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Then there exist representations U and V , which are realizable over Q(ε) and
such that U ∼= V ⊕M . It is now a general fact that this implies: M is realizable
over Q(ε). See the next proposition. 2

Let L be an extension field of K (of characteristic zero). We denote by
VL = L ⊗K V the extension of a KG-representation to an LG-representation.
From character theory we see 〈V,W 〉KG = 〈VL,WL 〉LG.

(4.6.7) Proposition. Let U and V be KG-representations and M an LG-
representation. Suppose UL

∼= VL⊕M . Then there exists a KG-representation
N such that NL

∼= M .

Proof. We fix M . Among all possible isomorphisms UL
∼= VL ⊕M choose one

with V of smallest dimension. We show V = 0. Suppose V 6= 0. Choose
W ∈ Irr(G;K) with 〈W,V 〉KG > 0. Then

〈U,W 〉KG = 〈UL,WL 〉LG = 〈VL ⊕M,WL 〉LG

= 〈V,W 〉KG + 〈M,WL 〉LG > 0.

Therefore W occurs in U , hence U ∼= U ′ ⊕W , V ∼= V ′ ⊕W by semi-simplicity.
We conclude U ′L⊕WL

∼= V ′L⊕WL⊕M , cancel WL, and see that V was not of
minimal dimension. 2

(4.6.8) Proposition. The restriction ρ : R(G; C)→
∏

E R(G; C) is an injec-
tion as a direct summand (E elementary subgroups).

Proof. Suppose 1G =
∑

E indG
E xE . Define

λ : R(G)→
∏

E R(E), x 7→ (resG
Ex · xE | E).

Then
∑

E indG
E(resG

E ·xE) =
∑

E x · indG
E xE = x ·1G = x. Hence λ is a splitting

of the induction.
Dually, define

r :
⊕

E R(E)→ R(G), (yE) 7→
∑

E indG
E(yE · xE).

Then rρ(x) =
∑

indG
E(resG

E x · xE = x ·
∑

E indG
E xE) = x. Thus r is a splitting

of ρ. 2

(4.6.9) Proposition. Let α ∈ Cl(G) be such that resG
E α ∈ R(E) for each

elementary subgroup E of G. Then α ∈ R(G).

Proof. This is a consequence of 4.6.7. 2

For arbitrary fields (of characteristic zero) we have results of the type 4.6.7
and 4.6.8, using hyperelementary groups. The proofs are the same.
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Problems

1. Verify the elementary induction theorem explicitly for G = A5.
2. The virtual permutation representation associated to [G/D5] + [G/D3]− [G/D2]
is the unit element, G = A5.

4.7 Elementary Abelian Groups

We assume that p does not divide the characteristic of K.

(4.7.1) Theorem. Let V be a faithful KG-representation and A � G an el-
ementary abelian group of rank n ≥ 2. Then there exists H ≤ A such that
|A/H| = p and V H 6= 0. The normalizer NGH is different from G and the
canonical map indG

NH V H → V is an isomorphism.

The proof needs some preparation. Let S(A) = {H ≤ A | |A/H| = p} be
the set of cocyclic subgroups. Consider the following elements in the group
algebra KA

xH = |A|−1(pΣH − ΣA), y = |A|−1ΣA

with ΣA =
∑

a∈A and ΣH =
∑

h∈H h for H ∈ S(A).

(4.7.2) Proposition. The elements xH and y have the following properties:
(1) x2

H = xH ; y2 = y
(2) xHxK = 0 for H 6= K; xHy = 0
(3) 1 = y +

∑
H∈S(A) xH .

Proof. The proof of (1) and (2) is a direct consequence of the relations Σ2
A =

|A|ΣA, ΣHΣA = |H|ΣA, Σ2
H = ΣH and ΣHΣK = p−2|A|ΣA for H 6= K. In

order to prove (3), one has to count the number of H ∈ S(A) which contain
1 6= a and the cardinality of S(A). The latter equals the number (pn−1)/(p−1)
of one-dimensional subspaces of A. The former is the number of subspaces of
A/〈 a 〉 of codimension one. From this information one verifies (3). 2

(4.7.3) Proposition. Let V be a KA-representation. Then yV = Y A and
xHV ⊕ V A = V H .

Proof. We already know that multiplication with y is a projection operator
onto the fixed point set. The second assertion follows from |H|−1ΣH = xh + y,
xHy = 0, and the fact that multiplication by |H|−1ΣH is the projection onto
V H . 2

(4.7.4) Proposition. V = yV ⊕
⊕

H∈S(A) xHV .
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Proof. 4.7.2 (3) shows that V is the sum of yV and the xHV , and 4.7.2 (2)
shows that the sum is direct. 2

(4.7.5) Corollary. Let S(A, V ) = {H ∈ S(A) | V H 6= 0} and suppose V G = 0.
Then V =

⊕
H∈S(A,V ) V

H . In particular S(A, V ) 6= ∅. 2

Proof. (Of 4.7.1). By 4.7.4, there exists H ∈ S(A) such that V H 6= 0. Since
gV H = V gHg−1, the group G acts on S(A, V ) by conjugation. Since

∑
gV H =

V , the action is transitive, and NH is the isotropy group of H ∈ S(A, V ). The
statement is now a special case of 4.2.1. 2

We report on group to which 4.7.1 applies.

(4.7.6) Theorem. Suppose each abelian normal subgroup of the p-group G is
cyclic. Then G is a group in the following list.

(1) G is cyclic.
(2) G is the dihedral group D(2n) of order 2n, n ≥ 4. It has the presenta-

tion 〈A,B | A2n−1
= 1 = B2, BAB−1 = A−1 〉.

(3) G is the semi-dihedral group SD(2n) of order 2n, n ≥ 4. It has the
presentation 〈A,B | A2n−1

= 1 = B2, BAB−1 = A2n−2−1 〉.
(4) G is the quaternion group Q(2n) of order 2n, n ≥ 3. It has the pre-

sentation 〈A,B | B2 = A2n−2
, BAB−1 = A−1 〉. 2

We have shown that complex representations of p-groups are induced from
one-dimensional representations. The virtue of 4.7.1 is that we do not need any
hypothesis about the field K, except that we are in the semi-simple case. Thus
4.7.1 applies, e.g., to real or rational representations. It then remains to study
the groups in the list 4.7.5. The situation is particularly simple for p 6= 2, since
then everything is reduced to the cyclic groups.



Chapter 5

The Burnside Ring

5.1 The Burnside ring

Let G be a finite group and A+(G) the set of isomorphism classes of finite
G-sets. We have two composition laws on A+(G) which give it the structure
of a commutative semi-ring: Addition, induced by disjoint union; and multi-
plication, induced by cartesian product with diagonal action. The Burnside
ring A(G) of G is the universal ring, the Grothendieck ring, associated to the
semi-ring A+(G). Formally, A(G) is a commutative ring together with a ho-
momorphism ι : A+(G) → A(G), such that for each additive homomorphism
ψ : A+(G)→ B into an abelian group B there exists a unique homomorphism
Φ: A(G) → B which satisfies Ψ ◦ ι = ϕ. If, in addition, B is a commutative
ring and ψ respects also multiplication and 1, then Ψ is a ring homomorphism.
It is a general algebraic fact that such a universal ring exists. The image of
the finite G-set S in A(G) will be denoted [S], i.e., [S] is the image of the iso-
morphism class of S under ι. Each element of A(G) is the (formal) difference
[S]− [T ] of two finite G-sets S and T .

Let H ≤ G. The assignment S 7→ |SH | is a homomorphism of semi-rings
A+(G)→ Z. The associated ring homomorphism ϕH : A(G)→ Z is called the
Burnside H-mark of A(G). Conjugate subgroups yield the same mark. We
assemble the marks into a single homomorphism. Let C(G) be the ring of all
functions Con(G)→ Z. Considered as a ring, C(G) is the product of |Con(G)|
copies Z. We obtain a ring homomorphism, called Burnside character or
mark homomorphism,

ϕ : A(G)→ C(G)

which assigns to x ∈ A(G) the map (H) 7→ ϕH(x).

(5.1.1) Proposition. The additive group of A(G) has as Z-basis the isomor-
phism classes of transitive G-sets. The homomorphism ϕ is injective.
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Proof. Each G-set is the disjoint sum of its orbits. Hence the transitive G-sets
generate A(G) additively. Suppose 0 6= x =

∑
(H) aH [G/H], aH ∈ Z. We

choose a maximal (with respect to inclusion) conjugacy class (L) such that its
coefficient aL 6= 0. Recall that G/HL 6= ∅ if and only if L is subconjugate to
H. Therefore ϕL(x) =

∑
(H) aHϕL(G/H) = aL|G/LL| 6= 0. Thus x is not

contained in the kernel of ϕ. A similar argument shows that the [G/H] are
linearly independent. 2

(5.1.2) Corollary. Finite G-sets X and Y are isomorphic if and only if they
have the same image in A(G). They have the same image in A(G), if for all
subgroups H of G their H-fixed point sets have the same cardinality. 2

Recall that X(H) denotes the subset of X of orbits isomorphic to G/H. The
cardinality of |X(H)/G| is the number of such orbits. Hence, in A(G),

[X] =
∑

(H) |X(H)/G| · [G/H]. (5.1)

In a sum of this type over (H) ∈ Con(G) we select from each class (H) a
representative H. Recall that WH = NH/H is the automorphism group of
the G-set G/H and that this group acts freely on G/H. Therefore each fixed
point set G/HK has cardinality divisible by |WH|. This divisibility property
shows that the function x(H) = |WH|−1ϕ(G/H) has integral values and defines
therefore an element of C(G).

(5.1.3) Proposition. The x(H), (H) ∈ Con(G) are a Z-basis of C(G).

Proof. The matrix (K), (L) 7→ x(K)(G/L) = |WL|−1|G/LK | is triangular with
units on the diagonal. (In order to write out a matrix we choose a total order
on Con(G) which refines the partial order on Con(G) given by subconjugation.)

2

(5.1.4) Corollary. The cokernel of ϕ is isomorphic to
∏

(H) Z/|WH|Z. 2

In the sequel we often identify A(G) with its image in C(G). Less formally
than above we could also define A(G) as the subring of C(G) generated by the
functions (H) 7→ |SH | for finite G-sets S. (Analogy: Character ring versus
representation ring.)

(5.1.5) Corollary. Let a ∈ A(G) ⊂ C(G), b ∈ C(G) and suppose a(H) ≡
b(H) mod |G| for all (H). Then b ∈ A(G). If we apply this to a = 0 we see
that |G|C(G) ⊂ A(G). 2

The interesting structure of A(G) comes from its multiplication. In order
to determine the product [G/K] × [G/L] one has to decompose G/K × G/L
into orbits. The isotropy groups have the form uKu−1 ∩ vLv−1. Actually, one
rarely wants to do such a computation.
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Let H ≤ G. The induction X 7→ G ×H X induces an additive homomor-
phism

indG
H : A(H)→ A(G),

called induction from H to G. If we view a G-set X as an H-set resG
H X, we

obtain a ring homomorphism

resG
H : A(G)→ A(H),

called restriction fromG toH. More generally: Let α : K → L be a homomor-
phism and view an L-set via α as K-set. This induces a ring homomorphism

α∗ = A(α) : A(L)→ A(K).

The isomorphism G×H (X × Y ) ∼= (G×H X)× Y for H-sets X and G-sets Y
yields

indG
H(a · resG

H b) = indG
H a · b. (5.2)

This implies as in the case of the representation ring:

(5.1.6) Proposition. The image of indG
H is an ideal of A(G). 2

The Burnside ring codifies combinatorial properties of the lattice of sub-
groups. It is also a universal object in representation theory. When we assign
to a finite G-set S its permutation representation KS over a field K we obtain
a ring homomorphism

πG : A(G)→ R(G;K),

see 1.8.5. These homomorphisms are compatible with restriction and induction

πG ◦ indG
H = indG

H ◦πH , πG ◦ resG
H = resG

H ◦πH .

If K has characteristic zero and if we view R(G;K) as character ring, then the
Burnside character is related to the ordinary character:

πG(S)(g) = |S〈 g 〉| = ϕ〈 g 〉[S] (5.3)

(Here 〈 g 〉 denotes the cyclic subgroup generated by g; see 2.1.5.)
We determine the Burnside character of G×H S. Let indG

H : C(H)→ C(G)
be the additive map which sends α ∈ C(H) to indG

H(α) ∈ C(G) defined by

(indG
H α)(J) =

∑
{α(g−1Jg) | gH ∈ G/HJ}.

The conjugacy class of g−1Jg does not depend on the representative g of the
coset gH. Compare ??.

(5.1.7) Proposition. ϕ ◦ indG
H = indG

H ◦ϕ : A(H)→ C(G).
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Proof. We use the projection p : G×H S → G/H. Let gH ∈ G/HJ and hence
g−1Jg ≤ H. The map

Xg−1JG → (G×H X)J , x 7→ (g, x)

yields a bijection onto p−1(gH) ∩ (G×H X)J . 2

Problems

1. Let e(H, G) ∈ C(G) denote the function with value 1 at (H) and value zero
otherwise. Use 5.1.7 and show indGH e(H, H) = |WH|e(H, G).
2. Verify (5.2) for indGH : C(H)→ C(G).
3. Verify the so-called Mackey formula

resGK ◦ indGH =
X
KgH

indKgH∩K ◦ res
gH
gH∩K ◦c(g)∗

where c(g) : H → gH, h 7→ ghg−1. The sum is over the double cosets KgH ∈ K\G/H.
Later we deal systematically with such formulae.
4. If X is a G-set and Y an H-set, then X × Y is naturally a G ×H-set. Suppose
G and H are finite groups of coprime order. Then (X, Y ) 7→ X × Y induces a ring
isomorphism A(G)⊗Z A(H) ∼= A(G×H).
5. The total quotient ring of A(G) (all non zero divisors inverted) is isomorphic to
A(G)⊗Z Q. The integral closure of A(G) in its total quotient ring is C(G). Hence the
inclusion A(G) ⊂ C(G) is determined by the ring-theoretic properties of A(G) alone.
By 5.1.5, we have isomorphisms A(G)[ 1

|G| ]
∼= C(G)[ 1

|G| ] and A(G)⊗Z Q ∼= C(G)⊗Z Q.

6. The marks are precisely the ring homomorphisms A(G)→ Z.
7. The map χ : A(G) → C(G) which assigns to each G-set X the function
χ(X) : (H) 7→ |XH/WH| is an additive isomorphism.
8. The alternating group A4 has the following conjugacy classes of subgroups and
their normalizers.

H C1 C2 C3 D2 A4

NH A4 D2 C3 A4 A4

Verify the multiplication table of the homogeneous sets:

C1 C2 C3 D2 A4

A4 C1 C2 C3 D2 A4

D2 3C1 3C2 C1 3D2

C3 4C1 2C1 C1 + C3

C2 6C1 2C1 + 2C2

C1 12C1

We have written H instead of G/H.
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5.2 Congruences

We describe A(G) as the kernel of a homomorphism C(G)→
∏

(H) Z/|WH|Z.
We use the counting lemma 1.2.8:

(5.2.1) Lemma. Let G be a finite group, X a finite G-set, and 〈 g 〉 the cyclic
group generated by g ∈ G. Then |G| · |X/G| =

∑
g∈G |X〈 g 〉|. 2

The counting lemma implies the standard congruence∑
g∈G

ϕ〈 g 〉(X) ≡ 0 mod |G| (5.4)

for each finite G-set X. Let nH ∈ NH/H = WH and denote by 〈n,H 〉 the
subgroup generated by n and H. Then (XH)nH = X〈n,H 〉. We apply 5.2.1 to
the WH-sets XH and obtain the congruence∑

nH∈WH

ϕ〈n,H 〉(X) ≡ 0 mod |WH|. (5.5)

Hence A(G) is contained in the kernel of the additive homomorphism

κH : C(G)→ Z/|WH|Z, f 7→
∑

nH∈WH

f(〈n,H 〉).

Let
κ : C(G)→ H(G) =

∏
(H)

Z/|WH|Z

be the product of the κH for (H) ∈ Con(G).

(5.2.2) Theorem. The sequence 0→ A(G)
ϕ−→ C(G) κ−→ H(G)→ 0 is exact.

Proof. We know already that ϕ is injective and that κ ◦ ϕ = 0. Let x =∑
(H)mHx(H) ∈ C(G) satisfy the congruences (5.5) . Choose a maximal (H)

such that m(H) 6= 0. The congruence (5.5) for H shows m(H) ≡ 0 mod |WH|.
Since |WH|x(H) ∈ A(G), we can remove this summand and obtain, by induc-
tion on the number of summands in x, an element in A(G). This proves the
exactness at C(G). Since the order of H(G) is the order of the cokernel of ϕ
we conlude that κ is surjective. 2

Theorem 5.2.2 describes the subgroup A(G) of C(G) by congruence relations
among the values of functions. The standard congruence (5.4) reads∑

(C)

|G/NC||C∗|ϕC(x) ≡ mod|G|; (5.6)
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here |C∗| is the number of generators of the group C. The sum is over G-
conjugacy classes of cyclic subgroups C of G. The congruence (5.5) associated
to the subgroup H has the form∑

(K) n(H,K)ϕK(x) ≡ 0 mod |WH| (5.7)

with integers n(H,K) and n(H,H) = 1; the sum is over G-conjugacy classes
(K) of subgroups K such that H �K and K/H is cyclic (H = K is allowed).

The virtue of the congruences is that they allow the construction of elements
of A(G) without knowing them as G-sets. Interesting examples are obtained
in the next section.

Congruences for the subgroup A(G) ⊂ C(G) are by no means unique. We
make some general remarks concerning congruences. A congruence of type
C(H,m) for A(G) is a relation of the form

x(H) +
∑
(K)

`(H,K)x(K) ≡ 0 mod (m), (5.8)

`(H,K) ∈ Z, (H) < (K), which holds for functions x ∈ A(G).

(5.2.3) Proposition. Let (C(Hj ,mj) | j ∈ J) be a family of congruences for
A(G) with the following property: For each H there exists j with (H) = (Hj),
and the smallest common multiple of {mj | (Hj) = (H)} is |WH|. Then
x ∈ A(G) if and only if (5.8) holds for each (H,m) = (Hj ,mj).

Proof. Let x =
∑

(H) n(H)x(H) ∈ C(G) satisfy the congruences, see 5.1.3. We
have to show n(H) ≡ 0 mod |WH| for all H. We induct over the number
of summands. Suppose (H) is maximal with n(H) 6= 0. Let (Hj) = (H).
Then x(H) = n(H) and C(Hj ,mj) tells us n(H) ≡ 0 mod mj . Thus, by our
assumption, n(H) ≡ 0 mod |WH|. Since |WH|x(H) ∈ A(G), we can remove
this summand. 2

Let WpH denote a Sylow p-group of WH and let NpH ≤ NH be its pre-
image. If we apply the method above to the pair (NpH,H) we obtain a congru-
ence C(H, |WpH|). These congruences satisfy the hypotheses of 5.2.3. Hence
they can be used to characterize A(G) ⊂ C(G). Since the congruences are mod-
ulo prime powers, we call them primary congruences. They are particularly
useful when one studies localizations of the Burnside ring.

Problems

1. Let p be prime number and G = Z/pn. For each i ∈ {0, . . . , n} there exists a unique
subgroup Hi of order pi, and these comprise all subgroups. The ring A(Z/pn) ⊂
C(Z/pn) consists of all functions x which satisfy the congruences

x(Hi) ≡ x(Hi+1) mod pn−i.
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For each finite G-set X the difference X r XH1 consists of orbits of length pn, and
this yields the congruence in the case i = 0.
2. Let G be abelian. Then the product of the homogeneous G-sets in A(G) is
[G/K] · [G/L] = a[G/K ∩ L] with a = |G||K|−1|L|−1|K ∩ L|.
3. Let A ⊂ Z×Z be a subring (with the same unit). Then there exists an integer m
such that A = {(a, b) | a ≡ b mod m}.
4. Determine the congruences for A4. Show that 3[A4/A4] − [A4/D2] − 3[A4/C3] +
[A4/C1] realizes the function in C(A4) which has value 0 for H 6= A4 and value 3 for
A4. Determine the values |G/KL| in all possible cases.
5. The alternating group A5 has the conjugacy classes of subgroups and their nor-
malizers displayed in the next table; Dn is the dihedral group of order 2n.

H 1 Z/2 Z/3 Z/5 D2 D3 D5 A4 A5

NH A5 D2 D3 D5 A4 D3 D5 A4 A5

Therefore A(A5) ⊂ C(A5) is the subring of functions z which satisfy the following
congruences.

(1) z(H) arbitrary for H = D3, D5, A4, A5

(1) z(Z/n) ≡ z(Dn) mod 2 for n = 2, 3, 5

(2) z(D2) ≡ z(A4) mod 3

(3) z(1) + 15z(Z/2) + 20z(Z/3) + 24z(Z/5) ≡ 0 mod 60

The congruence (3) can be replaced by the primary congruences z(1) ≡ z(Z/2) mod
4, z(1) ≡ z(Z/3) mod 3, z(1) ≡ z(Z/5) mod 5.

The ring A(A5) contains the following units:

1 Z/2 Z/3 Z/5 D2 D3 D5 A4 A5

a a a a b c d b e

Here a, b, c, d, e ∈ {±1}, and the second line gives the value of the function z at
the element indicated in the first line. The ring A(A5) contains the idempotents
0, 1, ε, 1− ε where ε is represented by the function with value 1 at A5 and value zero
otherwise. The idempotent ε is

ε = [G/G]− [G/A4]− [G/D5]− [G/D3]− [G/1] + [G/Z/3] + 2[G/Z/2],

in terms of homogeneous spaces.
6. The integers n(H, K) in (5.7) which were obtained from the congruences (5.5)
depend on the subgroup structure. We have the equalities

|NU | · |{A | V � A, A/V cyclic, A ∼G U}|

= |{g ∈ G | V � gUg−1, gUg−1/V cyclic}|

= |{g ∈ G | g−1V g � U, U/g−1V g cyclic}|
= |NV | · |{B | B � U, U/B cyclic, B ∼G V }|

for each pair U, V of subgroups. These yield (ϕ̃ is the Euler function)

n(H, K) = ϕ̃(K : H) · |{A | H � A, A/H cyclic, A ∼G K}|
= ϕ̃(K : H)|NH||NK|−1 · |{B | B � K, K/B cyclic, B ∼G H}|.
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As usual, (K : H) = |K/H| denotes the index of H in K. The first equality follows
from the construction of the n(H, K). Note that ϕ̃(|C|) is the numbers of generators
of the cyclic group C. In the case that H � G the relations simplifies

n(H, K) = ϕ̃(K : H)|G||NK|−1,

for cyclic K/H. In the case H = 1 we obtain a standard congruence.

5.3 Idempotents

An element e in a ring R is called idempotent, if it satisfies e2 = e. Idempo-
tents in C(G) are the functions Con(G)→ Z with values in {0, 1}. We use the
congruences in order to determine which integral multiples of idempotents are
contained in A(G).

Let π be a set of prime numbers and π′ the complementary set. We denote
by Oπ(G) the smallest normal subgroup N � G such that G/N is a solvable
π-group. In the case that Oπ(G) = G the group is called π-perfect. If K ∼G L
then Oπ(K) ∼G Oπ(L). The group Oπ(K) is always π-perfect. Let Pπ(G) ⊂
Con(G) denote the set of π-perfect conjugacy classes. For (J) ∈ Pπ(G) we set
(J, π) = {(H) | (Oπ(H) = (J)}. Then Con(G) is the disjoint union of the sets
(J, π). We decompose n ∈ N in the form n = n(π)n(π′), where n(π) collects
the prime divisors in π. We write |G|(π) = g(π).

We denote by e(H) = e(H,G) ∈ C(G) the idempotent with value one at
(H) and value zero otherwise. Each idempotent in C(G) is the sum of certain
e(H). If x ∈ C(G), then y = g(π′)x satisfies the q-primary congruences for
q ∈ π′. Since g(π′) is invertible modulo p, p ∈ π, the p-primary congruences
are satisfied for y if and only if they are satisfied for x.

(5.3.1) Proposition. Let e ∈ C(G) be idempotent and x = g(π′)e. Then
x ∈ A(G) if and only if e(H) = e(K) for all pairs (H,K) with H � K and
|K/H| ∈ π.

Proof. Let x ∈ A(G). Then

g(π′)e(H) = ϕH(x) ≡ ϕK(x) = g(π′)e(K) mod |K/H|.

Since g(π′) is prime to p ∈ π and e(H) ∈ {0, 1}, the relations e(H) = e(K)
and g(π′)e(H) ≡ g(π′)e(K) mod |K/H| are equivalent. Hence the condition is
necessary.

For the converse, we have to show that e satisfies the p-primary congruences
for p ∈ π. A congruence has the form∑

n(H,L)e(L) ≡ 0 mod |Wp(H)|;
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the sum is over (L/H), L/H ≤Wp(H). Since L/H is a p-group, there exists a
series

H = H0 �H1 � . . .�Hr = L

such that |Hi/Hi−1| = p. Therefore the e(L) which appear in the congruence
all have the same value, hence the congruence is satisfies. 2

(5.3.2) Proposition. The multiple x = g(π′)e of an idempotent e is contained
in A(G) if and only if e is a sum of e(J,π) =

∑
(H)∈(J,π) e(H), for (J) ∈ Pπ(G).

Proof. If x ∈ A(G) then, by 5.3.1, e(H) = 1 if and only if e(Oπ(H)) = 1; hence
if e(H) = 1, then e has value 1 on (Oπ(H)). This shows that e is a sum of
certain e(J,π).

We show that g(π′)e(J,π) ∈ A(G). Let H � K, |K/H| = p ∈ π. Then
Oπ(H) = Oπ(K). Therefore H and K are both contained in (J, π) or not.
Now we apply 5.3.1. 2

By definition we have: Op(H) is cyclic of order prime to p if and only if H
is p-hyperelementary. The support S(e) of an idempotent function e is the
set of subgroups H such that e(H) 6= 0.

(5.3.3) Corollary. Suppose e ∈ C(G) is idempotent and |G/G(p)|e ∈ A(G).
Then S(e) contains the set of cyclic subgroups if and only if S(e) contains the
set H(p,G) of p-hyperelementary subgroups. 2

(5.3.4) Proposition. Suppose x =
∑

H n(H)[G/H] ∈ A(G) ⊂ C(G). If
n(H) 6= 0, then there exist L such that x(L) 6= 0 and (H) ≤ (L).

Proof. Let L be maximal with n(L) 6= 0 and (H) ≤ (L). Then x(L) =
n(L)|WL| 6= 0. 2

(5.3.5) Corollary. There exist an idempotent ep ∈ C(G) with support S(ep) =
H(p,G) and x = |G/G(p)|ep ∈ A(G). The element x is an integral linear
combination of [G/H],H ∈ H(p,G). 2

(5.3.6) Hyperelementary induction. We now apply the preceding results
to hyperelementary induction and prove 4.6.1. If we assign to each finite G-
set S the permutation representation K(S), we obtain a ring homomorphism
π : A(G) → R(G;K). Let K be of characteristic zero. Then we know the
character relation ϕ〈 g 〉(S) = χK(S)(g). The element xp = |G/G(p)|ep ∈ A(G)
in 5.3.5 therefore satisfies π(xp) = |G/G(p)| · 1G ∈ R(G;K). As we explained
earlier, the p-hyperelementary induction theorem was a simple consequence of
the existence of an element xp with these properties. 3

Artin’s induction theorem can also be interpreted from this view point, since
the idempotent e with value 1 on all cyclic subgroups satisfies |G|e ∈ A(G).
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Let e ∈ C(G) be an idempotent. Let n be an integer such that ne =∑
(H) n(H)[G/H] ∈ A(G). Let H(1), . . . ,H(r) be the maximal conjugacy

classes (H) with n(H) 6= 0. We write

Im(e) =
r∑

k=1

Im(indG
H(k)), Ke(e) =

⋂
H∈S(e)

Ker(ϕH).

Under these conditions

(5.3.7) Proposition. Im(e) + Ke(e) ⊃ nA(G).

Proof. The sum on the left is an ideal in A(G). Hence it suffices to show
that n · 1G is contained in this ideal. By construction x = ne ∈ Im(e), since
H(k) ∈ S(e). And for y = ne − x ∈ A(G) and H ∈ S(e) we have ϕH(y) =
n− ne(H) = 0. 2

If S(e) is an open family, then Ke(e) =
⋂

H∈S(e) Ker(resG
H).

(5.3.8) Theorem. Let a(H) denote the product of the prime divisors of
H/[H,H]. Then ne(H,G) ∈ A(G) if and only if a(H)|WH| divides n.

Proof. Suppose me(H,G) ∈ A(G) and p|a(H). Then there exists K � H,
|H/K| = p and K � NpH. We consider the congruence for the pair
(K,NpH) and apply it to me(H,G). There is a single non-zero summand,
and the congruence reads m ≡ 0 mod |NpH/K|. If the prime divisor p
of |WpH| does not divide a(H), then the congruence for (H,NpH) yields
m ≡ 0 mod |WpH|. Hence the divisibility condition is necessary. In order to
show that a(h)|WH|e(H,G) ∈ A(G), we use indG

H e(H,H) = |WH|e(H,G) and
reduce to the case H = G. We consider the congruences for x = a(G)e(G,G).
The value x(G) appears in a p-primary congruence if and only if H � G and
|G/H| = p, and the congruence yields x(G) ≡ 0 mod p. 2

Problems

1. Let G = A5. Compute the function in C(A5) associated to the element G/D5 +
G/D3 + G/D2 − 3G/C2 + G/C1.
2. The finite group H is called perfect, if it equals its commutator subgroup. A
finite group H has a smallest normal subgroup Hs such that its factor group is
solvable. The relation (Hs)s = Hs holds, and H is perfect if and only if H = Hs.
An idempotent function e ∈ C(G) is contained in A(G) if and only if for all H ≤ G
equality e(H) = e(Hs) holds.

The set of indecomposable idempotents corresponds via (K) 7→ eK to the set
of perfect conjugacy classes. In particular G is solvable if 0 and 1 are the only
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idempotents.
3. Let N be an open family of subgroups of G. Let p ∈ Z be a prime and set

Np = {H ≤ G | K / H, K ∈ N, |H/K| a power of p}.

The localization at the prime ideal (p) is denoted by an index (p). Let Ke(N) denote
the kernel of the restriction map A(G)(p) →

Q
H∈N A(H)(p) and Im(Np) the image

of the induction map
L

L∈Np A(L)(p) → A(G)(p). Then Ke(N)+ Im(Np) = A(G)(p).

5.4 The Mark Homomorphism

We apply linear algebra to the mark homomorphism.
The group C(G) has the standard basis e• = (e(K) | (K) ∈ Con(G)) con-

sisting of the idempotent functions e(K) : (L) 7→ δ(K),(L) (Kronecker-delta).
Another basis x• = (x(K) | (K) ∈ Con(G)) is given by the functions ob-
tained in 5.1.3. Let F denote the Con(G) × Con(G)-matrix with entries
F (K,L) = |HomG(G/K,G/L)| = |G/LK |. Recall the invertible matrix ζ∗

with entries ζ∗(K,L) = |(K,L)∗| = |WL|−1|G/LK |. The function x(L) equals
ζ∗(−, L). The two bases are related by

x(L) =
∑
(K)

ζ∗(K,L)e(K), ζ• = e•ζ
∗. (5.9)

Let λK : C(G) → Z/|WK|Z, x(L) 7→ δ(K),(L) and set λ = (λK) : C(G) →
H(G). Then we have as a consequence of 5.1.3:

(5.4.1) Proposition. The sequence 0 → A(G)
ϕ−→ C(G) λ−→ H(G) → 0 is

exact. 2

From (5.9) we obtain by inversion x• = µ∗e•, e(L) =
∑

(K) µ
∗(K,L)x(K).

This yields:

(5.4.2) Idempotent formula. The idempotent e(L) ∈ C(G) is given as a
rational linear combination of the homogeneous G-sets by the expansion e(L) =∑

(K) |WK|−1µ∗(K,L)[G/K]. 2

Let z =
∑

(K) nKx(K) ∈ C(G) be an arbitrary function. By 5.4.1, this
function is contained in ϕA(G) if and only if for all (K) ≤ (G) the integer nK

is divisible by |WK|. If we write z =
∑

(L) z(L)e(L) and insert the idempotent
formula, we see that nK =

∑
(L) µ

∗(K,L)z(L). This yields:

(5.4.3) Möbius congruences. A function z ∈ C(G) is contained in the
image of the mark homomorphism if and only if for all K the congruence∑

(L) µ
∗(K,L)z(L) ≡ 0 mod |WK| holds. 2
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We apply 5.2.3 to the basic Möbius congruence and obtain again a set of
p-primary congruences.

Let γ : K → L be a surjective group homomorphism. We use γ to view
an L-set X as a K-set, k · x = γ(k)x. This induces a ring homomorphism
γ∗ : A(L) → A(K). On the level of Burnside marks this homomorphism is
computed with γ∗ : C(L)→ C(K), γ∗(α)(A) = α(γ(A)).

Recall the Frattini subgroup Φ(G) of G, the intersection of the maximal
subgroups of G, and ??. Let γ : G→ G/Φ(G) be the canonical homomorphism.
Write N = Φ(G).

(5.4.4) Proposition. γ∗e(G/N,G/N) = e(G,G).

Proof. The relation ϕKγ
∗(x) = ϕKN/N (x) shows

ϕKγ
∗e(G/N,G/N) 6= 0 ⇔ ϕKN/Ne(G/N,G/N) 6= 0 ⇔ KN = G.

By ??, the latter only holds for K = G. 2

Suppose x ∈ A(G) is expanded in terms of the basis x =
∑

(L)mL(x)[G/L].
Then

ϕK(x) =
∑

(L)mL(x)|G/LK | =
∑

(L)mL(x)|WL|ζ∗(K,L).

By inversion we obtain:

(5.4.5) Orbit formula. |WK|mK(x) =
∑

(L) µ
∗(K,L)ϕL(x). 2

The multiplicative structure of A(G) depends in a complicated way on the
subgroup lattice. Suppose [G/K][G/L] =

∑
(A) n

K,L
A [G/A]. We take U -fixed

points in this equation and get F (U,K)F (U,L) =
∑

(A) F (U,A)nK,L
A . By

inversion we obtain:

(5.4.6) Structure constants. nK,L
A =

∑
(U) F

−1(A,U)F (U,K)F (U,L). 2

A Z-valued additive invariant for finite G-sets assigns an integer a(S) ∈
Z to each finite G-set S such that a(S q T ) = a(S) + a(T ). By the univer-
sal property of A(G), these additive invariants correspond to homomorphisms
A(G) → Z. The group C(G) can be considered from this viewpoint. We
identify C(G) with Hom(A(G),Z). Each finite G-set X yields the additive
invariant

S 7→
∑

Y ∈S/G

|HomG(Y,X)| = ϕ(X,S)

and ϕ(G/H,S) = ϕH(S). The pairing (X,S) 7→ ϕ(S,X) is additive in S and
X. It induces a bilinear map A(G) × A(G) → Z, and its adjoint A(G) →
C(G), X 7→ ϕ(X,−) is the mark homomorphism.
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Problems

1. µ∗(K, G) 6= 0 implies Φ(G) ≤ K.
2. e(H) = |NH|−1 P

K≤H |K|µ(K, H)[G/K]. The summation is over subgroups and
not over conjugacy classes.

5.5 Prime Ideals

Let (p) ⊂ Z be a prime ideal. Then the pre-image q(H, p) = ϕ−1
H (p) ⊂ A(G) is

a prime ideal; it only depends on the conjugacy class (H).

(5.5.1) Theorem. Let q ⊂ A(G) be a prime ideal. Then

T (q) = {(K) | [G/K] /∈ q}

contains a unique minimal element (H). This (H) defines q in the sense that
q = q(H, p), and p is the characteristic of A(G)/q.

Proof. Since [G/G] = 1 /∈ q, the set T (q) is not empty. Let (H) be minimal in
T (q). Then a relation of type

[G/H]x = ϕH(x)[G/H] +
∑

(K)<(H)

aK [G/K], aK ∈ Z

holds for each x ∈ A(G). In order to see this, we note that G/H ×X has only
isotropy groups which are subconjugate to H. Therefore a relation of this type
holds with a constant c, yet to be determined, in place of ϕH(x). We apply
ϕH to this relation and obtain

ϕH([G/H]x) = ϕH(x)ϕH(G/H) = |WH|ϕH(x) = |WH|c.

Hence c = ϕH(x).
By minimality of (H), the [G/K]-summands are contained in q. Hence

[G/H] · x ≡ ϕH(x)[G/H] mod q,

and since [G/H] /∈ q, we can divide by [G/H] and obtain x ≡ ϕH(x) · 1 mod q.
But this means: x ∈ q if and only if ϕH(x) · 1 ∈ Z · 1 ∩ q, and the latter is the
case if and only if ϕH(x) ≡ 0 modulo the characteristic of A(G)/q.

Suppose [G/K] ∈ T (q) is minimal too. Then

0 6≡ ϕK(G/K) = ϕH(G/K) = |G/KH |,

since q = q(K, p) = q(H, p). In particular G/KH 6= ∅, and therefore H is
subconjugate to K. 2
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(5.5.2) Remark. The inclusion A(G) ⊂ C(G) is an integral ring extension,
since the cokernel is a finite abelian group [, 5.1]. A general theorem in com-
mutative algebra then says that each prime ideal of A(G) is the intersection of
A(G) with a prime ideal of C(G) [, 5.10]. This fact implies immediately that
each prime ideal of A(G) has the form q(H, p). 3

The quotient of A(G) by a prime ideal is isomorphic to Z or Z/p for a prime
number p. Let Spec0(G) and Specp(G) be the corresponding set of prime ideals.
We associate to each ring homomorphism its kernel and obtain bijections (Hom
= set of ring homomorphisms)

Spec0(G) ∼= Hom(A(G),Z), Specp(G) ∼= Hom(A(G),Z/p).

(5.5.3) Proposition. The map (H) 7→ q(H, 0) is a bijection Con(G) →
Spec0(G).

Proof. Surjectivity follows from 5.5.1. The equality q(H, 0) = q(K, 0) implies
ϕH = ϕK . From |G/KH | = ϕH(G/K) = ϕH(G/H) 6= 0 we conclude that H
is subconjugate to K; and conversely. 2

We set Conp(G) = {(H) | |WH| 6≡ 0 mod p}.

(5.5.4) Theorem. The map (H) 7→ q(H, p) is a bijection Conp(G) →
Specp(G). An inverse bijection associates to q the minimal element of T (q).

Proof. Suppose A(G)/q has characteristic p. The minimal element (H) of T (q)
satisfies q = q(H, p), and [G/H] /∈ q(H, p) implies (H) ∈ Conp(G). This proves
surjectivity. Suppose q(H, p) = q(K, p), then, by 5.5.1, ϕH ≡ ϕK mod p. From
|G/HK | ≡ |G/KK | 6≡ 0 mod p we see that K is subconjugate to H; and
conversely. 2

Different subgroups can define the same prime ideal. It turns out that the
only reason for this to happen is given by the next lemma.

(5.5.5) Lemma. Let H � K such that K/H is a p-group. Then q(H, p) =
q(K, p).

Proof. For each G-set X the K/H-set XH r XK consists of orbits of length
pt, t ≥ 1. Hence ϕH(X) = |XH | ≡ |XK | = ϕK(X) mod p. 2

Let us denote the defining set by D(q, p) = {(H) | q = q(H, p)}. Let Op(H)
be the smallest normal subgroup of H such that the quotient is a p-group. It
is a characteristic subgroup. If H�K and K/H is a p-group we therefore have
Op(H) = Op(K). Let |WH| 6≡ 0 mod p; then H/Op(H) is a p-Sylow group of
WOp(H). A finite group H is called p-perfect if Op(H) = H.

(5.5.6) Proposition. Let q = q(H, p) and (H) ∈ Conp(G). Then D(q, p) is
the set E(H) = {(K) | (Op(H) ≤ (K) ≤ (H)}.
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Proof. By 5.5.4, E(H) ⊂ D(q, p). The sets E(H) form a disjoint decomposition
of Con(G). 2

(5.5.7) Proposition. Let Perp(G) be the set of p-perfect conjugacy classes.
Then Perp(G)→ Specp(G), (H) 7→ q(H, p) is a bijection. 2

(5.5.8) Proposition. Let G be a p-group. Then A(G) is a local ring. The
unique maximal ideal is m = q(1, p). If |G| = pn, then mn+1 ⊂ pA(G).
Therefore the m-adic and the p-adic topology on A(G) coincide.

Proof. The first assertion follows from our determination of the prime ideals.
The abelian groupmn+1 is generated by products x1 · · ·xn+1, xj ∈ m. For each
such product p−1ϕH(x1 · · ·xn+1) ∈ pnZ. By 5.3.4, (H) 7→ p−1ϕH(x1 · · ·xn+1)
is an element of A(G). 2

5.6 Exterior and Symmetric Powers

There exist a number of constructions with G-sets which provide the Burnside
ring with additional structure. We discuss in this section exterior and symmet-
ric powers. They yield the structure of a λ-ring. This structure is then used to
derive classical results of elementary group theory in the context of Burnside
rings.

Let R be a commutative ring. The structure of a λ-ring on R consists of a
sequence (λn : R→ R | n ∈ N0) with the properties:

(1) λ0(x) = 1
(2) λ1(x) = x
(3) λn(x+ y) =

∑
i+j=n λ

i(x)λj(y).
Let X be a finite G-set. The n-th exterior power Λn(X) is the set of subsets

of X with n elements and induced G-action g ·A = {ga | a ∈ A}, for g ∈ G and
A ⊂ X. The set Λ0(X) is G-isomorphic to G/G and Λ1(X) is G-isomorphic to
X. Moreover, there exists a canonical G-isomorphism

Λn(X q Y ) ∼=
∐

i+j=n

Λi(X)× Λj(Y ).

It sends A ∈ Λn(X q Y ) to the product of A ∩X and A ∩ Y .
The assignment X 7→ Λn(X) maps A+(G) into A+(G). But since Λn is

not additive, we cannot use directly the universal property to extend it to the
Burnside ring.

We denote by Λ(R) = 1 + tR[[t]] the multiplicative group of formal power
series 1 + a1t+ a2t

2 + a3t
3 + · · · with coefficients ai ∈ R. We set

λt(x) =
∑
i≥0

λi(x)ti ∈ Λ(R),
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if (λn) is a λ-ring structure on R. Then λt : R → Λ(R) is a homomorphism
of the additive group of R into the multiplicative group Λ(R); this uses the
properties (1) and (3).

In an analogous manner we obtain in

A+(G)→ Λ(A(G)), [X] 7→
∑
i≥0

[Λi(X)]ti

a homomorphism from the additive semi-group. By the universal property of
ι : A+(G)→ A(G), it extends to a homomorphism

λt : A(G)→ Λ(A(G)), x 7→
∑
i≥0

λi(x)ti.

In this way we define the λi on A(G), and they yield a λ-ring structure on
A(G).

(5.6.1) Proposition. ϕG(Λk(G/V )) = 1 for k = 0, |G/V | and = 0 for the
remaining k.

Proof. A subset of G/V is a G-fixed point if and only if it is empty or G/V . 2

A ring homomorphism α : R → S induces a group homomorphism
Λ(α) : Λ(R) → Λ(S): we apply α to the coefficients of a power series. The
homomorphism ϕG : A(G) → Z induces Λ(ϕG), again denoted by ϕG. We
can now write 5.6.1 in the form ϕGλt(G/V ) = 1 + t|G/V |. One can compute
ϕGλt(X) from the values on the orbits of X. We can then obtain ϕHλt(X) by
first considering X as an H-set.

(5.6.2) Proposition. ϕHλt(G/1) = (1 + t|H|)|G/H|. 2

We use this computation in the proof of 5.6.3.

(5.6.3) Proposition. Let C be a cyclic group of order n. Then (Λd(C/1) | d|n)
is a Z-basis of A(C).

Proof. Let Ce be the cyclic subgroup of order e of C. By 5.3.2 there exists a
relation of the form

Λd(C/1) =
∑
e|d
a(d, e)[C/Ce], a(d, e) ∈ Z.

We have to show that the matrix a = (a(d, e)) is invertible. From ?? we infer
that ϕCeΛ

d(C/1) 6= 0 implies e|d. With respect to the partial order of the
divisors of n by size, a is a triangular matrix. Moreover,

a(d, d)[C/Cd] = ϕCd
Λd(C/1)

is the coefficient of t|Cd| in (1 + t|Cd|)|C/Cd|, and this implies a(d, d) = 1. 2
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The set map a : Con(G)→ Con(C|G|), (H) 7→ (C|H|) induces a ring homo-
morphism C(a) : C(C|G|)→ C(G).

(5.6.4) Theorem. The homomorphism C(a) induces a homomorphism of sub-
rings α : A(C|G|)→ A(G).

Proof. We use 5.6.2 in order to verify that C(a) sends the function of Λq(C/1)
to the function of Λq(G/1). Then we use 5.6.3. 2

(5.6.5) Remark. Let d be a divisor of |G|. Let C = C|G| be a cyclic group of
order |G|. We set xd = α(C/C|G|/d). Then

ϕU (xd) = ϕC|U|(C/C|G|/d) =
{
d |U | divides |G|/d
0 otherwise.

We write xd =
∑

(U) n(U)[G/U ]. Then the relation n(U) 6= 0 implies that |U |
divides |G|/d: If there would exist U with n(U) 6= 0 for other U , then also for
each larger group V with n(V ) 6= 0 the order |V | would not divide |G|/d. For
a maximal group V of this type we would then have 0 = ϕV (xd) = n(V )|WV |,
a contradiction.

If there exists a group U with d = |G/U |, then U is a maximal with n(U) 6=
0, and therefore

n(U) · |NU/U | = ϕU (xd) = d = |G/U |;

hence n(U) = |G/NU | is the number of subgroups which are conjugate to U .3

(5.6.6) Theorem. Let d divide |G|. Then d is the greatest common divisor of
those |G/U | which are multiples of d.

Proof. By 5.6.5 we have

xd =
∑

(U),d|(G:U)

n(U)|G/U |.

We apply ϕ1 and obtain

d =
∑

(U),d|(G:U)

n(U)|G/U |.

(The n(U) depend of course on d.) 2

(5.6.7) Corollary. Let |G| = d · pt, p a prime. Then there exist U ≤ G with
|U | = pt. In particular, there exists a Sylow p-group Gp, i.e. a subgroup Gp of
p-power order such that |G/Gp| is prime to p. 2

(5.6.8) Corollary. If Gp is a Sylow p-group and H ≤ G a p-group, then H is
subconjugate to Gp. In particular, all Sylow p-groups are conjugate.
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Proof. For a finite G-set X and a p-group H ≤ G the congruence ϕH(X) ≡
ϕ1(X) mod p holds, since orbits not in XH have a length which is divisible by
p. Since |G/Gp| 6≡ 0 mod p, we have |G/GH

p | 6= 0, and this says that H is
subconjugate to Gp. 2

(5.6.9) Corollary. Let pt divide |G|. Then the number of subgroups of order
pt is congruent 1 modulo p.

Proof. Let d = |G|/pt. Then modulo p

1 =
∑

(U),|U ||pt

n(U)d−1|G/U | =
∑

(U),|U ||pt

n(U)|U |−1pt

≡
∑

(U),|U |=pt

n(U)

=
∑

(U),|U |=pt

|G/NU | = |{V ≤ G | |V | = pt}|.

The first equality is 5.6.6 and the second a rewriting with dpt = |G|. In
the fourth one we use 5.6.5, and in the final one we change summation over
conjugacy classes into summation oder subgroups. 2

5.6.7 - 5.6.9 are classical results of Sylow and Frobenius. We derive further
results of this type.

(5.6.10) Theorem. Let m divide the order of the group and E = Em = {g ∈
G | gm = 1}. Then |E| ≡ 0 mod m.

Proof. Let |G| = dm. Then∑
g∈G

ϕ〈 g 〉(xd) =
∑

g,d|(G:〈 g 〉)
d =

∑
g,|〈 g 〉||m

d = d|E|.

By 5.4.2 this number is divisible by |G| = dm, hence |E| is divisible by m. 2

The Burnside ring A(G) carries a second structure of a λ-ring based on
symmetric powers of G-sets.

Let X be a finite G-set and Xr its r-fold cartesian power. The symmetric
group Sr acts on Xr by permutation of factors, and this action commutes with
the G-action. We obtain therefore an induced G-action on the orbit space
Sr(X) = Xr/Sr. We call this G-set the r-th symmetric power of X. There
exists a canonical isomorphism of G-sets

Sr(X q Y ) ∼=
∐

a+b=r

Sa(X)× Sb(Y ).

We can therefore proceed as we did with the exterior powers and obtain a
homomorphism

st : A(G)→ Λ(A(G)), x 7→
∑
i≥0

si(x)ti,
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such that si([X]) = [Si(X)] holds for each finite G-set X. One computes:

(5.6.11) Proposition. ϕGst(G/V ) = (1− t|G/V |)−1. 2

5.7 Burnside Ring and Euler Characteristic

Later we investigate in detail the relation of the Burnside ring to topological
problems. But already at this early stage it is convenient to have a topological
definition of A(G) at our disposal.

We work with the category of finite G-CW-complexes X. The fixed point
sets XH are then finite CW-complexes and the Euler characteristic χ(XH) ∈
Z is defined. We call two such G-complexes X and Y Euler equivalent, if
for all H ≤ G the equality χ(XH) = χ(Y H) holds. Let, for the moment,
A′(G) denote the set of equivalence classes. This set carries the structure of a
commutative ring; addition is induced by disjoint union and multiplication by
cartesian product. Basis properties of the Euler characteristic show this to be
well defined. It is no longer necessary to apply a Grothendieck construction,
since additive inverses are already present: Let K denote a finite complex with
trivial G-action and χ(K) = −1; then [X ×K] is the inverse of [X].

We have ring homomorphisms ϕH : A′(G)→ Z, [X] 7→ χ(XH) and an em-
bedding ϕ′ : A′(G)→ C(G), in analogy to the case of finiteG-sets. Since a finite
G-set is a finite G-complex, we have a ring homomorphism ι : A(G) → A′(G),
the identity on representatives. In order to show that ι is an isomorphism we
verify the standard congruences for the image of the ϕ′. For this purpose we
use the equivariant Euler characteristic of a G-complex X. Let R(G) denote
the complex representation ring of G. The G-action on X makes the homology
group Hi(X; C) into a complex G-representation. The alternating sum

χ(G) =
∑
i≥0

(−1)i[Hi(X; C)] ∈ R(G)

is the equivariant Euler characteristic. Basic properties of homology groups
show that

χG : A′(G)→ R(G)

is a ring homomorphism.
The character value χG(X)(g) at g ∈ G) is the alternating sum of the traces

of the maps
Hi(lg) : Hi(X; C)→ Hi(X; C).

This alternating sum is called the Lefschetz index L(lg) of the left translation
lg. In this section we assume:

(5.7.1) Theorem. L(lg) = χ(Xg). 2
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For each character χ, the relation
∑

g∈G χ(g) ≡ 0 mod |G| holds, since
|G|−1

∑
g∈G χ(g) is the dimension of the fixed point set (projection operator).

If we use this fact for the equivariant Euler characteristic and use 5.7.1 we
see that the standard congruences 5.4.2 hold for the image of ϕ′. As a corol-
lary we obtain that ι is an isomorphism. Henceforth we write A′(G) = A(G).
The topological definition gives us more flexibility in the construction of ele-
ments of A(G). Also, since no Grothendieck construction is needed, certain
constructions with A(G) become easier.

5.8 Units and Representations

We denote by A∗ the group of units of a ring A. The units of C(G) are the
functions with values in {±1}.

Suppose e ∈ A is idempotent. Then u = 1− 2e ∈ A∗. Conversely, suppose
u ∈ A∗ and 1− u is in A divisible by 2, then e = (1− u)/2 is idempotent. If G
has odd order, then the cokernel of A(G) ⊂ C(G) has odd order. If u ∈ A(G)∗,
then 1−u assumes the values 0, 2 and is therefore in C(G) divisible by 2. Thus,
if G has odd order, (1− u)/2 is contained in A(G).

(5.8.1) Proposition. Suppose G is not solvable. Then A(G)∗ 6= {±1}. If G
is solvable of odd order, then A(G)∗ = {±1}.

Proof. If G is not solvable, then there exist idempotents e 6= 0, 1 by ??. The
unit u = 1− 2e is then different from ±1.

If G has odd order and u ∈ A(G)∗, then we have the idempotent e =
(1− u)/2. If G is solvable, then, by (??), e = ±1, and hence u = ∓1. 2

Let H < G have index 2 in G. Then H � G, [G/H]2 = 2[G/H], and we
conclude u(H) = 1 − [G/H] ∈ A(G)∗. The element 1

2 (1 − u(H)) = 1
2 [G/H] is

not contained in A(G).
We construct non trivial units with the help of representation theory. We

set ε(n) = (−1)n, n ∈ Z.

(5.8.2) Proposition. Let V be a real representation of G. Then the function
η(V ) : (H) 7→ ε(dimR V

H) is contained in A(G)∗.

Proof. We view the unit sphere S(V ) of V as a finite G-complex. Then
χ(S(V )H) = 1 − ε(dimV H). Hence 1 − [S(V )] ∈ A(G) has the function
η(V ). 2

In order to give an algebraic proof, we translate 5.8.2 into an essentially
equivalent form. Let VC = V ⊗R C be the complexification of V . Then we can
use the complex dimension function dimC V : (H) 7→ dimC V

H
C = dimR V

H . A
representation of the form VC has a real character.
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(5.8.3) Proposition. Let V be a complex representation with real character.
Then η(V ) : (H) 7→ ε(dimC V

H) is contained in A(G)∗.

Proof. If the complex representation V has character χV , then the complex con-
jugate representation has the complex conjugate function as character. There-
fore a representation has real character if and only if it is isomorphic to its
complex conjugate (is self-conjugate). If we decompose such a representation
into irreducible ones, then the irreducible summands W which are not iso-
morphic to its conjugate W appear in pairs W ⊕ W . We can discard these
summands when we study η(V ).

If V is a G-representation with real character, then also V H , considered
as WH-representation, has real character. By the congruences of section 4
it therefore suffices to show that for a V with real character the congruence∑

g∈G ε(dimC V
〈 g 〉) ≡ 0 mod |G| holds. But this is implied by the next propo-

sition. 2

(5.8.4) Proposition. Suppose V has real character. Then the function g 7→
ε(dimC V − dimC V

〈 g 〉) is a character, i.e. a homomorphism G → Z∗. This
character is the determinant representation of V .

Proof. Let ζ1, . . . , ζn denote the eigenvalues of g ∈ G on V . Then V decomposes
as 〈 g 〉-representation into V1⊕· · ·⊕Vn, and g acts on Vj = C as multiplication
with ζj . On the determinant representation ΛnV ∼= C the element g acts as
multiplication with

∏n
j=1 ζj . Since V has real character, the product contains

with ζj also ζj . There remains the product (−1)k, where k is the number of
eigenvalues −1. The non trivial eigenvalues (6= 1) are those of V/V 〈 g 〉. By
reasons of parity therefore k ≡ dimC V/V

〈 g 〉 mod 2. 2

Since η(V ⊕ W ) = η(V )η(W ), we have a homomorphism η : RO(G) →
A(G)∗ from the additive into the multiplicative group. Let r : RU(G) →
RO(G) map a complex representation to the underlying real representa-
tion. The image is contained in the kernel of η. The induced map
η : RO(G)/rRU(G)→ A(G)∗ is in general neither injective nor surjective. The
group RO(G)/rRU(G) has exponent 2.

(5.8.5) Proposition. Let x ∈ A(G)∗ be a positive unit, i.e. ϕ〈 1 〉(x) > 0.
Then

ηx : G→ Z∗, g 7→ ϕ〈 g 〉(x)

is a homomorphism.

Proof. π(x) ∈ R(G; Q)∗ is a unit of finite order and ηx its character. Now we
apply ??. 2

We mention a further result. The proof uses topological methods and will
be given later.
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(5.8.6) Proposition. Let V be a complex G-representation and B a regular
G-invariant symmetric bilinear form on V . Let f : V → V be a B-orthogonal
G-map. Then (H) 7→ det(fH) is contained in A(G)∗. 2

5.9 Generalized Burnside Groups

Let G be a topological group. A G-set S is a set S with discrete topology
and a continuous left action of G on S. A G-set is called locally finite if its
orbits are finite sets and if for each subgroup U ≤ G of finite index in G the
cardinality ϕU (S) = |SU | is finite.

Let S be locally finite. Let mU (S) denote the number of orbits of type G/U
in S. Then

ϕU (S) =
∑
(V )

mV (S)ϕU (G/V ).

The sum is taken over conjugacy classes (V ) with (U) ≤ (V ). The sum is finite.
HencemV (S) is finite. Conversely, if S has finite orbits and the numbersmV (S)
are all finite, then S is locally finite.

The disjoint union SqT of (locally) finite G-sets S and T is (locally) finite.
The cartesian product S×T of (locally) finite G-sets S and T is (locally) finite;
the orbits of S × T are isomorphic to orbits of G/U × G/V for U ∈ Iso(S),
V ∈ Iso(T ) and hence finite; moreover (S × T )U = SU × TU .

Let F be a family of subgroups of finite index in G. Let A+(G;F) and
A∧+(G;F) denote the set of isomorphism classes of finite and locally finiteG-sets
with isotropy groups in F , respectively. Disjoint union induces a commutative
composition law (addition) in these sets. We let A(G;F) and A∧(G;F) be the
associated Grothendieck groups, called Burnside groups. If F is multiplica-
tive, then cartesian product ofG-sets induces a multiplication, and A(G;F) and
A∧(G;F) become commutative Z-algebras, called Burnside rings. If G ∈ F ,
then G/G represents a unit in this ring. We write A(G), A∧(G), when F is the
family of all subgroups of finite index in G. In the case when F1 ◦ F2 ⊂ F3,
cartesian product induces a bilinear pairing A(G;F1)×A(G;F2)→ A(G;F3).
Thus, if F1 ◦F1 ⊂ F1 and F1 ◦F2 ⊂ F2, then A(G;F2) becomes a module over
the Burnside algebra A(G;F1). Similarly for A∧.

We let [S] or simply S denote the image of theG-set S in the Burnside group.
The assignment S 7→ ϕU (S) induces an additive map ϕU : A∧(G;F)→ Z which
is a ring homomorphism when F is multiplicative. A locally finite G-set is the
disjoint union of its G-orbits. The elements in A∧(A;F) are formal linear
combinations

x =
∑
mV [G/V ], mV ∈ Z, (V ) ∈ (F).

In the case of A(G;F) we use finite sums, and then {[G/V ] | (V ) ∈ (F)} is an
additive Z-basis for A(G;F).
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We have the function

x(V ) : (F)→ Z, (U) 7→ 1
|WV |

ϕU (G/V ).

We let C∧(G;F) denote the ring of functions (F)→ Z, which are formal linear
combinations ∑

nV x(V ), nV ∈ Z, (V ) ∈ (F).

Note that x(V )(U) 6= 0 implies (U) ≤ (V ), so that for each U only a finite sum
matters.

(5.9.1) Lemma. C∧(G;F) is the group of all functions (F)→ Z.

Proof. Let f : (F) → Z be given. We try to write f as a sum f =
∑

n≥1 fn,
where fn ∈ C(G;F) is a linear combination of x(V ) with |G/V | = n. The fn

are constructed inductively such that f −
∑k

n=1 fn assumes the value zero on
(U) whenever |G/U | ≤ k. Suppose k is minimal such that there exists U with
|G/U | = k and f(U) 6= 0. Then fk =

∑
f(U)x(U), where the sum is taken over

(U) ∈ (F) with |G/U | = k. This is the induction step. 2

As in the case of a finite group, we have the injective mark homomorphism
ϕ : A∧(G;F)→ C∧(G;F), x 7→ ((U) 7→ ϕUx). If F is multiplicative, then ϕ is
a ring homomorphism. We have a relation of the type x(H) · x(K) =

∑
nLx(L).

The L which occur in this sum lie in Iso(G/H×G/K). Hence the sum is finite.
Since ϕ([G/H]) = |WH|x(U) and [G/H][G/K] =

∑
mL[G/L], where mL is the

number of orbits of type L inG/H×G/K, we obtain |WH|·|WK|·|WL|−1mL =
nL.

The image of the mark homomorphism ϕ can be characterized by congru-
ence relations among the values of the functions in C∧(G;F). A congruence
relation C(H,m) of type (H,m) for the image of ϕ is a relation of the form

x(H) +
∑
(K)

n(H,K)x(K) ≡ 0 mod (m), (5.10)

n(H,K) ∈ Z, (H) < (K), (H), (K) ∈ (F), which holds for all functions x ∈
Imϕ.

(5.9.2) Proposition. Let (C(Hj ,mj) | j ∈ J), Hj ∈ F be a family of congru-
ences for Im(ϕ) with the following property S

(S) For each H ∈ F the smallest common multiple of {mj | (Hj) = (H)} is
|WH|.

Then x ∈ Im(ϕ) if and only if (5.10) holds for all (H,m) = (Hj ,mj).

Proof. Let x =
∑
nV x(V ) ∈ C∧(G;F) satisfy the congruences. We have to

show that nV ≡ 0 mod |WH|. Suppose H is maximal with nV 6≡ 0 mod |WH|.
Then the partial sum y =

∑
(V )<(K) nKx(K) ∈ Im(ϕ) and z = x − y has the

property z(K) = 0 for (H) < (K). Now ??, applied to the (Hj ,mj) with
Hj = H, implies z(H) ≡ 0 mod |WH|. But x(H) = z(H) by construction. 2
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We call the family ((Hj ,mj) | j ∈ J) sufficient, if it has the property (S)
of 5.9.2. We are going to find families of congruences which are sufficient.

Suppose U �V ≤ G and |G/U | is finite. Let S be a locally finite G-set. We
apply ?? to the H = V/U -set M = SU . We obtain a relation

|H||M/H| =
∑

vU∈V/U

ϕ〈vU〉(S) ≡ 0 mod |V/U |. (5.11)

If F is closed, then ∑
vU∈V/U

x(〈vU〉) ≡ 0 mod |V/U | (5.12)

is a relation of the type (5.10). We call (??) a standard congruence C(U, V )
for (U, V ).

(5.9.3) Proposition. Let F be a closed family. The set of standard congru-
ences (C(Uj , Vj) | j ∈ J) is sufficient if for each H ∈ F the least common
multiple of {|Vj/Uj | | Uj = H} is |WH|. Examples for sufficient sets are:

(1) (C(H,NH) | (H) ∈ (F)).
(2) (C(H,NpH) | (H) ∈ (F)), NpH/H a p-Sylow subgroup of WH, p any

prime. 2

If we work with finite G-sets, we need only consider the subring C(G,F)
of C∧(G,F) which consists of finite linear combinations

∑
nV x(V ). Again,

the image of ϕ : A(G,F) → C(G,F) can be characterized by the same set of
congruences.

Problems

1. In order to have a result like 5.9.3 it is not really necessary to assume that F is
closed. It is only required that the pairs of subgroups which appear in the congruences
are present in F . Thus the standard congruences require:

H ∈ F , H � K, K/H cyclic ⇒ K ∈ F .

And the combinatorial congruences from Möbius inversion require:

H ∈ F , H � K, K/H elementary abelian ⇒ K ∈ F .

In the first case one can even restrict to cyclic p-groups K/H.
2. The Burnside ring A∧(Z) of the additive group Z consists of all formal
sums

P∞
n=1 an[Z/n], an ∈ Z. The multiplication table of the basic elements is

[Z/m][Z/n] = (n, m)[Z/[n, m]], where (n, m) denotes the greatest common divisor
and [n, m] the least common multiple. The embedding ϕ : A∧(Z) → C∧(Z) into the
ring of all functions {nZ | n ∈ N} → Z is the set of those functions x which satisfyP

j|n
µ (n/j) x(jZ) ≡ 0mod n.
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Here µ is the ordinary Möbius function of elementary number theory. If one restricts
to primary congruences, then this subring is characterized by the set of congruences

x(nZ) ≡ x(n/pZ)mod pν(p,n),

where pν(p,n) is the p-power dividing n. The standard congruences areP
j|n

ϕ (n/j) x(jZ) ≡ 0mod n,

where ϕ is the Euler function of elementary number theory.
3. Let Zp denote the additive group of p-adic integers (p prime), considered as a
compact (profinite) group. Then A∧(Zp) consists additively of the formal sumsP∞
d=1 ad[Z/pd] and the congruences are x(pdZ) ≡ x(pd−1Z)mod pd.

4. In this section it would have been sufficient to consider profinite groups. If
H1, . . . , Hr are closed subgroups of finite index in G, then H1∩ . . .∩Hr is the isotropy
group of (eH1, . . . , eHr) in G/H1 × · · · × G/Hr and therefore a closed subgroup of
finite index. If K is a closed subgroup of finite index, then the subgroups gKg−1 are
finite in number and U =

T
g∈G gKg−1 is a closed normal subgroup of finite index.

The subgroup U acts trivially on G/K. Therefore G/K can be considered as a G/U -
space. Let Nor(G) denote the set of closed normal subgroups of G of finite index.
The profinite completion Ĝ of G is the inverse limit of the G/U . We make this
precise. For U ≤ V let pVU : G/U → G/V denote the canonical quotient map. The
group Ĝ is defined to be the kernel of

κ :
Q

U∈Nor(G)

G/U →
Q

U≤V ;U,V ∈Nor(G)

G/V

which sends (xU ) to (xV − pVUxU ). By the theorem of Tychonoff, κ is a continuous

homomorphism between compact Hausdorff groups and therefore Ĝ is a compact

subgroup of
Q

G/U . Locally finite G-spaces are essentially the same as locally finite

Ĝ-spaces.



Chapter 6

Groups of Prime Power
Order

6.1 Permutation Representations

Let G be a finite group and K a field with characteristic prime to |G|. We
denote by R(G;K) the Grothendieck ring of finite-dimensional KG-modules
with respect to ⊕ and ⊗ (representation ring). Additively R(G;K) is the free
abelian group on isomorphism classes of simple KG-modules (= irreducible
representations). We also write R(G) = R(G; C), RO(G) = R(G; R).

If S is a finite G-set, we have the permutation representation KS of S.
The assignment [S] 7→ [KS] yields a ring homomorphism πG = π(G) : A(G)→
R(G;K). In this chapter we mainly work with K = Q. The relation to charac-
ters is as follows, see 2.1.5:

(6.1.1) Proposition. Let χg : R(G; Q)→ Z be the evaluation of characters at
g ∈ G. Then χg ◦ π(G) = ϕ〈 g 〉. 2

We consider the homomorphisms π(G) as data of a natural transformation
of functors on a category S. The objects of S are the finite groups. The
morphisms from K to L are isomorphism classes of diagrams (p|i) : K

p←−
X

i−→ L with surjective homomorphisms p and injective homomorphisms i.
The diagram (p|i) is isomorphic to a diagram (p′|i′) : K ← X ′ → L if there
exists an isomorphism σ : X → X ′ with p′◦σ = p and i′◦σ = i. The composition
of morphisms is defined by a pullback construction as in ??.

We make A(−) into a contravariant functor on S. Given α = (p|i) as above
(with i an inclusion of a subgroup, for simplicity), we define A(α) as the com-
position of p∗ : A(K)→ A(X) with indL

X : A(X)→ A(L). One checks that this
is well defined on isomorphism classes and functorial. In order to show functo-
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riality, one has to verify (q′)∗ ◦ indL
X = indY

C ◦q∗ There is a similar construction
for R(−; Q), and one verifies that the π(G) now constitute a natural trans-
formation. If H � K ≤ G, we have the quotient map p : K → K/H and the
inclusion i : K ⊂ G. We denote the resulting morphism A(p|i) as induction
from a subquotient

indG
K/H : A(K/H)→ A(G),

and similarly for the representation ring.

6.2 Basic Examples

We need information about permutation representations for some elementary
groups. We begin with general remarks about representations. Let V be a CG-
module. For each field automorphism γ of C there exists (up to isomorphism)
a unique representation V γ with character χV γ (g) = γχV (g). We call V γ a
Galois-conjugate of V .

The characters of CG-modules have values in the cyclotomic field L =
Q(ζm), ζm = exp(2πi/m), m = |G|. The representation V γ depends only on
the restriction γ|L. We identify the Galois-group Gal(Q(ζm)|Q) with the group
of units (Z/m)∗. The Galois-automorphism ζ 7→ ζk corresponds to k ∈ (Z/m)∗,
and its effect on characters is given by χW γ (g) = χW (gk). The corresponding
action on the representation ring R(G) is the ring homomorphism Ψk (Adams
operation).

If V is realized over L, i.e. V = C ⊗L W for an LG-module W , we can
apply γ ∈ Gal(L|Q) to the entries of a matrix representation of W over L and
obtain W γ . In this case V γ = C⊗L W

γ . Each irreducible CG-module can be
realized over L = Q(ζm), m = |G|, see 4.6.6.

The relation between complex and rational representations is described by
the next theorem. See [?, V§14].

(6.2.1) Theorem. Let W1, . . . ,Wr be the different Galois-conjugates of an
irreducible complex representation. Then there exists a natural number n such
that n(W1 ⊕ · · · ⊕Wr) is the complexification of an irreducible rational repre-
sentation. Each irreducible rational representation arises in this way from a
unique Galois-class of irreducible complex representations. The numbers n is
called the (rational) Schur index of the irreducible rational representation. 2

We also recall a similar result for real representations. In this case only the
complex conjugation automorphism matters. If V is isomorphic to the complex
conjugate V , then V is called self-conjugate. Proofs and more details for the
following results can be found in [?, II.6].
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(6.2.2) Theorem. If V is a self-conjugate irreducible CG-module, then either
V is the complexification of an irreducible RG-module (V of real type) or 2V is
the complexification of an irreducible RG-module (V of quaternionic type). If
V 6∼= V , then there exists (up to isomorphism) a unique irreducible RG-module
U such that V ⊕ V is the complexification of U . We say, the real Schur index
of V is 2 if V is of quaternionic type and 1 otherwise. 2

We don’t need these general results for the following examples. But we use
the terminology of Galois-conjugates and the Schur index. Also it is clear that
if we decompose the complexification of an irreducible rational representation
into irreducibles, then this decomposition must be Galois invariant.

The following result from group theory is the reason for studying the groups
of 6.2.4 separately. See [?, I.14.9, III.7.6].

(6.2.3) Theorem. Suppose each abelian normal subgroup of the p-group G is
cyclic. Then G is a group in the following list.

(1) G is cyclic.
(2) G is the dihedral group D(2n) of order 2n, n ≥ 4. It has the presenta-

tion 〈A,B | A2n−1
= 1 = B2, BAB−1 = A−1 〉.

(3) G is the semi-dihedral group SD(2n) of order 2n, n ≥ 4. It has the
presentation 〈A,B | A2n−1

= 1 = B2, BAB−1 = A2n−2−1 〉.
(4) G is the quaternion group Q(2n) of order 2n, n ≥ 3. It has the pre-

sentation 〈A,B | A2n−1
= 1, B2 = A2n−2

, BAB−1 = A−1 〉. 2

(6.2.4) Theorem. Each of the groups G in ?? has a unique faithful irreducible
QG-module. It arises by induction indG

K/H from the following data:
(1) In case (1) H = 1 and K of order p.
(2) In cases (2) and (3) H = 〈B 〉 and K = 〈A2n−2

, B 〉.
(3) In case (4) H = 1 and K = 〈A2n−2 〉.

The Schur index is 2 in case (4) and 1 otherwise. 2

(6.2.5) Cyclic groups. We begin with a discussion of cyclic groups. In
general, a simple QG-module is isomorphic to a submodule of QG (left ideal).
Suppose G = Z/m. Then QG ∼= Q[x]/(xm − 1); here x corresponds to a
generator of G. We decompose xm−1 over Q into irreducible factors xm−1 =∏

d|m Φd(x). The cyclotomic polynomial Φd(x) has the primitive d-th roots of
unity as roots. By the chinese remainder theorem

Q(G) ∼= Q[x]/(xm − 1) ∼=
⊕

d|m Q[x]/(Φd(x)).

Since Φd(x) is irreducible, Vd = Q[x]/(Φd(x)) is a simple QG-module. This
gives us all simple QG-modules. There is a unique faithful one Vm. It de-
composes over C into the Galois-conjugates of a simple faithful one-dimension
CG-module. The Schur indices are therefore 1.
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We show that π(G) : A(G) → R(G; Q) is an isomorphism for cyclic groups
G = Z/m. Recall from representation theory that the rank of R(G; Q) is the
number of conjugacy classes of cyclic subgroups of G. Therefore π(G) is a
homomorphism between free abelian groups of the same rank (the number of
divisors of m). Thus it suffices to show that π(G) is surjective. We can assume
by induction that the Vd for d < m are in the image of π(G) (lift of non-faithful
modules). The regular representation QG is the image of [G/1] under π(G).
Now we use Q(G) =

∑
d|m Vd. Hence π(G) is surjective.

If m = pn and if K is the subgroup of order p, then Vm = indG
K Vp. In gen-

eral, by Möbius-inversion, we obtain Vm =
∑

d|m µ(d)Q(Cm/Cd) if we denote
by Cd the subgroup of order d in G = Cm. 3

(6.2.6) Dihedral groups. We consider the group G of order 2m, m ≥ 3,

D(2m) = 〈A,B | Am = 1 = B2, BAB−1 = A−1 〉.

Let ζ 6= ±1 and ζm = 1. The assignments

A 7→
(
ζ 0
0 ζ−1

)
B 7→

(
0 1
1 0

)
yield a two-dimensional irreducible representation V (ζ) over C; ζ and ζ−1 give
isomorphic representations. If m is odd, we let ζ = exp(2πik/m), 1 ≤ k ≤
(m − 1)/2. In addition, there are two one-dimensional representations. If m
is even, we take ζ = exp(2πik/m), 1 ≤ k ≤ m/2 − 1. In addition, there are
4 one-dimensional representations. The primitive m-th roots of unity ζ are
Galois-conjugate. They yield the faithful irreducibles V (ζ). We have an action
of D(2m) on Q[x]/(xm − 1): Let A act by multiplication with x and B by
substitution of xm−1 for x. There is a similar action on Q[x]/(Φm(x)). This
rational module shows that the Schur index of the faithful module is one.

Suppose now that m = 2n−1. Let W denote the one-dimensional represen-
tation of K = 〈A2n−2

, B 〉 with kernel 〈B 〉. Let ζ be a primitive 2n−1-th root
of unity. By Frobenius reciprocity

〈 indG
K W,V (ζ) 〉G = 〈W, resG

K V (ζ) 〉K ,

and the right hand side is easily seen to be 1. Thus the rational module indG
K W

contains the Galois-conjugates of V (ζ) exactly once. Therefore, by dimension
count, indG

K W is the faithful irreducible QG-module. 3

(6.2.7) Quaternion groups. Let m ≥ 2 and consider the group G of order
4m

Q(4m) = 〈A,B | A2m = 1, Am = B2, BAB−1 = A−1 〉.
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The assignments

A 7→
(
ζ 0
0 ζ−1

)
B 7→

(
0 1
−1 0

)
yield for ζm = −1, ζ 6= −1 a two-dimensional irreducible complex representa-
tion V (ζ). The numbers ζ have the form exp(2πik/2m), k odd. Again ζ and
ζ−1 give isomorphic representations. These representations are faithful and
form a Galois-class.

The element Am = B2 is contained in the center of G. If we factor out
〈A 〉, we obtain D(2m). The irreducible CG-modules are the V (ζ) or lifted
from D(2m).

The Schur index of the faithful module is two. The rational module

Q[x]/(xm + 1)⊕Q[x]/(xm + 1)

with action of A as multiplication by (x, x−1) and B : (p(x), q(x)) 7→
(−q(x), p(x)) shows that the Schur index is at most two. The faithful irre-
ducible CQ(4m)-modules are self-conjugate and of quaternionic type. There-
fore the real Schur index is two, and the rational Schur index is a multiple of
the real Schur index.

Let m = 2n−1 and W the non-trivial irreducible K = 〈A2n−2 〉-module.
From Frobenius reciprocity

〈 indG
K W,V (ζ) 〉G = 〈W, resG

K V (ζ) 〉K = 2

we conclude as in ?? that indG
K W is the irreducible faithful QG-module. 3

(6.2.8) Semi-dihedral groups. We consider the group G of order 2n, n ≥ 4,

SD(2n) = 〈A,B | A2n−1
= 1 = B2, BAB−1 = A2n−2−1 〉.

The assignments

A 7→
(
ζ 0
0 −ζ−1

)
B 7→

(
0 1
1 0

)
with ζ2n−2

= −1 yield irreducible faithful complex modules. They are Galois-
conjugate. The Schur index is one. This can be seen from the rational
module Q[x]/(x2n−2

+ 1) with action: A multiplication by x and B : p(x) 7→
−p(x2n−2−1). 3

Problems

1. The quaternion group Q(4m) becomes a subgroup of the quaternions of norm 1

if we set A = exp(2πi/2m) = ζ2m and B = j. Left translation of Q(4m) on the

quaternions H yields a quaternionic model for V (ζ2m).
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6.3 An Induction Theorem for p-Groups

Here is a basic result about permutation representations and the Burnside ring.

(6.3.1) Theorem. Let G be a p-group. Then π(G) : A(G) → R(G; Q) is
surjective.

The functorial nature of the natural transformation π(−) and the simple
case G = Z/p show that 6.3.1 is a consequence of the following more precise
induction theorem.

(6.3.2) Theorem. Let G be a p-group and V a non-trivial simple QG-module.
Then there exist H �K ≤ G with |K/H| = p such that V ∼= indG

K/H W.

Proof. Induction over the order of the group. Let V be a non-trivial simple
QG-module.

(1) If V is not faithful, it is obtained by pullback from a QL-module W
along the quotient map q : G → L = G/K, K the kernel of V . By induction,
W ∼= indL

A/B U . Consider the pre-images under q, A′ = q−1A and B′ = q−1B.
We consider the A/B-module U as A′/B′-module U ′. Then V = q∗W =
q∗ indL

A/B U
∼= indG

A′/B′ U ′.
(2) We can now assume by induction that the faithful module is not induced

from a proper subgroup. By 4.7.1 it remains to consider p-groups in which each
abelian normal subgroups is cyclic. In that case we have verified 6.3.2 in the
previous section. 2

We say V , comes from K/H, if V ∼= indG
K/H W ; and if moreover |K/H| = p,

we call K/H or (K,H;W ) a source for V . If (K,H) is a source, then also
(gKg−1, gHg−1).

(6.3.3) Proposition. Let (K,H;W ) be a source for V . Then:
(1) W is the unique faithful irreducible QK/H-module, dimW = p − 1,

and dimV = (p− 1)|G/K|.
(2) The kernel of V is contained in H. 2

The order |K| is independent of the source for V , by ??. Let U denote V ,
considered as a faithful representation of G/L. Then the sources of V can be
identified with the sources of U (see (1) in the proof of 6.3.2).

(6.3.4) Proposition. Let V be a faithful QG-module and (K,H;W ) a source
of V . Then G has a unique central subgroup of order p, and K = HZ. The
group H is maximal among the subgroups which do not contain Z.

Proof. By Schur’s lemma, the endomorphism algebra D of V is a division
algebra. The action of G on V yields a homomorphism of the center Z(G) of
G into the multiplicative group of D. Since V is faithful, this homomorphism
is injective.
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If Z(G) is not cyclic, then there don’t exist faithful irreducible modules.
Hence there exists a unique central subgroup Z of order p. If Z 6⊂ K, then W
becomes reducible when induced to KZ, because ZK has a non cyclic center.
Hence Z ⊂ K. If Z ⊂ H, then Z would act trivially on V = indG

K/H W , and
this contradicts the injectivity of Z(G)→ D. Therefore K = HZ.

Suppose H < L, Z 6⊂ L. Then the induction of W along

LZ
⊃←− K = HZ → K/H ∼= Z

would be reducible, since the induced module would contain the pullback of W
along LZ → Z. This shows the maximality of H. 2

(6.3.5) Example. Let V be the faithful irreducible QG-module of one of the
exceptional groups 6.2.3. The sources K/H must satisfy:

|K| = p if G is cyclic
|K| = 2 if G = Q(2n), n ≥ 3
|K| = 4 if G = D(2n), n ≥ 3, or if G = SD(2n), n ≥ 4.

If G is cyclic or generalized quaternion, then Z is the only source for G. In
the remaining cases every source is of the form K/H with K ∼= Z/2× Z/2. In
SD(2n) there is only one conjugacy class of such subgroups K, and therefore
the source is unique up to inner automorphism. In D(2n) there two conjugacy
classes of such subgroups K. Both of them give sources for V , so that we have
in this case two conjugacy classes of sources for V . 3

(6.3.6) Example. Let M(p) be the non-abelian group of order p3 and expo-
nent p 6= 2 []. It has the presentation

M(p) = 〈x, y, z | xp = yp = zp = 1, yz = zy, xz = zx, xyx−1 = yz. 〉

The center Z has order p and is generated by z; it equals the commutator
subgroup. We have a normal subgroup A = 〈 y, z 〉 ∼= Z/p×Z/p. There are p+1
subgroups A0, . . . , Ap of index p; they are isomorphic to Z/p×Z/p and normal
subgroups. The group M(p) has a unique Galois-class of faithful irreducible
complex representations (they are p-dimensional) and hence a unique faithful
irreducible representation V over Q. Moreover, there are p2 one-dimensional
representations over C. The conjugacy classes of sources for V are represented
by (Aj , Bj), where Aj = Z×Bj (the Bj ≤ Aj with this property are conjugate
in M(p)). 3

6.4 The Permutation Kernel

The homomorphism πG : A(G) → R(G; Q) shows that a certain part of the
Burnside ring can be understood by representation theory. Therefore we shall
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study the kernelN(G) of πG in more detail. Since π is a natural transformation,
we can view N(−) also as a functor on S. In particular, we have induction from
subquotients indG

K/H : N(K/H)→ N(G).

(6.4.1) Theorem. Let G be a p-group. Then

N(G) =
∑

K/H

indG
K/H N(K/H),

where the sum is taken over all subquotients K/H of G which are isomorphic
to one of the following groups: Z/p× Z/p; D(2n), n ≥ 3; M(p).

We prove this theorem by verifying a certain universal property of the nat-
ural transformation π. Let Sp be the full subcategory of p-groups in S.

(6.4.2) Theorem. Let ψ : A(−)→ Y (−) be a natural transformation between
Z-functors on Sp. There exists a factorization ψ = f ◦ π with a natural trans-
formation f : R(−; Q) → Y (−) if the homomorphism ψG : A(G) → Y (G) has
a factorization over πG for the following groups: Z/p × Z/p; D(2n), n ≥ 3;
M(p).

We apply 6.4.2 to the quotients

Y (G) = A(G)/
∑

K/H

indG
K/H N(K/H),

where we factor out the right hand side of the asserted equality in 6.4.1. One
verifies that these Y (G) constitute a functor which satisfies the assumptions of
6.4.2. The surjection πG factors over a surjection ρG : Y (G) → R(G; Q). The
transformation fG of 6.4.2 is then an inverse to ρG. This proves 6.4.1.

Proof. (Of 6.4.2.) Induction over the order of G. We construct a homomor-
phism fG : R(G; Q)→ Y (G) such that fGπG = ψG. Since πG is surjective, fG

is uniquely determined by the condition fGπG = ψG. We define fG(V ) ∈ Y (G)
for each irreducible QG-module V and then extend additively. The inductive
hypothesis is: fH is given for all subgroups H of order less than |G| and satis-
fies fHπH = ψH ; the fH form a natural transformation on the subcategory of
these groups (referred to as: inductive naturality).

If G is cyclic, πG is an isomorphism ??, and we define fG uniquely by
fGπG = ψG. By assumption, we also have fG for the groups Z/p×Z/p, D(2n),
and M(p).

Therefore we can assume that G is not one of these groups. Then an irre-
ducible QG-module V has the form V = indG

K/H W with a proper subquotient
|K/H| < |G|. If f would exist as a natural transformation, we would have
fG(V ) = indG

K/H fK/H(W ), and the latter would not depend on the presen-
tation 6.4.3 of V . Therefore we begin with a verification of this necessary
condition.
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(6.4.3) Lemma. The element yW = indG
K/H fK/H(W ) ∈ Y (G) does not de-

pend on the presentation 6.4.3 of V .

Proof. If V is non-trivial, then the induction theorem 6.3.2 and the inductive
naturality of f show that there exists a source (K0,H0;W0) of V such that
yW = yW0 . This reduces the problem to the case that (K,H;W ) is a source of
V .

(1) We begin with the case of a faithful module. Let us assume that G
contains a normal subgroup A ∼= Z/p × Z/p. By 6.3.4, there exists a unique
central subgroup Z of order p. The normal subgroup A is not contained in the
center, since G has a faithful module. We must have Z ⊂ A, for A contains
a normal subgroup of G of order p, and this subgroup is then central. The
centralizer C(A) of A has index p in G, because the kernel of the conjugation
G→ Aut(A) ∼= GL(2, p), g 7→ cg has index at most p, and the kernel is different
from G since Z 6= A.

Let V = indG
K/H W with a source (K,H;W ). If K ≤ C(A), then

V = indG
C(A) indC(A)

K/H W = indG
C(A) V0, V0 = indC(A)

K/H

and hence yW = yV0 .
Suppose K 6⊂ C(A). An inclusion H ⊂ C(A) and 6.3.4 would imply K =

HZ ⊂ C(A). Hence H 6⊂ C(A).
Suppose H ∩ A 6= 1. Then H ∩ A ∼= Z/p, since H ∩ Z = 1, and therefore

H ∩A is smaller than A. Since A�G also A∩H �H, and a normal subgroup
of order p is contained in the center of a p-group. Since the elements of Z and
the elements of H ∩A commute with the elements of H, so do the elements of
A = (A ∩H)Z. But H ⊂ C(A) was already excluded. Hence H ∩A = 1.

Since H 6⊂ C(A) we have a surjection H → G/C(A) ∼= Z/p with kernel
H ∩ C(A) = H0 of index p in H. We have the subgroup HA of G. The
subgroup H0 is normal therein, because H0 is normal in H and commutes with
A. Since H ∩A = 1, we have a split exact sequence

1→ Z/p× Z/p ∼= A→ HA/H0 → H/H0
∼= Z/p→ 1.

The group M = HA/H0 is not abelian: Since H 6⊂ C(A), the group H/H0 acts
non-trivially on A by conjugation. The classification of the groups of order p3

shows that M is D(8) or M(p), see [?, I(14.10)].
Let W0 be the unique irreducible QM -module, see ?? and 6.3.6. We have

HA/H0 ⊃ HZ/H0 = K/H0 → K/H.

We use the fact that (K,H) is a source for W0, say induced from W . We also
have

HA/H0 ← H0A/H0 → H0A/H0Z =: B,



6.4 The Permutation Kernel 103

and (B, 1) is also a source for W0, say induced by W1. We can now form
V1 = indC(A)

B W1. Therefore the modules W,W0,W1, V1 all give V , and the
inductive naturality of f shows

yW = yW0 = yW1 = yV1 .

We thus have shown that in each of the subcases there exist C(A)-modules
which induce up to V . Suppose V0 and V1 are any two such C(A)-modules.
By Clifford theory they are conjugate by some g ∈ G. Let πCA(x0) = V0,
cg(V0) = V1, cg(x0) = x1, πCA(x1) = V1, and

yVj = indG
CA fCAVj = ψG indG

CA xj .

But indG
CA x1 = indG

CA cgx0 = cg indG
CA x0 = indG

CA x0, since inner automor-
phisms induce the identity on A(G), and therefore yV0 = yV1 . This proves ??
in this case.

There remains the case that V does not have a normal subgroup Z/p×Z/p.
By assumption and the classification of the groups in question, we have to
consider the cases: p = 2, G semi-dihedral or quaternionic. The sources of V
are then unique up to inner automorphism, and one can argue as before.

It remains to consider non-faithful modules. Suppose V = 1G is trivial.
Then K = G, H � G and W = 1G/H . Since W comes from 1 = 1G/G,
the inductive naturality of f yields yW = indG

G/G fG/G1, and this is uniquely
determined.

Let V be non-trivial with kernel L 6= 1. We consider V as representation
U of G/L. The sources of V can be identified with the sources of U . The
induction hypothesis and naturality imply ?? in this case. 2

2

We have now defined a homomorphism fG : R(G; Q) → Y (G) which sends
an irreducible QG-module V to indG

K/H fK/HW whenever V = indG
K/H W and

K/H is a proper subquotient of G. The proof of 6.4.2 is finished if we have
shown:

(6.4.4) Lemma. For each subquotient K/H of G the diagram

R(K/H; Q)
fK/H //

ind

��

Y (K/H)

ind

��
R(G; Q)

fG // Y (G)
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Proof. Commutativity holds if we already know that fGπG = ψG, hence for the
exceptional groups. Conversely, 6.4.4 implies this relation, since each element
of A(G) is either induced from a subgroup or lifted from a quotient group.

It suffices to show that both ways map an irreducible QK/H-module W to
the same element. If K = G, then this holds by definition of fG. If K 6= G,
then we can find a subgroup of index p between K and G. By the inductive
naturality it therefore suffices to consider the case H = 1 and |G/K| = p.

Let W be an irreducible QK-module. If indG
K W is irreducible, then both

compositions agree on W , by construction of fG.
Let W = 1K . Then indG

K 1K = 1G ⊕W0 with an irreducible QG-module
W0 which is the pullback of an irreducible QG/K-module U . We compute

fG indG
K(W ) = fG(1G) + fG(W0)

= indG
G/K fG/K(1G/K) + indG

G/K fG/K(U)

= indG
G/K fG/K indG/K

K/K(1K/K)

= indg
K/K fK/K(1K/K)

= indG
K fK(W ).

We have used the inductive naturality of the transformation f .
There remains the case that W is non-trivial and indG

K W reducible. In this
case indG

K W = W1 ⊕ · · · ⊕Wp and resG
K Wj = W . Suppose W1 = indG

H U1,
|G/H| = p. Then H 6= K and, by the Mackey formula,

W = resG
K indG

H U1 = indK
K∩H resH

K∩H U1 = indK
K∩H U.

Hence U = resH
K∩H U1 is irreducible and indH

K∩H U contains U1. Then we have
indH

K∩H U = U1 ⊕ · · · ⊕ Up and resH
K∩H Uj = U . Since

indG
H(U1 ⊕ · · · ⊕ Up) = indG

H indH
K∩H U

= indG
K indK

K∩K U

= indG
K W = W1 ⊕ · · · ⊕Wp,

we can choose the indexing such that Wj = indG
H Uj . Now we compute

fG indG
K(W ) = ⊕fG(Wj) = ⊕fG indG

H(Uj) = ⊕ indG
H fH(Uj)

= indG
H fH indH

K∩H(U) = indG
K∩H fK∩H(U)

= indG
K indK

K∩H fK∩H(U)

= indG
K fK indK

K∩H(U) = indG
K fK(W ).

There remains the case that W1 does not come from a proper subgroup by
induction. Then 6.2.3 says that the kernel L of W1 has index p in G. By
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our assumptions, G has order at least p3 and therefore K ∩ L = H 6= 1.
Since resG

K Wj = W , we see that H is the kernel of Wj . Thus W is the
pullback of a QK/H-module U and Wj the pullback of a QG/H-module Uj

and indG/H
K/H U = U1 ⊕ · · · ⊕ Up. We can now use a computation as before. 2

6.5 The Unit-Theorem for 2-Groups

In section I.12 we constructed a homomorphism η : RO(G) → A(G)∗. The
purpose of this section is to prove:

(6.5.1) Theorem. Let G be a 2-group. Then η is surjective.

The ring homomorphism π : A(G) → R(G; Q) induces a homomorphism
between unit groups π∗ : A(G)∗ → R(G; Q)∗. A one-dimensional QG-module,
i.e. a homomorphism α : G→ {±1}, represents a unit in R(G; Q).

(6.5.2) Proposition. Each unit in R(G; Q) has the form ±[L] for a one-
dimensional QG-module L.

Proof. Let u ∈ R(G; Q)∗. We can assume that the character satisfies u(e) = 1;
if not, we consider −u. We use the inner product for characters of complex
representations 〈χ, ψ 〉 = |G|−1

∑
g∈G χ(g)ψ(g). The value 〈χ, χ 〉 is always a

natural number. Since u assumes only values ±1, we must have 〈u, u 〉 = 1. We
write u as linear combination of complex irreducible characters, u =

∑
j njχj .

Then 〈u, u 〉 =
∑

j n
2
j . Hence u is an irreducible character, and u(e) = dimu =

1 shows it to be one-dimensional. 2

If L is a one-dimensional real character, we have η(L) ∈ A(G)∗, and the
image in R(G; Q)∗ is the unit L. Moreover η(L ⊕ R) = −η(L) ∈ A(G)∗ with
image−L ∈ R(G; Q)∗. This shows: For each x ∈ A(G)∗ there exists y ∈ RO(G)
such that

x · η(y) ∈ N∗(G) = kernel(A(G)∗ → R(G; Q)∗).

Therefore it suffices to show that N∗(G) is in the image of η. In order to
do this, we investigate more closely elements in N(G). Write x ∈ N(G) as a
difference of finite G-sets x = [X+]− [X−]. Then the real permutation modules
V+ = RX+ and V− = RX− are isomorphic. We determine a G-invariant inner
product B± on V± by postulating that the basis X± be orthonormal.

(6.5.3) Lemma. The exists a G-isomorphism (V+, B+)→ (V−, B−).

Proof. Let α : V+ → V− be a G-isomorphism. We use α in order to pull back
B− to V+. Then we have two G-invariant inner products on V = V+. Suppose
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the second one is given by the positive definite matrix A. Then v(g)tAv(g) = A,
if v(g) is the matrix of lg : V → V . All matrices are formed with respect to the
orthonormal basis B+; in particular v(g) is an orthogonal matrix. Set C =

√
A;

here
√
A is a limit of polynomials in A and therefore commutes with the v(g).

Hence C gives an isomorphism of the desired type. 2

An element x ∈ N(G) therefore leads to the following situation:
(1) x = [X+]− [X−],
(2) V a real G-representation,
(3) B a G-invariant inner product on V ,
(4) X+ and X− are G-subsets of V and orthonormal bases.

We now work with such data. Let γ ∈ Aut(C) be an automorphism of the field
C. We complexify V ⊗C and extend the symmetric bilinear form B on V to a
symmetric bilinear form on V ⊗ C, still denoted B. Define

ϕ+ : V ⊗ C→ V ⊗ C,
∑

x∈X+

axx 7→
∑

x∈X+

γ(ax)x,

and define ϕ− similarly using the basis X−. These maps are still G-equivariant
and satisfy ϕ±(av) = γ(a)ϕ±(v) for a ∈ C and B(ϕ±(v), ϕ±(w)) = γB(v, w).
The composition u = ϕ−1

− ◦ ϕ+ is therefore C-linear and respects B, hence
contained in the orthogonal group O(V,C) of the space (V ⊗C, B). Let dH(u)
be the determinant of uH on V H ⊗ C. We will compute the function

d(u) : Φ(G)→ C, (H) 7→ dH(u)

and show that it is a unit in N(G)∗ (in particular the values are in {±1}). From
9.7.2 we see that d(u) ∈ A(G)∗. Another proof uses the induction theorem ??
and a verification for dihedral groups.

For each subgroup H ≤ G let

PH : A(G)→ Q∗
+

be the homomorphism from the additive to the multiplicative group which as-
signs to each G-set the product of the cardinalities of the H-orbits; i.e. if
resG

H x =
∑

j n(j)[H/Hj ], then PH(x) =
∏

j |H/Hj |n(j). We also use the pair-
ing

Aut(C)×Q∗
+ → {±1}, (γ, a) 7→ 〈 γ, a 〉 = γ(

√
a)/
√
a.

(6.5.4) Theorem. Let x = X+ − X− ∈ N(G), (V,B,X+, X−), and u =
ϕ−1
− ◦ ϕ+ as above. Then dH(u) = 〈 γ, PH(x) 〉.

Proof. We have the orthonormal basis of V H which consists of the elements

eS =
1√
|S|

∑
s∈S

s,
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where S runs through the H-orbits of X+. By definition, ϕ+(eS) = 〈 γ, |S| 〉eS .
Let n = dimV H . The formB induces on the one-dimensional space Λn(V H⊗C)
a symmetric bilinear form

B1(v1 ∧ . . . ∧ vn, w1 ∧ . . . ∧ wn) = det(B(vi, wj)).

If S1, . . . , Sn are the H-orbits of X+, then e = eS1 ∧ . . . ∧ eSn
is an orthonor-

mal basis of Λn(V H). The map ϕH
+ is only γ-linear, hence induces a γ-linear

endomorphism ΛnϕH
+ of Λn(V H ⊗ C). We obtain

ΛnϕH
+ e = ϕH

+ eS1 ∧ . . . ∧ ϕH
+ eSn =

∏
j〈 γ, |Sj | 〉e = 〈 γ, PH(X+) 〉e.

Up to sign, e is the unique element with B1(e, e) = 1. If we apply the same
procedure to X− we arrive therefore at ±e, and hence

ΛϕH
− (e) = 〈 γ, PH(X−) 〉e.

Altogether we obtain the asserted value for dH(u). 2

We have now constructed for each γ ∈ Aut(C) a homomorphism

U(γ) : N(G)→ A(G)∗, x 7→ U(γ, x) = ((H)→ 〈 γ, PH(x) 〉).

Since π(C) is an isomorphism for cyclic C and elements of R(G; Q) are deter-
mined by restriction to cyclic subgroups, we have

N(G) =
⋂

C≤G

Ker(res : A(G)→ A(C))

and similarly
N(G)∗ =

⋂
C≤G

Ker(res : A(G)∗ → A(C)∗).

Naturality of U(γ) with respect to restriction now shows that the image of
U(γ) is contained in N(G)∗. Altogether we have proved:

(6.5.5) Theorem. There exists a natural transformation U(γ) : N(G) →
N(G)∗ between functors on the category of finite groups and homomorphisms.
We have ϕH(U(γ, x)) = 〈 γ, PH(x) 〉, and U(γδ) = U(γ)U(δ) for each pair
γ, δ ∈ Aut(C). For fixed G, the map U(γ) only depends on the restriction of γ
to the field K which is obtained by adjoining to Q the

√
p for prime divisors p

of |G|. 2

We now consider 2-groups, use γ with γ(
√

2) = −
√

2, and write U = U(γ).
Note that U(γ, x)(H) = (−1)ν2PH(x) if PH(x) = 2ν2PH(x).

(6.5.6) Theorem. If G is a 2-group, then U : N(G)→ N(G)∗ is surjective.
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Proof. Set s : N(G)∗ → N(G), u 7→ u− 1. We will prove that U ◦ s : N(G)∗ →
N(G)∗ is bijective. Since N(G)∗ is finite, it suffices to show that U ◦ s is
injective.

Let G be a minimal counter-example to injectivity. Let u1, u2 ∈ N(G)∗

have the same image under U ◦ s. The restrictions of u1 and u2 to each proper
subgroup H of G are equal. If we interchange the ui if necessary, we see that
u1 − u2 = tG, where tG is the element constructed in I(8.2) with function
tG(H) = 2 for H = G and = 0 for H 6= G. The group G is not cyclic,
because N(G)∗ is trivial for cyclic groups. The equality u1 = tG + u2 implies
s(u1) = tG + s(u2), Us(u1) = U(tG)Us(u2), and finally U(tG) = 1. From
(2.1) we obtain dGU(tG) = −1, since PG(tG) is an odd power of 2. Hence
U(tG) = 1− tG, and this contradicts U(tG) = 1. 2

Taking the underlying real representation induces an additive homomor-
phism r : R(G)→ RO(G). We denote the cokernel by KO−1

G . (The reason for
this notation: In equivariant topological KO-theory we have the suspension
isomorphism KO−1

G
∼= K̃OG(S1).) From representation theory (2.2) we know

that KO−1
G is the Z/2-vector space generated by the irreducible real represen-

tations of real type. The homomorphism η factors through a homomorphism
j : KO−1

G → A(G)∗. The Adams operation Ψk on RO(G) induces a homomor-
phism Ψk on KO−1

G .

(6.5.7) Proposition. Let G be a 2-group. Then the sequence

KO−1
G

1−Ψ5
// KO−1

G

j // A(G)∗ → 1

is exact.

Proof. We know already that j is surjective 6.5.1. The map Ψ5 is also rep-
resented by a Galois conjugation, and Galois conjugate real representations
yield the same unit in A(G)∗. Therefore j ◦ (1 − Ψ5) is trivial. Since 5
generates the group (Z/2n)∗/{±1}, we see that the image of 1 − Ψ5 consists
of the differences of Galois conjugate representations. Hence the cokernel of
1 − Ψ5 is the Z/2-vector space with basis the representatives, say U1, . . . , Uk,
of the Galois classes of irreducible real representations of real type. Suppose
the integral linear combination U =

∑
njUj is contained in the kernel of j,

i.e. the dimensions dimR U
H are even. We have to show that the nj are

even. We have 〈U ⊗ C, indG
H 1H 〉G = dimR U

H . We know from 6.2.1 that
the indG

H 1H generate R(G; Q). Let Wj be an irreducible QG-module such
that Wj ⊗ C contains Uj ⊗ C; then it contains no other Ul ⊗ C. The number
〈U ⊗ C,Wj ⊗ C 〉 = nj〈Uj ⊗ C,Wj ⊗ C 〉 is even, being a linear combination
of fixed point dimensions, and 〈Uj ⊗C,Wj ⊗C 〉 is the rational Schur index of
Wj . Since Uj is of real type, this Schur index is 1 (see 6.2.1 and 6.2.3). Hence
nj is even. 2
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6.6 The Elements tG

Recall the elements tG: The smallest multiple of the top idempotent eG ∈ C(G)
which is contained in A(G).

(6.6.1) Theorem. Let A ∼= (Z/p)n be an elementary abelian p-group. Then
PA(tA) = pa(n) and a(n) is the number

n∑
d=1

(−1)dd

(
n

d

)
p

p(d−1)(d−2)/2 = (1− p)(1− p)(1− p2) · · · (1− pn−2).

(We understand a(1) = 1, a(2) = 1− p.) Here we use again the quantum bino-
mial coefficient already introduced in the proof of 1.3.5. In particular a(n) ≡
1 mod p. If G is a non-cyclic p-group and γ : G→ G/Φ(G) the projection onto
the Frattini quotient, then γ∗tG/Φ(G) = tG and PG(tG) = PG/Φ(G)(tG/Φ(G)).

Proof. We begin by showing that the two values for a(n) are equal. We start
with the q-identity (1.7) and replace z by zq−1. We differentiate the resulting
identity with respect to the variable z and put then z = 1. The asserted
equality drops out.

We now use the idempotent formula ??

tA =
p

|A|
∑

K≤G

|K|µ(K,A)[A/K].

In our case, if K has order pn−j , we have

µ(K,A) = (−1)jpj(j−1)/2.

The contribution of the summand [A/K] with |K| = pn−j to PG is pb(j) with

b(j) = p1−j(−1)jpj(j−1)/2

(
n

j

)
p

j,

if one takes into account that there exist
(
n
j

)
p

subgroups of order pj in A.
A simple rewriting now yields the asserted sum-presentation of the number
a(n). 2

6.7 Products of Orbits

We have a map P = P (G) : A(G)→ Map(Con(G),Q∗
+) = M(G); it assigns to

X the function (H) 7→ PH(X). Recall that PH(X) =
∏

T∈X/H |T |. The map
P is exponential, P (x + y) = P (x)P (y). Recall that the groups A(G), N(G),
and M(G) are the values of functors A, N , and M on the category A. The
naturality properties of the homomorphisms P can be expressed as:
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(6.7.1) Proposition. The P (G) constitute a natural transformation P : N →
M on the category B. This means that for each finite (L,K)-set S with free
K-action the diagram

N(K) P //

ρ(S)

��

M(K)

σ(S◦)

��
N(L) P // M(L)

is commutative.

Proof. We have to verify the commutativity only for generating morphisms of
the category. One first checks that the diagram commutes for homomorphisms
γ : L → K and the induced maps γ∗. Then it remains to verify the com-
mutativity for the ordinary induction. By the double coset formula and the
compatibility with restriction and conjugation and by induction over the order
of L it suffices to show that the two functions given by the diagram have the
same value at L.

Let x =
∑

j nj [K/Kj ] ∈ A(K). Then indL
K x =

∑
j nj [L/Kj ] and

(P (indL
K(x))(L) =

∏
j

|L/Kj |nj = |L/K|
P

nj
∏
j

|K/Kj |nj .

On the other hand, (mulLKP (x))(L) = P (x)(K) =
∏

j |K/Kj |nj . These two
values coincide if

∑
nj = 0. The sum

∑
j nj is the number of K-orbits of

x. The commutativity of the diagram therefore holds for those x for which
|x/U | = 0 for all U ≤ K. In general |x/U | = dim Q(x)U . We now note that
the following are equivalent:

(1) x ∈ N(K);
(2) For all U ≤ K, dim Q(x)U = 0.

(1) ⇒ (2). Let x = X+ −X− and Q(X+) ∼= Q(X−). Then certainly all fixed
point sets have the same dimension.
(2) ⇒ (1). The isomorphism type of a QC-module is determined by the di-
mensions of fixed point sets of subgroups, if C is cyclic. Hence in general the
character is determined by dimensions of fixed points of cyclic subgroups. 2

6.8 Exponential Transformations

We need p-adic numbers and p-adic completions. Let Zp denote the ring of
p-adic integers. It can be defined as the (inverse) limit Zp = limn Z/pn. It is a
compact topological ring, and the canonical map Z → Zp has a dense image.
The units of this ring can be obtained as a similar limit Z∗p = lim(Z/pn)∗. If p
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is odd, then Z∗p is topologically cyclic: the subgroup generated by k ∈ Z∗p has a
dense image (= is a topological generator) if and only if the image in (Z/p2)∗

is a generator.
The ring Zp is a local ring, and pZp is the maximal ideal. The quotient field

Qp is the field of p-adic numbers.
Let A be a finitely generated abelian group. Then A ⊗Z Zp is called its

p-adic completion. This completion can also be defined as limA/pnA. The
functor ⊗ZZp is exact on the category of finitely generated abelian groups.

Suppose p is odd. We have an isomorphism of topological groups Z∗p ∼=
Z/(p−1)×Zp. The factor Zp corresponds to the units of the form 1+pZp ⊂ Z∗p.
Suppose k ∈ Z∗p, k ≡ 1 mod p, λ ∈ Zp. Then kλ can be defined as follows: If λ
is the p-adic limit of a sequence (an) of integers, then kλ is the p-adic limit of
((1+p)an); one checks that this is well-defined. The maps Zp → 1+pZp, λ 7→ kλ

satisfy the usual exponential identities (kl)λ = kλlλ and kλ+µ = kλkµ; for
k = 1 + p, p odd, the map is an isomorphism, and it induces an isomorphism
ptZp → 1 + pt+1Zp for each t ∈ N.

The situation is slightly different for p = 2. We have a topological iso-
morphism Z∗2 ∼= {±1} × Z2. The factor Z2 corresponds to the multiplicative
subgroup 1 + 4Z2 ⊂ Z∗2, and x ∈ Z2 is a topological generator if and only if
x ≡ 5 mod 8. Also x is a generator of Z∗2/{±1} if and only if x ≡ ±3 mod 8.
The homomorphism λ 7→ 5λ induces an isomorphism 2tZ2 → 1 + 2t+2Z2.

Let G be a p-group. We consider the completed Burnside ring A(G)p.
It is a local ring with maximal ideal {x | ϕ1(x) ≡ 0 mod p}. The inclusion
A(G) ⊂ C(G) yields an inclusion of topological rings A(G)p ⊂ C(G)p which
is still described by the same congruences as the inclusion A(G) ⊂ C(G).
The ring C(G)p is the ring of functions Con(G) → Zp. We have an induced
inclusion of unit groups A(G)∗p ⊂ C(G)∗p, and C(G)∗p is the group of functions
Con(G)→ Z∗p. We also have the exact sequence

0→ N(G)p → A(G)p → R(G; Q)p → 0.

Inside A(G)∗p we have the group 1 +N(G)p.
Let us write PH(x) = pνpPH(x). This gives us an additive homomorphism

ν(H) : N(G)→ Z, x 7→ νpPH(x) = ν(H,x).

(6.8.1) Lemma. The image of the homomorphism ν is contained in (1− p)Z.

Proof. By 6.5.1, this is true for the elements indG
H tH for the non-cyclic sub-

groups H of G. They generate a subgroup of N(G) of p-power index. 2

The previous lemma provides us with the homomorphism

µ(H) : N(G)→ Z, x 7→ µ(H,x) =
1

1− p
νpPH(x).
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We use the same symbol for its p-completion. We define an exponential homo-
morphism

η(G) = η : N(G)p → C(G)∗p, ϕHη(x) = (1 + p)µ(H,x).

From ?? we see that the η(G) constitute a natural transformation of functors
on the category B.

(6.8.2) Theorem. Let p be an odd prime. Then the image of η is contained
in 1 + N(G)p, and the resulting exponential map η : N(G)p → 1 + N(G)p is
a natural isomorphism on the category of p-groups which is compatible with
induction.

(6.8.3) Example. Let G = Z/p × Z/p. Then tG = p[G/G] −
∑p

j=0[G/Cj ] +
[G/1]; here C0, . . . , Cp are the cyclic subgroups of order p. We haveN(G)p

∼= Zp

with basis tG. We compute PGtG = 1p · p−(p+1) · p2 = p1−p and therefore
dG(η(tG)) = 1 + p; the function η(tG) has values 1 at 1 and Cj . We see that
η(tG) = 1 + tG ∈ 1 + N(G)p is a generator and hence η an isomorphism as
claimed. 3

(6.8.4) Example. We consider the group M = M(p); compare ??. A Z-basis
of N(M) consists of the elements tM , x1, . . . , xp, y0 with

xj = [M/Aj ]− [M/A0]− [M/Bj ] + [M/B0],

yj = indM
Aj
tAj

= p[M/Aj ]− p[M/Bj ]− [M/C] + [M/1].

The relations pxj = yj − y0 hold. In terms of functions in C(G) the elements
in N(M) have value 0 on the cyclic subgroups 1, C,Bj and the other values are
given in the following table.

M A0 Aj

tM p 0 0
xj 0 −p p
y0 0 p2 0

Write N(G) = N(G)/
∑

indG
K/H N(K/H), K/H 6= G. Our computations im-

ply that N(M) is the Fp-vector space generated by x1, . . . , xp. The inclusion
A(M) ⊂ C(M) is given by the following congruences for functions z ∈ C(M)

z(Aj) ≡ z(M) mod p
z(Bj) ≡ z(Aj) mod p
z(C) ≡

∑p
i=0(1− p)z(Aj) mod p2

z(1) ≡ (1− p)z(C) +
∑p

j=0(1− p)pz(Bj) mod p3.
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By a direct calculation one can deduce multiplicative congruences for the inclu-
sion A(M)∗p ⊂ C(M)∗p. For this purpose one defines functions u(H) : C(M)∗ →
Z∗p by multiplicative Möbius-inversion

z(Aj) = u(Aj)z(M)
z(Bj) = u(Bj)u(Aj)u(M)
z(C) = u(C)

∏
j u(Aj)u(M)

z(1) = u(1)
∏

j z(Bj)p
∏

j z(Aj)−pz(C).

The multiplicative congruences are then

u(Aj) ≡ 1 (p), u(Bj) ≡ 1 (p), u(C) ≡ 1 (p2), u(1) ≡ 1 (p3).

We compute η for the basis elements above and display the exponents of 1 + p
in the following table.

M A0 Aj

tM 1 0 0
xj 0 −1 1
y0 1 p 0

The multiplicative congruences show that η maps our basis of N(G)p to a basis
of 1 +N(Mp). 3

Proof. (Of 6.8.2.) In order to verify that η has an image in 1+N(G)p we use the
fact that η is compatible with restriction and induction. We can therefore use
the induction theorem ??. Hence it suffices to consider the cases G = Z/p×Z/p
and G = M(p). We have already done this in 6.8.3 and 6.8.4.

In order to show that η1+p is an isomorphism, we use a filtration argument.
Let F1 be the family of all non-cyclic subgroups. Choose a filtration by closed
families F1 ⊃ F2 ⊃ . . . ⊃ Fr such that Fj r Fj+1 = (Hj) and Fr = (G). Let
N(G;F) ⊂ N(G) be the ideal of functions which have non-zero value only at
subgroups in F . Then ϕHj : N(G;Fj)p/N(G;Fj+1)p

∼= ajZp ⊂ Zp with some
aj ∈ pN. There is a similar isomorphism 1+N(G;Fj)p/1+N(G;Fj+1)p

∼= 1+
ajZp. The homomorphism ηk is compatible with this filtration ηkN(G;Fj)p ⊂
1+N(G;Fj)p. We therefore have to show that η1+p induces an isomorphism on
the successive filtration quotients. The integer aj divides p|WHj |, say djaj =
p|WHj |. This is so since xj = indG

Hj
tHj is contained in N(G;Fj). We know,

by 6.6.1, the element η1+p(xj). We conclude that η1+p is on the filtration
quotients the homomorphism

ajZp → 1 + ajZp, d 7→ (1 + p)a(Hj)d/p,

where (1 − p)a(Hj) = ν(Hj , tHj
), an integer which was computed in 6.6.1and

shown to be 1 mod p. 2
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One has to modify the definitions for 2-groups. In section 6 we have already
considered the homomorphism η−1 : N(G)→ N(G)∗. Let N0(G) be its kernel.
Again we use ηk : N(G)2 → 1 +N(G)2, dHηk(x) = kν2PH(x).

(6.8.5) Theorem. Let G be a 2-group. Then
√
η5 : N0(G)2 → 1 +N0(G)2 is

defined and an isomorphism.

(6.8.6) Example. Let G = Z/2 × Z/2. Then η5(tG)(G) = 5−1, and value
1 otherwise. The element 2tG is contained in N0(G). In order to obtain a
generator of dG : 1 + N0(G)2 ∼= 1 + 4Z2, generated by 5−1, we therefore have
to use the square root. 3

(6.8.7) Example. We consider in detail the dihedral group of order 2n

D = D(2n) = 〈A,B | A2n−1
= 1 = B2, BAB−1 = A−1 〉.

Let C(j) denote the cyclic subgroup of order 2j generated byA2n−j−1
. Moreover

we have the subgroups H(j, 0) = 〈C(j), B 〉 and H(j, 1) = 〈C(j), AB 〉. These
subgroups are a representative system for the conjugacy classes. In order to
simplify the notation, we write elements of A(D) as linear combinations of
subgroups instead of homogeneous spaces. We have

xj = indD
H(j,0) tH(j,0) = 2H(j, 0)− C(j)− 2H(j − 1, 0) + C(j − 1)

and similarly for H(j, 1). Let

yj = H(j, 0)−H(j − 1, 0)−H(j, 1) +H(j − 1, 1), 1 ≤ j ≤ n− 2.

A Z-basis of N(D) is given by

xj , yj (1 ≤ j ≤ n− 2), tD.

The relation 2yj = ind tH(j,0)− indH(j,1) holds. These data show that N(D) ∼=
Z/2, generated by y1. The basis elements have the following functions: tD
value 2 on D and zero otherwise, xj value 4 on H(j, 0) and zero otherwise,
yj value 2 on H(j, 0) and value −2 on H(j, 1) and zero otherwise. A basis of
N0(D) consists of the following elements

2yj , xj − tD (1 ≤ j ≤ n− 2), 2tD.

Note that |A(D)∗| = 2n+2, |N(D)∗| = 2n−1, and that the displayed elements
yield a subgroup of index 2n−1 in N(D). In terms of functions, N0(D) consists
of the functions which are zero on cyclic subgroups, and divisible by 4 at other
places. This shows that 1 + N0(D)2 consists of all functions on non-cyclic
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conjugacy classes with values in 1 + 4Z2. We list ηk of the basis elements and
display the exponents of k. The element xj and xn−1 = tD:

H 7→

 −2 H = H(l, 0) j ≤ l < n− 1
−1 H = H(n− 1)

1 otherwise.

The element yj :

H 7→

 −1 H = H(l, 0) j ≤ l < n− 1
1 H = H(l, 1) j ≤ l < n− 1
1 otherwise.

From these data one verifies that
√
η5 is an isomorphism. 3

Proof. (Of 6.8.5.) The condition x ∈ kernel η−1 means that ν2(H,x) is divisible
by 2, hence 5ν2(H,x)/2 ∈ 1 + 4Z2 is defined. The examples 6.8.6 and 6.8.7
together with the induction theorem ?? show that the image of τ =

√
η5 is

contained in 1 +N0(G)2. By a filtration argument as in the proof of 6.8.2 one
shows that τ is an isomorphism. 2



Chapter 7

Categorical Aspects

7.1 The Category of Bisets

Let K and L be groups. We have the category K- SET -L of (K,L)-sets. A
(K,L)-set S carries a left K- and a right L-action, and these actions commute.
We call such objects with an action of two compatible group actions a biset.
Each (K,L)-set S provides us with a functor

ρ(S) : L- SET→ K- SET,

given on objects by Y 7→ S ×L Y and similarly on morphisms. A morphism
ϕ : S → T induces a natural transformation ρ(ϕ) : ρ(S) → ρ(T ) with values
ρ(ϕ)(Y ) = ϕ ×L Y . We thus obtain a functor ρ from K- SET -L into the
functor category [L- SET,K- SET].

If S is a (K,L)-set and T an (L,M)-set, then S ×L T inherits a canonical
structure of a (K,M)-set. The associativity

(S ×L T )×M Y = S ×L (T ×M Y ), (7.1)

which we treat as identity, shows ρ(S) ◦ ρ(T ) = ρ(S ×L T ). We formalize
this fact and consider the assignment (T, S) 7→ S ×L T as a composition in a
category.

The category of bisets •- SET -• has as objects the groups. The mor-
phisms from K to L are the objects of K- SET -L (although this is not a
set). Composition of morphisms is defined as T ◦ S = S ×L T , so that we
have ρ(T ◦ S) = ρ(S ◦ T ). In order that this be (strictly) associative, we treat
canonical isomorphisms of the type ?? as identity. The K-set K with left and
right K-translation is the identity of the object K. This statement also uses a
canonical identification.

The category •- SET -• and the categories K- SET -L can be combined into
the structure of a 2-category. The morphisms K → L are the (K,L)-sets. The
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2-morphisms between two (K,L)-sets are the (K,L)-equivariant maps, and
their ordinary composition is called the vertical composition ∗ of 2-morphisms.
If α : S → S′ is an (L,K)-map and β : T → T ′ an (M,L)-map, then their
horizontal composition is α � β = α×L β : S ×L T → S′ ×L T

′. The 2-category
axiom

(α′ ∗ α) � (β′ ∗ β) = (α′ � β′) ∗ (α � β)

holds by functoriality of the product ×L.
The assignment

K 7→ K- SET
S ∈ K- SET -L 7→ ρL

K(S)
ϕ : S → S′ ∈ K- SET -L 7→ ρL

K(ϕ)

is a 2-functor from the 2-category •- SET -• to the 2-category CAT of categories.
This functor is compatible with coproducts (disjoint union) in the sense that
S ×L (Y + Y ′) = S ×L Y + S ×L Y

′, and similarly for the variable S. Also
composition in •- SET -• is biadditive in the sense that S ◦T is compatible with
disjoint union in the variables S and T .

In many cases it is not necessary to work with the 2-category: One can pass
to isomorphism classes of bisets.

There is also a contravariant functor. Let S ∈ K- SET -L. Consider the
set of K-maps σ(S)(Y ) = HomK(S, Y ) for a K-set Y . It carries the L-
action (l · ϕ)(s) = ϕ(sl). The assignment Y 7→ HomK(S, Y ) yields a functor
σ(S) : K- SET → L- SET. There is a canonical isomorphism σ(T ) ◦ σ(S) =
σ(S ×L T ) = σ(T ◦ S). It amounts to a natural isomorphism

HomK(S ×L T, Y ) ∼= HomL(T,HomK(S, Y )).

In order to see this, we view the left hand side as the set of maps ψ : S×T → Y
such that ψ(ks, t) = kψ(s, t) and ψ(sl, t) = ψ(s, lt) for s ∈ S, t ∈ T, k ∈
K, l ∈ L. The isomorphism is then given by the adjunction ψ 7→ ψ′ where
ψ′(t)(s) = ψ(s, t).

7.2 Basis Constructions

The functors ρ and σ comprise fundamental constructions with transformation
groups.

(7.2.1) Induction. If K ≤ L. Consider L as (L,K)-set by left and right
translation. Then ρ(L) is called induction from K to L and is given on objects
by X 7→ L×K X = indL

K X. 3
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(7.2.2) Restriction. Let α : L→ K be ahomomorphism. We consider K via
α as left L-set and via right translation as right K-set. Then ρ(K) is given
as X 7→ α∗X, where α∗X is obtained from the K-space X by viewing it via
α as L-space. In the case that α : L ⊂ K is an inclusion, we call this process
restriction resK

L X. 3

(7.2.3) Proposition. The induction functor is left adjoint to the restriction
functor. The adjointness means, there is a natural bijection

HomL(indL
K X,Y ) ∼= HomK(X, resL

K Y ).

It assigns to a K-map f : X → Y the LG-map L×KX → Y, (g, x) 7→ gf(x). 2

From 9.7.2 we obtain

indG
H((resG

H X)× Y ) ∼= X × indG
H Y.

The functoriality gives in this context the transitivity of induction and restric-
tion: For A ≤ B ≤ C we have natural isomorphism of functors indC

B indB
A
∼=

indC
A, and similarly for res.

(7.2.4) Orbit sets. Let A ≤ K. The right K-set A\K carries a free left
WKA-action. The process A\K ×K X ∼= A\X transforms the K-set X into
the orbit set A\X with induced action of WKA. 3

(7.2.5) Fixed point sets. Let L ≤ K and consider the homogeneous K-
set K/L with right WLK-action. Then HomK(K/L,X) ∼= XL, f 7→ f(eK),
including the induced WLK-action. The left hand side is the value on G/K of
a contravariant Hom-functor on the orbit category, and these bijections make
fixed point sets into a contravariant functor Or(G)→ SET. 3

(7.2.6) Multiplicative induction. Let K ≤ L and L the (K,L)-set with
translation actions. Then σ(L) is called multiplicative induction from K to L.
It is given on objects by X 7→ HomK(L,X) = mulLK(X). 3

(7.2.7) Proposition. Multiplicative induction is right adjoint to restriction.
There is a natural bijection

HomH(resG
H X,Y ) ∼= HomG(X, rm mulGHY )

for H-sets Y , G-sets X, H ≤ G. 2

It suffices to consider transitive (K,L)-sets S in order to understand more
general morphisms. We will show that the basic constructions generate all
morphisms. The group K acts as automorphism group on the L-set S. It
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sends an orbit into an isomorphic one. We can therefore assume that the L-set
has the form

S = A\L+ · · ·+A\L = nA\L.

Since S is a transitive set, the group K acts by transitive permutation of the L-
orbits. Therefore S has as (K,L)-set the form S = K ×B (A\L), with B ≤ K
acting on A\L via a homomorphism α : B → WLA into the automorphism
group of A\L. Therefore

S ∼= (K ×α WLA)×WLA A\L.

This shows how S is composed of basic morphisms.
We remark that S ×L X is additive in X, whereas HomK(S,X) is multi-

plicative in X. In special cases this is the distinction between additive and
multiplicative induction. Note that fixed points and restrictions are additive
and multiplicative as well.

Problems

1. Let B ≤ A. If S is a finite A-set, then

ρAB(S) =
‘
α{α

−1(eB) | α ∈ HomA(S, A/B)}

is a finite B-set. If γ ∈ C(B) is an additive invariant for B-sets, then S 7→ γ(ρAB(S))
is an additive invariant for A. The induced homomorphism is indAB : C(A)→ C(B).
2. Show that

HomK(L, Y )→
Q
lK∈L/K(lK ×KY ), ϕ 7→ (l, ϕ(l−1))

is an isomorphism of L-sets. Hence the multiplicative induction is given, up to iso-
morphism, by the product

Q
x∈L/K X, and the L-action permutes in a certain way

the factors.
3. There is a dual description of the multiplicative induction. Let X be a K-space
and q : G×K X → G/K the projection. The sections of p correspond to the G-maps
f : G→ X with the equivariance property f(gk) = k−1f(g). We have a G-action on
the space Γ(q) of all sections of p given by (g · s)(uK) = gs(g−1uK). We assign to
ϕ ∈ HomK(G, X) the map ϕ̃ : g 7→ ϕ(g−1). Then ϕ̃(gk) = k−1ϕ̃(g), and we can view ϕ̃
as a section. In this way we obtain the G-isomorphism HomK(G, X)→ Γ(q), ϕ 7→ ϕ̃.

7.3 The Burnside Ring A(G; S)

Let S be a finite G-set and G-Set|S the category of finite G-sets over S. De-
note by A+(G;S) the set of isomorphism classes of objects in this category. We
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define A(G;S) as the Grothendieck group associated to A+(G;S) with respect
to disjoint sum as addition. Additively it is the free abelian group on the set
of isomorphism classes of objects of the form f : G/H → S. Such an object is
determined by s = f(eH) ∈ SH , and we denote it by (H, s). The set of homo-
geneous G-sets over S can be identified with

∐
H≤G S

H . We have a G-action on
the set of objects g · (K, t) = (gKg−1, gt). The orbits of this action correspond
to isomorphism classes of homogeneous G-sets over S. Endomorphisms in this
category are automorphisms. The automorphism group of (H, s) is WHs, the
isotropy group of s ∈ SH under the WH-action. The group A(G;S) carries
the structure of a commutative ring; the product is induced by the product in
G-Set|S, i.e. by fibre product. We introduce the groups A(G;S) in order to
express certain formal properties of Burnside rings in a convenient manner.

(7.3.1) Example. The assignment Y 7→ (G ×H Y → G/H) induces an iso-
morphism between the categories H-Set and G-Set|(G/H). It induces a ring
isomorphism A(H) ∼= A(G;G/H). 3

(7.3.2) Example. The groups A(G;S) are additive in the variable S: Re-
striction to subsets induces a ring isomorphism A(G;S1 + S2) ∼= A(G;S1) ⊕
A(G;S2). 3

We see from 7.3.1 and 7.3.2 that A(G;S) can be reduced to ordinary Burn-
side rings.

Let C(G;S) denote the ring of Z-valued functions on the set of isomorphism
classes Φ(G;S) of homogeneous G-sets over S. Each a : G/H → S defines a
mark homomorphism ϕa : A(G;S)→ Z which maps f : X → S to |Hom(a, f)|.
The set Hom(a, f) can be identified with f−1(sa) ∩ XH where sa = a(eH).
The ring homomorphism ϕa only depends on the isomorphism class of a. As in
the case of the ordinary Burnside ring we combine the mark homomorphisms
into a single ring homomorphism

ϕ : A(G;S)→ C(G;S), f 7→ (a 7→ ϕa(f)), (7.2)

and with an analogous proof we obtain:

(7.3.3) Proposition. The mark homomorphism (7.2) is injective. The group
A(G;S) is additively the free abelian group on the isomorphism classes of ho-
mogeneous G-sets over S. The cokernel of ϕ is isomorphic to

∏
|Aut(a)|,

a ∈ Φ(G;S). 2

Problems

1. (Congruences for A(G; S) by Möbius-inversion.) We have the mark isomorphism
A(G; S) ⊗ Q ∼= C(G; S) ⊗ Q. Suppose a function ξ ∈ C(G; S) ⊗ Q is given. The
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pre-image in A(G; S)⊗Q is a rational linear combination of the isomorphism classes
of homogeneous G-sets over S. The coefficient of the isomorphism class (H, s) is:

|WHs|−1 P
K,H≤K≤Gs

µ(H, K)ξ(K, s).

For the proof consider the Gs-space X[s] = f−1(s) ⊂ X for a G-set f : X → S over
S. We have s ∈ SH , hence H ≥ Gs. In this Gs-space

X[s]H =
‘

K,H≤K≤Gs

X[s]K ,

and therefore
|X[s]H | =

P
K,H≤K≤Gs

µ(H, K)|X[s]K |.

The number is |X[s]K | the value of ϕ(K,s)(X).

7.4 The Induction Categories A and B
Let R be a commutative ring. An R-category is a category where the Hom-sets
Hom(X,Y ) carry the structure of a (left) R-module such that composition of
morphisms is R-bilinear. An R-functor between R-categories is a functor which
is also R-linear on morphism modules. We denote by Ã the 2-category with
objects the finite groups and morphisms from K to L the finite (K,L)-sets.

(7.4.1) Finite bisets. The category A+ has as objects the finite groups and
MorA+(K,L) = A+(K,L) is the set of isomorphism classes of finite (K,L)-sets.
Composition is again defined by T ◦ S = S ×L T .

The linearized version A has as objects the finite groups. The morphism
module A(K,L) is the Grothendieck group associated to A+(K,L) with re-
spect to disjoint union. We can view a finite (K,L)-set S as a K × L-set via
((k, l), s) 7→ ksl−1. Then the morphism set A(K,L) can be identified with
A(K × L). 3

(7.4.2) The induction category. The category B has as objects the finite
groups. The morphism set B(K,L) is the set of isomorphism classes of finite
(K,L)-sets with free L-action. It is easily seen that the composition inA is com-
patible with this freeness condition. We obtain the subcategory B of A. This
category plays a fundamental role in representation theory, and we describe its
morphism structure in some detail. It suffices to study transitive (K,L)-sets.
A (K,L)-set S with free right L-action is, in topological terminology, a right
principal L-bundle S → S/L with left K-action by bundle automorphisms. 3

Let A be a subgroup of K and α : A→ L a homomorphism. Let K×αL be
the quotient of K × L under (ka, l) ∼ (k, α(a)l) for a ∈ A. With the obvious
K- and L-actions this is a transitive (K,L)-set with free L-action.
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(7.4.3) Proposition. A transitive (K,L)-set with free L-action is isomorphic
to a set of the form K×αL. The data (K,L, α : A→ L) and (K,L, β : B → L)
yield isomorphic (K,L)-sets if and only if there exist isomorphisms cu : A →
B, a 7→ uau−1 with u ∈ K and cv : L → L, l 7→ vlv−1 with v ∈ L such that
cvα = βcu.

Proof. Let S be a transitive set and s ∈ S. Let A = {a ∈ K | ∃l ∈ L, as = sl}.
Since L acts freely, the relation as = sl associates a unique l = α(a) to a. One
verifies that α is a homomorphism. The map K ×α L → S, (k, l) 7→ ksl is an
isomorphism of (K,L)-sets.

Let ϕ : K×αL→ K×β L be an isomorphism. Let ϕ(e, e) = (u−1, v). Then
cu and cv have the stated properties. Conversely, one verifies that cu and cv
with properties as stated induce an isomorphism ϕ with ϕ(e, e) = (u−1, v). 2

Let i : A → K be an inclusion and α : A → L a homomorphism. Let
K ×(α,i) L be the quotient of K × L under (k · i(a), l) ∼ (k, α(a) · l). This
is again a transitive (K,L)-set. The data j : B → K and β : B → L define
an isomorphic (K,L)-set if and only if there exist (u, v) ∈ K × L and an
isomorphism σ : A→ B such that the following diagram commutes

K
cu

��

A
ioo α //

σ
��

L
cv

��
K B

joo β // L.

We specify the transitive morphisms in Mor(K,L) as isomorphism classes
of diagrams

(α|i) : K i←− A α−→ L,

where isomorphism is defined by the data 9.7.2.
Since composition is biadditive, it suffices to determine the composition of

the basic morphisms of the type (α|i). We use the following symbols:

(α| id) = α•, (id |i) = i•. (7.3)

Note that i• is only defined for injections i. The equality α• = β• holds if
and only if α and β differ by an inner automorphism of L. Similarly for the
injections i•. From the definitions one verifies the elementary composition rules

(α|i) = α•i
•, (αβ)• = α•β•, (ij)• = j•i•. (7.4)

The assignment α 7→ α• yields an injective functor from the category of finite
groups and homomorphisms up to inner automorphism. The assignment i 7→ i•

is a contravariant functor. There are other special cases for which composition
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is easy. Let
A

B
p //

i

OO

C

Z
P //

J

OO

D
q //

j

OO

E

be a diagram with injections i and j, surjections p and q, and a pullback
rectangle. Then

(q|j) ◦ (p|i) = (qP |iJ), j•p• = P•J
•. (7.5)

Let now
A

i← B
α→ C, C

j← D
β→ E

be diagrams with inclusions i and j. Write α as a composition kp with a sur-
jection p : B → Q and an inclusion k : Q→ C. Suppose j•k• =

∑
s γ(s)•δ(s)

•

with injections γ(s), δ(s) (the sum corresponds to disjoint union of transitive
sets). Then

(β|j) ◦ (α|i) = β•j
•k•p•i

•

=
∑
s
β•γ(s)•δ(s)•p•i•

=
∑
s
β•γ(s)•P•∆(s)•i•

=
∑
s

(βγ(s)P )•(i∆(s))•

where the third equality is an application of (7.5) — with a notation suggested
by the diagram above. Thus it remains to determine j•k• for inclusions j and
k by a so-called double coset formula.

The composition j•k• is represented by the (Q,D)-set C, where the actions
are given by left and right translation. The decomposition into transitive sets
is precisely the decomposition into double cosets Q\C/D. Let X ⊂ C be a
representing system of the double cosets. For s ∈ X let δ(s) : Q ∩ sDs−1 ⊂ Q
and γ(s) : Q ∩ sDs−1 → D,x 7→ s−1xs. Then, with these notations,

j•k• =
∑

s∈X

γ(s)•δ(s)•. (7.6)

If we write this in terms of induction and restriction, the double coset formula
reads

resC
Q indC

D =
∑

QsD

indQ
sDs−1∩Q ◦c(s)

∗ ◦ resD
D∩s−1Qs . (7.7)

Here c(s) is a conjugation x 7→ s−1xs.
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Problems

1. Verify ??, ??, and ??.
2. The category of subquotients U . The objects are the finite groups. The morphisms
from K to L are the isomorphism classes of diagrams

(p|i) : K
i←− A

p−→ L

with injections i and surjections p. The diagram (q|j) is isomorphic to (p|i) if there
exists an isomorphism σ : A → B such that jσ = i and qσ = p. Composition is
defined by pullback as in ??. We have a functor U → B.
3. Let j : D → C be an inclusion and α : B → Q a homomorphism. Then j•α• is
represented by the (B, D)-set C with right action by translation and left action by
translation via α.
4. Let G be a group. Define a Z-category S(G) with objects the finite subgroups of G.
The morphism module Mor(K, L) is the free abelian group on the set of isomorphism
classes of diagrams

(i|j) : K
j←− A

i−→ L,

where i and j are conjugacy classes of homomorphisms of the form x 7→ gxg−1 with

g ∈ G. The group G acts by conjugation on this category.

5. One can define a dual version S◦ of S: The morphisms from K to L are the

isomorphism classes of (L, K)-sets. There is a contravariant functor S → S◦; if S is

a (K, L)-set, then we have the (L, K)-set S◦ with action (k, s, l) 7→ l−1sk−1. This

extends to 2-categories.

6. Construct a category C with object the finite groups and with C(K, L) = C(K×L)

such that the mark homomorphisms constitute a functor ϕ : A → C.

7.5 The Burnside Ring as a Functor on A

Since S×LX is additive inX, the assignmentX 7→ S×LX = ρ(S)(X) vinduces
an additive homomorphism A(S) : A(L) → A(K) for each finite (K,L)-set S.
Since this is also additive in S, the construction extends to a contravariant
Z-functor A : A → Z- Mod. We still denote it ρ.

(7.5.1) Proposition. There exists a unique functor C : A → Z-Mod such
that the mark homomorphisms are a natural transformation ϕ : A→ C.

Proof. Since ϕ⊗Q is an isomorphism there can exists at most one such func-
tor. It suffices to construct the value of the functor on the basic morphisms:
Restriction, Induction, and Orbit space.

Let H ≤ G. The induction homomorphism is indG
H : A(H) → A(G), X 7→

G ×H X. Define indG
H : C(H) → C(G) by (indG

H α)(J) =
∑
{α(s−1Js) | sH ∈



7.5 The Burnside Ring as a Functor on A 125

G/HJ}; note: the conjugacy class of s−1Js does not depend on the represen-
tative s of the coset sH. Then the diagram

A(H)
ϕ //

indG
H��

C(H)

indG
H��

A(G)
ϕ // C(G)

is commutative. For the proof we note: We have the projection p : G×H X →
G/H. Let sH ∈ G/HJ and hence s−1Js ≤ H. The map

Xs−1Js → (G×H X)J , x 7→ (s, x)

yields a bijection onto p−1(sH) ∩ (G×H X)J .
Let f : K → L be a homomorphism. Viewing an L-set via f as K-set

induces a ring homomorphism f∗ : A(L) → A(K). The corresponding homo-
morphism f∗ : C(L)→ C(K) satisfies (f∗(α))(J) = α(f(J)) and f∗ϕ = ϕf∗.

Let L � G be a normal subgroup of G. Then we have an additive homo-
morphism

A(G)→ A(G/L), X 7→ X/G.

It has the following description in terms of marks. Let p : X → X/L and
q : G → G/L be the quotient maps. Fix H ≤ G/L, set B = p−1(X/LH) and
P = q−1(H). We consider X and B as P -sets. A P -orbit, which is isomorphic
to P/U , is contained in B if and only if P = LU . Hence P is a union of P -orbit
bundles of X. We have to compute |B/L| in terms of P -marks of Y = resG

P X.
We have the closed family F = {U ≤ P | LU = P}. We can now compute
|X/LH | = |Y (F)/L| =

∑
(U)∈(F) |Y (U)/L| by Möbius inversion in terms of

marks. One uses that L\G/U is a point for U ∈ F . 2

The identity G ×H (X × Y ) ∼= X × (G ×H Y ) for G-sets X and H-sets Y
yields

indG
H(resG

H(x) · y) = x · indG
H(y). (7.8)

Therefore the image of the induction indG
H is an ideal in A(G).

For the fixed points of an induction there is a formula which is similar
in structure to the double coset formula. Suppose L ≤ G ≥ K. Let X be
an L-space. We determine (G ×L X)K as WGK-space. We have a canonical
projection p : (G ×L X)K → G/LK . Therefore the WGK-space (G ×L X)K

is the disjoint union of the WGK-spaces p−1(A) where A runs through the
WGK-orbits of G/LK . We also write W (G,K) = WGK and fixG

W (G,K)X for
XK as W (G,K)-set. Then the fixed point formula reads

fixG
W (G,K) indG

L (X) ∼=
∐

indW (G,K)
W (s−1Ls,K) ◦c(s)

∗ ◦ fixL
W (L,s−1Ks)(X). (7.9)
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The summation is over sL ∈W (G,K)\(G/Lk). Note that for sL ∈ G/LK the
inclusion s−1Ks ≤ L holds. The decomposition is induced by the inclusions
Xs−1Ks → (G×L X)K , x 7→ (s, x) already considered above.

The multiplicative induction induces also a map between Burnside groups.
But since multiplicative induction is not additive, we cannot obtain this induced
map directly from the universal property. Although an algebraic approach is
possible, it is much more convenient to use the topological construction of the
Burnside ring. Let S be a finite (K,L)-set and U ≤ L. We begin with a
computation of HomK(S,X)U for a K-set X.

HomK(S,X)U = HomL(L/U,HomK(S,X))
= Hom(S ×L L/U,X) = HomK(S/U,X)

=
∏

j HomK(K/K(j)) =
∏

j X
K(j)

if S/U ∼=
∐

j K/K(j) is a decomposition into K-orbits. We write C(G)× for
the multiplicative monoid of the ring C(G). We define, using the previous
definitions,

σ(S) = C×(S) : C×(K)→ C×(L), α 7→ ((U) 7→
∏

j α(K(j))). (7.10)

Then σ(S) describes X 7→ HomK(S,X) in terms of marks. We note that
σ(S)(α · β) = σ(S)(α)σ(S)(β), i.e. σ(S) is a morphism of monoids. The
formula ?? makes sense, if we use instead of the C(G) the multiplicative group
Map(Con(G),M), were M is any multiplicative abelian monoid. A simple
verification from the definitions yields:

(7.5.2) Proposition. We have σ(T )◦σ(S) = σ(T×LS) = σ(S◦T ). Hence the
σ define a contravariant functor C× from A+ into the category of multiplicative
abelian monoids. 2

A topological definition of A(G) can be given as follows. We call finite G-
CW-complexes Euler equivalent, if for all H ≤ G the fixed point sets XH and
Y H have the same Euler characteristic. Then A(G) is the set of equivalence
classes. Again, disjoint union induces addition and cartesian product multipli-
cation. The computation above, now applied to a K-CW-complex X, shows
that the class of HomK(S,X) in A(L) only depends on the class of X in A(K).
The topological mark homomorphism ϕH associates to X the Euler charac-
teristic χ(XH) of XH . Later we develop these matters in detail. From this
topological definition we obtain a map σ(S) : A(K)→ A(L). These maps con-
stitute a contravariant functor σ from A to sets. The computation also shows,
that the σ are compatible with the mark homomorphisms, i.e. the mark ho-
momorphisms constitute a natural transformation also for the multiplicative
induction functors.
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Problems

1. Let e(J ; H) ∈ C(H) be the function which assumes the value 1 at (J) and the

value zero otherwise. Then indGH e(J ; H) = |WGJ |/|WHJ |e(J ; G).

2. Verify ?? in detail.

3. Let A(G)∗ denote the group of units in the ring A(G). Since the maps

σ(S) : A(K) → A(L) for a (K, L)-set S are multiplicative, they induce a homomor-

phism σ(S) : A(K)∗ → A(L)∗. In this way we obtain a contravariant functor A∗ = σ∗

from A to abelian groups.

7.6 Representations of Finite Groups: Functo-
rial Froperties

In order to fix the ideas, we consider in this section finite dimensional repre-
sentations over a fixed ground field K. We denote by Rep(G; K) = Rep(G) the
category of such representations of the finite group G. We list several functorial
constructions which relate representations of different groups.

(7.6.1) Restriction. Let V be a representation of L and ϕ : K → L a homo-
morphism. Let ϕ∗V denote the representation space V together with the action
K × V → V, (k, v) 7→ ϕ(k) · v. We obtain a functor ϕ∗ : Rep(L) → Rep(K).
The special case ϕ : K ⊂ L of an inclusion is called restriction from L to K,
in symbols resL

K . 3

(7.6.2) Induction. Let K be a subgroup of L, in symbols K ≤ L. We
associate to a K-representation V the induced L-representation indL

K V .
If we view a G-representation as a left module over the group ring KG, then
indL

K V = KL⊗KK V . We obtain a functor indL
K : Rep(K)→ Rep(L). 3

(7.6.3) Invariants. Let K be a subgroup of L and V an L-representation.
Consider the subspace of K-fixed points V K . This carries an induced action of
the Weyl group WLK = NLK/K; here NLK is the normalizer of K in L. In
this way we obtain a functor Rep(L)→ Rep(WLK). 3

(7.6.4) Coinvariants. Let K be a subgroup of L and V an L-representation.
Consider the subspace V0 generated by the elements of the form v − kv for
v ∈ V and k ∈ K. We denote the quotient space V/V0 by VK and call it
the space of K-coinvariants. Let n ∈ NLK. Then V0 is stable under the left
translation by n. Thus we obtain an induced action of NLK on VK . It induces
an action of WLK. 3
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(7.6.5) Induction via bisets. Let K and L be finite groups. Let KS denote
the free K-module on a (K,L)-set S. The actions on S make this into a left KK-
module and a right KL-module with commuting actions. We call such objects
(K,L)-bimodules. Any such bimodule Σ induces a functor τ(Σ): Rep(L) →
Rep(K), given on objects by V 7→ Σ ⊗L V (the symbol is short-hand for
the tensor product over KL). A morphism of (K,L)-bimodules ϕ : Σ1 → Σ2

induces a natural transformation τ(ϕ) : τ(Σ1) → τ(Σ2). Thus τ is a functor
from the category K- Mod -L of (K,L)-bimodules into the functor category
[Rep(L),Rep(K)]. We write τL

K(S) = τ(S), if the module Σ is KS for a (K,L)-
set S. We have a natural isomorphism of functors τL

K(S)◦τM
L (T ) ∼= τM

K (S×LT )
due to the isomorphism KS ⊗L KT ∼= K(S ×L T ). 3

(7.6.6) Coinduction via bisets. Suppose V is a K-representation and S
a (K,L)-set. Let MapK(S, V ) denote the vector space of all K-equivariant
maps S → V . We obtain a left L-action on this mapping space by (l · f)(s) =
f(sl). The assignment V 7→ MapK(S, V ) obviously extends to a functor ρ(S) =
ρL

K(S) : Rep(K) → Rep(L). A morphism of (K,L)-sets f : S → S′ induces
via composition a natural transformation ρ(f) : ρ(S′) → ρ(S). Thus ρL

K is a
contravariant functor from the category of (K,L)-sets into the functor category
[Rep(K),Rep(L)]. 3

(7.6.7) Representation groups. Let R+(G; K) denote the set of isomor-
phism classes of objects in Rep(G; K). This is a semi-ring with addition induced
by direct sum and multiplication induced by tensor product. Let R(G; K) de-
note the associated Grothendieck ring (representation ring). Let S be a (K,L)-
set. The functors τL

K and ρL
K are compatible with direct sums and isomorphisms

and induce homomorphisms of additive groups

tLK(S) : R(L; K)→ R(K; K), rL
K(S) : R(K; K)→ R(L; K).

The functors t and r are compatible with disjoint union of (K,L)-sets: t(S q
T ) = t(S) + t(T ), r(S q T ) = r(S) + r(T ). These homomorphisms combine to
functors t and r from A to abelian groups.

In addition to the additive constructions above there also exists a multi-
plicative induction for representations. Let V be a KK-module. We set

mG
K(V ) =

⊗
gK∈G/K

(gK ×K V );

G acts by permutation of the tensor factors. Again it is not obvious that this
construction can be extended to a map, called multiplicative induction,

mG
K : R(K; K)→ R(G; K).
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Multiplicative induction is compatible with permutation representations, i.e.
the diagram

A(K)
π(K)//

mG
K��

R(K; K)

mG
K��

A(G)
π(G) // R(G; K)

is commutative. 3

Problems

1. Compute the effect of the various induction functors on characters and use this to

define corresponding functors on class functions.

7.7 The Induction Categories AG and BG
The category AG has as objects the finite G-sets. The morphism module from
S to T is A(G;S × T ). The composition is defined by a pullback construction
below. We write a representing object (a, b) : X → S × T also in form of a
diagram

(b|a) : S a← X
b→ T.

Another diagram (b′|a′) : S ← X ′ → T is, by definition, isomorphic to (b|a)
if there exists an isomorphism σ : X → X ′ such that a′σ = a and b′σ = b.
Thus A(G;S × T ) is the free abelian group on the set of isomorphism classes
of such diagrams with source a homogeneous G-set. The composition of the
morphisms (α, β) : X → S×T and (γ, δ) : Y → T ×U is given via the pullback
diagram

Z
β′ //

γ′

��

X

β
��

α // S

Y
γ //

δ
��

T

U

as (αβ′, δγ′) : Z → S × U . Associativity of composition follows from the tran-
sitivity of pullbacks.

Let P be a point. Then A(G;S) = A(G;P × S), and if we view this as
a morphism module, then A(G;−) becomes a covariant Hom-functor on AG.
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The identification A(G;S) = A(G;S × P ) makes it into a contravariant Hom-
functor. In fact, AG is canonically isomorphic to its dual, the isomorphism
being given by switching factors A(G;S × T ) ∼= A(G;T × S).

For certain applications it is more natural to consider the full subcategory
BG with object the homogeneous G-sets. If we identify H ↔ G/H we obtain
instead a category with objects the subgroups of G. There is a canonical
functor of this category into B. It is the identity on objects. A morphism
(b|a) : G/K ← G/A → G/L is mapped to (β|α) : K ← A → L; here α(x) =
u−1xu if a(eA) = uK, and similarly for β. The verification of the functor
property will be given later in a more general context (and may serve as an
exercise at this point)

An additive Z-invariant for finite G-sets over S associates to each f : X → S
an integer a(f) ∈ Z such that a(f + g : X + Y → S) = a(f) + a(g) and
a(f) = a(g) if f and g are isomorphic over S. By the universal property
of A(G;S), these invariants correspond bijectively to elements of the group
C(G;S) = Hom(A(G;S),Z). Each f : X → S provides us with an additive
invariant. It assigns to g : Y → S the integer

ϕ((Y, g), (X, f) =
∑

P∈Y/G

|Hom((P, g), (X, f))S |.

For each orbit P ⊂ Y the Hom-set is the set of G-maps b : P → X over S,
i.e. the set of G-maps b such that fb = g. The expression ϕ((Y, g), (X, f)) is
additive in (X, f) and (Y, g) and induces therefore a Z-bilinear map

ϕ : A(G;S)×A(G;S)→ Z, (X, f), (Y, g) 7→ ϕ((Y, g), (x, f)).

If we fix the first variable, we obtain a homomorphism, also called ϕ,

ϕ : A(G;S)→ C(G;S).

Let Φ(G;S) denote the set of isomorphism classes of homogeneous sets over S.
The assignment (f : G/H → S) 7→ f(eH) is a bijection HomG(G/H,S) ∼= SH.
Elements x ∈ SH and y ∈ SK define isomorphic objects if and only if there
exists g ∈ G such that gx = y and K = gHg−1. We can identify C(G;S) with
the group C(Φ(G;S),Z) of all maps Φ(G;S)→ Z.

We construct a category CG with objects the finite G-sets and with
CG(S, T ) = C(G;S × T ) such that the maps ϕ constitute a functor AG → CG.
For this purpose we view again C(G;S × T ) as the functions on Φ(G;S × T ).
Let I ∈ C(G;S2×S3) and J ∈ C(G;S1×S2) be additive invariants. The com-
position I ◦ J ∈ Hom(Φ(G;S1 × S3),Z) is defined to be the additive invariant
which assigns to (a, b) : G/H → S1 × S3 the value∑

σ
I(a, σ)J(σ, b) = (I ◦ J)(a, b).
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The sum is taken over the σ : G/H → S2. This construction is associative. The
identity of S is the image of (idS | idS) under ϕ; as a function, it assumes the
value 1 at each orbit P of S, i.e. at (P ⊂ S|P ⊂ S), and the value zero at the
remaining isomorphism classes.

We verify that ϕ is a functor. Let the following diagram describe a compo-
sition of two morphisms.

Z
h3 //

h1
��

Y

g2
��

g3 // S3

X
f2 //

f1
��

S2

S1

We compute the value of the composition at (a1, a3) : G/H → S1 × S3. It uses
the set of b : G/H → Z such that f1h1b = a1, g3h3b = a3. Since the square is
a pullback such b are in bijection to pairs bX : G/H → X, bY : G/H → Y such
that

c = f2bX = g2bY (= f2h1b = g2h3b),

with the additional properties

f1bX = a1, g3bY = a3.

There is no condition on C. If we fix c then we have to form the product of
the invariants of X at (a1, c) and of Y at (c, a3). Hence

|Hom((a1, a3), (f1h1, g3h3))| =∑
c : G/H→S2

|Hom((a1, c), (f1, f2))| · |Hom((c, a3), (g2, g3))|

Problems

1. The category AG has the additional structure of a tensor category with symmetric
braiding. On objects the tensor product is simply the cartesian product S×T = S⊗T .
The tensor product of morphisms is defined by cartesian product of representatives

((f, g) : X → S × T )⊗ ((f ′, g′) : X ′ → S′ × T ′)

= (f × f ′, g × g′) : X ×X ′ → S × S′ × T × T ′).

This construction is compatible with disjoint union in the variables X and X ′; there-
fore it induces a bilinear map

Mor(S, T )×Mor(S′, T ′)→ Mor(S ⊗ S′, T ⊗ T ′)
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which is denoted (f, g) 7→ f ⊗ g on morphisms. Since the product of two pullback
squares is again a pullback square one sees that ⊗ is compatible with composition

(f ′ ⊗ g′) ◦ (f ⊗ g) = f ′f ⊗ g′g.

This tensor product is associative. A point is a neutral object. The symmetric
braiding is given by f ⊗ g 7→ g ⊗ f .
2. We can make C into a tensor category such that ϕ becomes a tensor functor. We
define C(S, T )× C(S′, T ′)→ C(S × S′, T × T ′), (α, β) 7→ α⊗ β by

(α⊗ β)

0@ X
↓

S × S′ × T × T ′

1A = α

0@ X
↓

S × T

1A β

0@ X
↓

S′ × T ′

1A
Then one has to verify the naturality (α⊗ β) ◦ (γ ⊗ δ) = (α ◦ γ)⊗ (β ◦ δ).

3. The functor ϕ : AG → CG is a tensor functor.



Chapter 8

Mackey Functors: Finite
Groups

8.1 The Notion of a Mackey Functor

Certain parts of axiomatic representation theory can be based on the notion of
a Mackey functor. We give an elementary introduction for finite groups. Later
we generalize this to a topological context.

A bifunctor M = (M∗,M
∗) : C → D between two categories C and D

consists of a covariant functor M∗ and a contravariant functor M∗ which have
the same value on objects M(X) = M∗(X) = M∗(X).

A Mackey functor M : G-Set → R- Mod is a bifunctor M = (M∗,M
∗)

with the following properties:
(1) For each pullback in G-Set

U
F //

H

��

S

h

��
T

f // V

the relation F∗H∗ = h∗f∗ holds.
(2) The canonical inclusions ij : Sj → S1 +S2 induce an isomorphism M(S1)⊕
M(S2)→M(S1 + S2), x1, x2) 7→M(i1)∗x1 +M(i2)∗x2.

We draw some consequences of the axioms. If we apply (2) to the empty
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sets Sj = ∅, we conclude M(∅) = 0. Let f : X → Y be an isomorphism. Then

X
id //

id

��

X

f

��
X

f // Y

is a pullback. Therefore f∗ and f∗ are inverse isomorphisms.The diagrams

S
id //

id

��

S

i

��

∅ //

��

T

j

��
S

i // S + T S
i // S + T,

with the canonical inclusions i, j, are pullbacks. Hence i∗i∗ = id and j∗i∗ = 0.
One uses this to show that M(S + T )→ M(S)×M(T ), x 7→ (i∗(x), j∗(x)) is
an isomorphism too. Let

∐
sG/As

βs //

αs

��

G/L

β

��
G/H

α // G/K

be a pullback; in the diagram, αs and βs denote the restriction to the orbit
G/As. In this situation axiom (1) says

β∗α∗ =
∑
s
βs∗a

∗
s. (8.1)

Suppose α and β are projections induced by inclusions H ≤ K, L ≤ K.
Choose a representative HkL ⊂ H\K/L for the double coset. Let αk : G/(H ∩
kLk−1)→ G/H be the projection and let βk be the composition of the conju-
gation G/(H ∩ kLk−1) → G/(k−1Hk ∩ L) with the projection to G/L. Then
(8.1 holds; the sum is now over a representative system for the double cosets k
instead over s. Thus axiom (1) is essentially a convenient reformulation of the
double coset formula.

Let Or(G) denote the orbit category of homogeneous sets G/H and G-maps.
This category is equivalent to the category Tran(G) of transitive G-sets. Thus
functors from Or(G) and Tran(G) to an additive category D are in bijective
correspondence. A functor from Tran(G) to an additive category D can be
extended to a functor from the category Set(G) of finite G-sets by taking direct
sums over orbits

F (X) =
⊕

S∈X/G

F (S).
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Let iS : F (S) → F (X) and pS : F (X) → F (S) be the canonical injection
and projection associated to an orbit S of X. Let ϕ : X → Y be a morphism in
Set(G). If S ⊂ X is an orbit, there exists a unique orbit T ⊂ Y with ϕ(S) ⊂ T .
We define F (ϕ) : F (X)→ F (Y ) by

pBF (ϕ)iA =
{
f(ϕ : A→ B) if ϕ(A) ⊂ B
0 otherwise.

Via this construction, functors Tran(G) → D correspond bijectively to those
functors from Set(G)→ D which are compatible with coproducts.

(8.1.1) Proposition. Mackey functors correspond to bifunctors on Or(G)
which satisfy the double coset formula ??. We call these functors on Or(G)
Mackey functors too. 2

Let G be a group. A G-category C is a category C together with an action
of G by automorphisms, i. e., for each g ∈ G a functor cg : C → C is given such
that cgch = cgh and ce = id(C). We write cg(X) = gX for the values of the
functor cg.

Let F : C → D be a functor from a G-category C into another category D. A
G-invariance structure ζ• for F is a family ζ• = (ζg : F → F ◦ cg) of natural
isomorphisms ζg such that ζe is the identity and

ζh(cg(X)) ◦ ζg(X) = ζhg(X)

for each object X of C. A G-invariance structure ζ• for a contravariant
functor F is a family of natural transformations ζg : F ◦ cg → F such that
ζg(X)ζh(cg(X)) = ζhg(X).

An equivariant bifunctor consists of two equivariant functors (M∗, ζ•)
and (M∗, ζ•) such that (M∗,M

∗) is a bifunctor and cgcg = id.
Let Sub(G) denote the category of subgroups of G and inclusions. This

becomes a G-category via conjugation cg : H 7→ gHg−1.

(8.1.2) Lemma. The functors ϕ : Or(G) → R-Mod correspond bijectively to
G-equivariant functors Φ: Sub(G)→ R-Mod with the additional property that
ζh : Φ(H)→ Φ(H) is the identity if h ∈ H.

Proof. Given ϕ, we define Φ(H) = ϕ(G/H) on objects. If H ≤ K, then
Φ(H)→ Φ(K) is ϕ, applied to the projection G/H → G/K, and ζg : Φ(H)→
Φ(gHg−1) is ϕ, applied to G/H → G/gHg−1, xH 7→ xHg−1. These data yield
an equivariant functor with the required properties.

Conversely, suppose (Φ, ζ) is given. We set ϕ(G/H) = Φ(H). Suppose
f : G/H → G/K, xH 7→ xgK with g−1Hg ⊂ K is a morphism. We define
ϕ(f) as the composition

Φ(H)
ζ−1

g // Φ(g−1Hg) // Φ(K).
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In order to see that this is well-defined, suppose f(xH) = xuK. Then uK =
gK. We have a commutative diagram

Φ(H)
ζ−1

g //

=

��

Φ(g−1Hg) //

ζu−1g

��

Φ(K)

ζu−1g

��
Φ(H)

ζ−1
u // Φ(u−1Hu) // Φ(K),

since the functor is equivariant. But the right most cu−1g = id, by assumption,
hence ϕ(f) is well-defined. The functor property for ϕ is easily verified. 2

We unravel the definition of a Mackey functor and give an equivalent def-
inition in more elementary terms. The compatibility with coproducts shows
that it suffices (on object level) to define the functor on the finite homogeneous
spaces G/H. In this case, we can use the notation M(G/H) = M(H) and
think of a functor defined for subgroups H of in G.

For this purpose, we formulate axioms about restriction (R), induction (I),
and conjugation (C), and therefore talk about RIC-functors.

An RIC-functor for the group G is an equivariant bifunctor Sub(G) →
R- Mod with contravariant G-equivariant functor restriction res : Sub(G) →
R- Mod and covariant G-equivariant functor induction ind: Sub(G) →
R- Mod. Denote the value on H by M(H), and let resL

K : M(L)→M(K) and
indL

K : M(K)→M(L) denote the induced morphism (K ≤ L). These data are
assumed to satisfy the following double coset formula: For subgroups L and
H of K we have

resK
L indK

H =
∑

LkH∈L\K/H

indL
kHk−1∩L ◦ζ(k) ◦ resH

H∩k−1Lk .

The sum is taken over a representing system k of double cosets. One verifies
that each summand is independent of the choice of k.

By ??, a RIC-functor determines a Mackey functor, if the hypothesis ??
about the ζh holds. This gives the third definition of a Mackey functor.

The definition of a Mackey functor as a bifunctor separates the restriction
and the induction process. One can also incorporate the basic pullback axiom
(1) into the source category of the functor. Recall the category AG. Each
bifunctor M which satisfies axiom (1) defines a contravariant functor M on
AG. It assigns to a morphism represented by a diagram (b|a) : S ← X → T
the homomorphism M(b|a) = a∗b

∗. By axiom (1) this is compatible with
composition of morphisms; and each bifunctor which satisfies axiom (1) arises
in this way from a unique functor on AG. If we take the additivity axiom (2)
into account, we can say (talking about R-functors into a given R-category):

(8.1.3) Proposition. Mackey functors correspond bijectively to contravariant
functors on BG. 2
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8.2 Pairings of Mackey Functors

Let M,N,L be Mackey functors for G, in the guise of bifunctors on G-Set. An
internal pairing M ×N → L is a family of bilinear maps

M(S)×N(S)→ L(S), (x, y) 7→ x · y,

one for each finite G-set S, with the following properties: Let f : S → T be a
morphism between finite G-sets. Then

f∗(x · y) = f∗x · f∗y
f∗(x · f∗y) = f∗x · y
f∗(f∗x · y) = x · f∗y.

A Green functor is a Mackey functor U together with a pairing U × U → U
such that for each S the map U(S)×U(S)→ U(S) makes U(S) into a commuta-
tive ring. Moreover the maps f∗ are assumed to be unital ring homomorphisms.

Let U be a Green functor and M a Mackey functor. A pairing U ×M →M
is called the structure of an U -module on M if each pairing morphism

U(S)×M(S)→M(S)

is a unital U(S)-module structure.
An external pairing M ×N → L consists of a family of bilinear maps

M(S)×N(T )→ L(S × T ), (x, y) 7→ x× y,

one for each pair S, T of finite G-sets, such that the following holds: Let f : S →
S′ and g : T → T ′ be morphisms between finite G-sets. Then

L∗(f × g)(x× y) = M∗(f)x×N∗(g)y
L∗(f × g)(x× y) = M∗(f)x×N∗(g)y.

We can rephrase (??): The morphisms of an external pairing constitute a
natural transformation of bifunctors on G-Set×G-Set.

We are going to establish a bijection between internal and external pairings.
Let µ : M×N → L be an internal pairing. Let pS : S×T → S be the projection
to S and similarly pT the projection to T . We define bilinear maps

ν(S, T ) : M(S)×N(T ) -
p∗S × p∗T

M(S × T )×N(S × T ) -
µ

L(S × T ).

(8.2.1) Proposition. The maps ν(S, T ) just defined constitute an external
pairing. 2

Conversely, let an external pairing M×N → L be given. Let dS : S → S×S
denote the diagonal map. We define bilinear maps

µ(S) : M(S)×N(S)→ L(S × S)
d∗S−→ L(S).
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(8.2.2) Proposition. The maps µ(S) just defined constitute an internal pair-
ing. 2

One verifies that the two processes 8.2.1 and 8.2.2 are inverse to each other.

(8.2.3) Proposition. The bilinear maps A(G;S) × A(G;T ) → A(G;S × T )
which are the cartesian product on representatives make AG into a Green func-
tor. 2

The next proposition expresses a universal property of the Green functor
AG.

(8.2.4) Proposition. Each Mackey functor M is in a canonical way a module
over A. The pairing is A(G;S)×M(S)→M(S), ([f ], x) 7→ f∗f

∗x. 2

Problems

1. View Mackey functors as functors on the tensor category AG and express the
axioms of an external pairing.
2. Construct the representation ring as a Green functor. Let KG(S; K) denote the
Grothendieck ring of finite dimensional G-vector bundles over the finite G-set S. If S
is a point, then KG(S; K) = R(G; K), canonically. We usually skip K in the notation.
If S = G/H, then we have the canonical isomorphism

R(H)→ KG(G/H), V 7→ (G×H V → G/H).

We make KG into a bifunctor. The contravariant part is defined by pullback of
bundles. The induced morphisms are ring morphisms. The covariant part is defined
as follows. Let p : E → S be a G-vector bundle and f : S → T a G-map. A bundle
q : X = f∗(E)→ T is defined by specifying the fibre over t ∈ T

Xt = q−1(t) =
L

s,f(s)=t

Es, Es = p−1(s).

The G-action on X =
‘
t∈T is defined by g : Xt → Xgt, g(x) = gx, x ∈ Es. One

verifies that (E → S) 7→ (f∗E → T is a covariant functor on isomorphism classes of
G-vector bundles. It is compatible with direct sums and induces an additive homo-
morphism between the Grothendieck groups. The verification of the pullback property
is straightforward. Thus we have a Mackey functor.

This functor incorporates restriction and induction of representations. Let
f : G/H → G/K be the map gH 7→ guK with u−1Hu ⊂ K. Then

R(K) ∼= KG(G/K)
f∗−→ KG(G/H) ∼= R(H)

send the K-representation V to the H-representation H × V → V, (h, v) 7→
(u−1hu)v, i.e., combines restriction and conjugation. The covariant map induced
by f : G/H → G/G is the induction indGH . External tensor product of bundles in-
duces a bilinear map KG(S) × KG(T ) → KG(S × T ). These maps constitute an
external pairing of Mackey functors and make KG into a Green functor.
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The canonical morphism of the Burnside functor into this Green functor

AG → KG codifies permutation representations. The ring homomorphism A(G) =

AG(G/G) → KG(G/G) = R(G) associates to the finite G-set S the permutation

representation K(S), the free K-module over S with induced G-action.

8.3 Green Categories

We associate to each Green functor U a Z-category ΩU . It has the property that
the U -modules correspond to contravariant Z-functors from ΩU into abelian
groups. Moreover, this category is self-dual.

We fix a Green functor U and call the category to be defined just Ω. The
objects of Ω are the finite G-sets. The morphism group is defined to be

MorΩ(S, T ) = U(S × T ).

The composition of morphisms (f, g) 7→ g ◦ f is defined to be the following
bilinear map:

U(X × Y )× U(Y × Z)→ U(X × Y × Y × Z)→ U(X × Y × Z)→ U(X × Z).

The first map is the external pairing, the second map is contravariantly induced
by the diagonal of Y , the third map is covariantly induced by the projection
ontoX×Z. We have to verify associativity of the composition and the existence
of units.

Associativity. By associativity and naturality of the pairing, we that c◦(b◦a)
for a ∈ U(X1 ×X2), b ∈ U(X2 ×X3), U(X3 ×X4) is given by

p14∗(1× d(X3)× 1)∗p1334∗(1× d(X2)× 1)∗(a× b× c).

Here d denotes a diagonal and p a projection and the p-index indicates the
indices of the remaining factors. We apply the pullback property to the mor-
phisms in the middle and see that

c ◦ (b ◦ a) = p∗d
∗(a× b× c)

where p : X1×X2×X3×X4 → X1×X4 is the projection and d = 1×d(X2)×
d(X3) × 1 is the diagonal in the X2- and X3-factors. This expression for the
composition is independent of the bracketing.

Identity. The identity of S is the element d∗(1S), with diagonal d of S and
unit 1S ∈ U(S). This is seen as follows. The composition of d∗(1) ∈ U(Y × Y )
with u ∈ U(Y × Z) is given by

pr13∗(D
∗ pr∗12 d∗(1) ·D∗ pr∗34 u),
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where prab denotes the projection onto the factors a, b and D = 1× d× 1. By
the pullback property, we can write

pr∗12 d∗(1Y ) = (d× 1)∗ pr∗1(1Y ) = (d× 1)∗(1Y×Z)

and by the pairing axiom we obtain

u ◦ d∗(1) = pr13∗(d× 1)∗(1Y×Z · (d× 1)∗ pr∗23 u).

But pr13(d× 1) = id and pr23(d× 1) = id, and hence u ◦ d∗(1) = u.

(8.3.1) Example. The Green category associated to AG is AG. 3

(8.3.2) Proposition. Let U be a Green functor. The maps

π(S) : A(G;S)→ U(S), [f ] 7→ f∗f
∗1

constitute a natural transformation of Green functors.

Proof. The assertion means that the maps are ring homomorphisms and con-
stitute a morphism of Mackey functors.

Let h : S → T be given. Suppose

Z
H //

F

��

X

f

��
S

h // T

is a pullback. The following computations show the compatibility with the
contravariant morphisms.

π(S)h∗[f ] = π(S)[F ] = F∗F
∗1

h∗π(T )[f ] = h∗f∗f
∗(1) = F∗H

∗f∗(1) = F∗F
∗H∗(1) = F∗F

∗(1).

The functoriality of U yields directly the compatiblity with the covariant mor-
phisms. Thus we have shown that we have a morphism of functors.

The computations with the data of the pullback above

π(T )([f ][h]) = π(T )([fh]) = f∗H∗(1) = (fH)∗(1) = (hF )∗(1)

π(T )[f ] · π(T )[h] = f∗1 · h∗1 = h∗(H∗f∗1 · 1) = h∗F∗H
∗(1) = (hF )∗(1)

show the compatibility with the multiplication. 2
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8.4 Functors from Green Categories

The natural transformation of Green functors π : A→ U induces a functor be-
tween the associated Green categories Ωπ : ΩA → ΩU . We use this functor and
associate to a G-map f : S → T between finite G-sets the morphisms Ωπ(f•)
and Ωπ(f•) which we again denote by f• and f•. The morphism f• : S → T in
ΩU is given by (1, f)∗1S ∈ U(S × T ) and f• is given by (f, 1)∗1S ∈ U(T × S).

(8.4.1) Proposition. For each finite G-set S the map δS : U(S) →
MorΩ(S, S), x 7→ d∗x is a ring homomorphism.

Proof. The following computation proves the assertion. Note that U(S) is
commutative.

d∗(x1x2) = d∗d
∗(x1 × x2) = p13∗d

2
∗d
∗(x1 × x2)

= p13∗(1× d× 1)∗(d× d)∗ = d∗x2 ◦ d∗x1.

The first equality comes from the relation between external and internal pair-
ings. The second comes from d = p13d

2, where p13 is the projection onto the
factors 1 and 3, and d2 : S → S3 is the diagonal. The third equality comes
from the pullback property of a Mackey functor. The forth equality uses the
naturality of the external pairing (d × d)∗ = d∗ × d∗ and the definition of the
composition. 2

Proof. Let f : S → T be a morphism between finite G-sets. Then the following
equalities hold for elements a ∈ U(S) and b ∈ U(T ):

f• ◦ δSa = (1× f)∗dS∗a

δSa ◦ f• = (f × 1)∗dS∗a

f• ◦ δT b = (1×)∗dT∗b

δT b ◦ f• = (f × 1)∗dT∗b

We verify the first identity. The proof of the remaining is along similar lines.

f ◦ δSa = pr13∗(pr∗12 dS∗a · pr∗23(1, f)∗1S)
= pr13∗(pr∗12 dS∗a · (1× 1, f)∗ pr∗2 1S)
= pr∗(1× 1, f)∗((1× 1, f)∗ pr∗12 dS∗a)
= (1× f)∗dS∗a.

The first equality is the definition, the second uses the pullback property, the
third the pairing axioms, and the fourth uses identities between the morphisms
involved. 2
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(8.4.2) Proposition. For a ∈ U(S) and b ∈ U(T ) the following identities
hold:

f• ◦ δSf∗(b) = δT ◦ f•
δSf

∗(b) ◦ f• = f• ◦ δT (b)
f• ◦ δS(a) ◦ f• = δT f∗(a).

Proof. We verify the first one. The remaining are treated similarly. We insert
the relevant identity of the previous proposition and use the pullback identity
(1× f)∗dS∗f

∗ = (f × 1)∗dT∗. 2

(8.4.3) Theorem. The Z-functors ΩU → Z-Mod correspond bijectively to
U -modules.

Proof. Suppose a functor M : Ω→ Z- Mod is given. We have to define bilinear
maps U(S)×M(S)→M(S). Instead, we define the adjoint linear maps

U(S)→ Hom(M(S),M(S))

as the composition of δS with the functor maps

MorΩ(S, S)→ Hom(M(S),M(S)), f 7→M(f).

By definition, these are ring homomorphism and therefore they are a module
structure. We verify the pairing axioms. They are a direct consequence of the
previous proposition: When we apply the functor M , we obtain the adjoint
versions of the axioms for an internal pairing.

Conversely, let a pairing be given. The desired functor consists of linear
maps U(S × T )→ Hom(M(T ),M(S)). These are defined as the composition

U(S × T )×M(T ) -
1× pr∗T

U(S × T )×M(S × T )→M(S × T )
prS∗−→ M(S).

We verify the functor property. Let x ∈ U(S × T ) and y ∈ U(T × Y ) and
z ∈M(Y ). Then, by the definitions,

y(x(z)) = prS∗(x · pr∗T prT∗(y · pr∗Y z)).

The index indicates the range factors of the projection; this does not specify the
maps uniquely, though. The following diagram displays some of the morphisms
we are going to use. The center is a pullback square.

S × T × Y
prT Y //

prST

��

T × Y
prY //

prT

��

Y

S S × T
prSoo prT // T
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We use the pairing axioms and the pullback property to rewrite the element in
question.

y(x(z)) = prS∗(x · prST∗ pr∗TY (y · pr∗Y z))
= prS∗ prST∗(pr∗ST x · pr∗TY y · pr∗TY pr∗Y z)
= prS∗ prSY ∗(pr∗ST x · pr∗TY y · pr∗SY pr∗Y z)
= prS∗(prSY ∗(prST∗ x · prTY ∗ y) · pr∗Y z)
= prSY ∗((y ◦ x) · pr∗Y z)
= (y ◦ x)(z)

Finally, the computation

prS∗(dS∗1 · pr∗S z) = prS∗ dS∗1 · z = z

shows that the morphism dS∗1 acts as the identity.
One verifies that the two processes which we have described are inverse to

each other. 2

We have in particular the contravariant Hom-functor in ΩU . This corre-
sponds to the U -module U . We mention that x ∈ U(S×T ) = Mor(S, T ) sends
a ∈ U(T ) to prS∗(x · pr∗T a). In the case x = dS∗v this equals v · a.

8.5 Amitsur Complexes

Let Ω = ΩU denote the Green category associated to a Green functor U and
let M : Ω→ R- Mod be a contravariant functor (= U -module).

For each finite G-set S we obtain a new functor MS . It is defined on objects
by MS(T ) = M(S × T ). Each morphism f : T → T ′ in Ω has an associated
morphism idS ×f : S × T → S × T ′. If we apply the same construction to the
first variable in the product S × T , we see that each morphism h : S → S′

induces a natural transformation (= morphism of U -modules)

Mh : MS →MS′ .

Altogether we see that M : Ω→ R- Mod yields a contravariant functor

M• : Ω→ [Ωop, R- Mod]

into the functor category of U -modules.
Recall that a G-map f : S → T yields morphisms f•S → T and f• : T → S

in Ω. Let pr : S → G/G be the projection onto a point. Then we have in
particular the morphisms of U -modules

ΘS = Mpr• : M →MS , ΘS = Mpr• : MS →M.
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The U -module M is called S-injective (S-projective) if ΘS : M → MS

(ΘS : MS →M) is a split injective (split surjective) morphism of U -modules.
We explain the meaning of these terms.

(8.5.1) Theorem. The following assertions about M are equivalent:
(1) M is S-injective.
(2) M is S-projective.
(3) M is a direct summand of MS.

Proof. Proof. (1), (2) ⇒ (3). This is a direct consequence of the definitions.
(3)⇒ (1). By assumption, we have morphisms Θ: M →MS and Ψ: MS →

M such that ΨΘ = id. We have to find a morphism ΨS : MS → M such that
ΨSΘS = id. We define ΨS(T ) by the following commutative diagram

M(T )
pr∗=ΘS(T ) //

Θ(T )

��

M(S × T )
ΨS(T ) //

Θ(S×T )

��

M(T )

M(S × T )
(idS × pr)∗ // M(S × S × T )

(dS×id)∗ // M(S × T ).

Ψ(T )

OO

The left square commutes, since Θ is a natural transformation. We have
(idS ×pr)(dS × id) = id, so that the bottom composition is the identity. Since
Ψ(T )Θ(T ) = id, we conclude ΨS(T )ΘS(T ) = id.

Claim: the ΨS(T ) constitute a morphism of U -modules. This is seen as
follows. Firstly, Ψ is a morphisms. Secondly; MS×S → MS , induced by dS ,
is a morphism. Thirdly, if Θ: M → N is a morphism, then for each S the
Θ: M(S×?)→ N(S×?) constitute a morphism.

(2) ⇒ (1). This is proved by a similar reasoning. 2

Let S be a finite G-set. We set S0 = G/G and Sk =
∏k−1

i=0 for k ≥ 1. We
have the projection pri : Sk+1 → Sk which omits the i-th factor (0 ≤ i ≤ k).
For each U -module M we have the two chain complexes

0→M(S0) d0

−→M(S1) d1

−→M(S2) d2

−→ . . .

0←M(S0) d0←−M(S1) d1←−M(S2) d2←− . . .

with differentials

dk =
k∑

i=0

(−1)ip∗i , dk =
k∑

i=0

(−1)ipi∗.

They are called Amitsur complexes.

(8.5.2) Theorem. Let M be a U -module. Then:
(1) For each S the U -module MS is S-injective and S-projective.
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(2) If M is S-injective, then the complexes ?? and ?? are acyclic.

Proof. (1) We have to construct a splitting of ΘS : MS → (MS)S in order to
exhibit MS as S-injective. But ΘS equals

pr∗23 : M(S × T )→M(S × S × T ),

and a splitting is given by

(dS × id)∗ : M(S × S × T )→M(S × T ).

Similarly ΘS = pr23∗ and a splitting is given by (dS × id)∗.
(2) Let Ψ be a splitting of Θs. We construct a chain contraction for ??. A

null homotopy of the identity consists of homomorphisms sk+1 : M(Sk+1) →
M(Sk) which satisfy sk+1dk + dk−1sk = id for k ≥ 0. We set

sk+1 = Ψ(Sk) : M(S × Sk)→M(Sk).

Since Ψ is a natural transformation, the diagrams (0 ≤ i ≤ k − 1)

M(S × Sk) sk+1
// M(Sk)

M(S × Sk−1 sk
//

p∗i+1

OO

M(Sk−1)

p∗i

OO

are commutative. Therefore

sk+1dk + dk−1sk = sk+1 ◦ (
k∑

i=0

(−1)ip∗i ) + (
k−1∑
i=0

(−1)ip∗i ) ◦ sk = sk+1 ◦ p∗0,

and this is the identity, since Ψ is a splitting of ΘS .
Since M is S-injective it is also S-projective. Let Γ be a splitting of ΘS .

Then the maps
sk = Γ(Sk) : M(Sk)→M(S × Sk)

are a chain contraction of the complex ??. 2

(8.5.3) Example. We explain the meaning of the terms S-injective and S-
projective. Suppose M is S-injective. We decompose S into orbits S =∐

j G/H(j). Then M(S) =
∏

j M(G/H(j)), and p∗ : M(G/G) → M(S) con-
sists of the restriction maps resG

H(j) : M(G/G)→M(G/H(j)). The injectivity
of p∗ thus says that elements of M(G/G) are detected by restriction to the
subgroups H(j).

The exactness of the sequence

0→M(G/G)
p∗ // M(S)

pr∗1 − pr∗2 // M(S × S)



146 8 Mackey Functors: Finite Groups

says that we can also characterize the image as a difference kernel. The orbits
of S × S have the form

G/K, K = H(i) ∩ gH(j)g−1.

An element (xj) ∈
∏

j M(H(j)) is contained in the difference kernel if and only

if for each pair (i, j) and each g ∈ G the images of xi under resH(i)
H(i)∩gH(j)g−1

and of xj under M(cg) resH(j)
H(j)∩g−1H(i)g coincide. This coincidence is necessary

by the functor property of M . In particular, the Weyl group WH(j) acts on
M(G/H(j)), and the restriction from M(G/G) to M(G/H(j)) is contained in
the invariants under this action. For this reason, we sometimes call the whole
difference kernel the subgroup of invariant elements.

The difference kernel can be interpreted as an inverse limit. For this purpose
we use the category C/S of homogeneous set G/K over S. Then the projection
maps M(G/G)→M(G/K) yield a map into the inverse limit of the M(G/K)
over C/S. The exactness of the sequence above says that this map

M(G/G)→ lim
C/S

M(G/K)

is an isomorphism.
There are dual results for S-projective M . In this case each element in

M(G/G) is a sum of elements induced from M(G/H(j)) and the kernel of the
induction map p∗ : M(S)→M(G/G) is a difference cokernel alias colimit. 3

The Amitsur complexes can be generalized as follows. Let X and Y be
finite G-set. We set

a(X,Y ) = Y, ar(X,Y ) = X × ar−1(X,Y ) = Xr × Y.

We have morphism

dr
i : ar(X,Y )→ ar−1(X,Y ), 0 ≤ i < r

as follows

dr
0 : X × ar−1(X,Y )→ ar−1(X,Y ), projection

dr
i = idX ×dr−1

i−1 , i > 0.

Previously we considered the case that Y is a point. In an additive category
we can form the chain complex a∗(X,Y ) with differential

∂r =
r−1∑
i=0

(−1)idr
i .

There are also contravariant versions.



Chapter 9

Induction Categories: An
Axiomatic Setting

9.1 Induction categories

We begin with an axiomatic setup. Let C be a category with a set of isomor-
phism classes of objects. Let R be a commutative ring. An R-category is a
category where the set of morphisms Hom(A,B) between any two objects A,B
carries the structure of a left R-module and where composition

Hom(B,C)×Hom(A,B)→ Hom(A,C), (g, f) 7→ g ◦ f

is bilinear. An R-functor F : C → D between R-categories is a functor which
is R-linear on the morphism modules F : Hom(A,B) → Hom(FA,FB). We
denote by R-Mod the R-category of left R-modules.

We consider diagrams in C

(β|α) : A α←− X β−→ B.

The diagram (β|α) is isomorphic to the diagram

(β′|α′) : A α′

←− X ′ β′−→ B

if there exists an isomorphism σ : X → X ′ in C such that α′σ = α, β′σ = β. If
C has products, then a diagram (β|α) corresponds to a morphism X → B×A,
and isomorphism of diagrams corresponds to isomorphism of objects in the
category of objects over B ×A.

(9.1.1) Induction categories. An induction category IC for C is an R-
category with the following properties:
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(1) Ob(C) = Ob(IC).
(2) For A,B ∈ Ob(C) the morphism set IC(A,B) is the free R-module on

the set of isomorphism classes of diagrams in C

(β|α) : A α←− X β−→ B.

(3) The following rules hold for the composition in IC:

(α| id)◦(β| id) = (αβ| id), (id |γ)◦(id |δ) = (id |δγ), (β|α) = (β| id)◦(id |α).

(4) Suppose (id |α) ◦ (β| id) =
∑

s ns(αs|βs) with ns ∈ R. Then for each s
the equality ααs = ββs holds.

If the assignment (α|β) 7→ (β|α) extends to an R-functor D from IC into the
dual category ICop we call IC an induction category with self-duality. 3

For the moment the ground ring R will be fixed and is therefore not recorded
in the notation of the category. We discuss the axioms.

(9.1.2) The assignment α 7→ (α| id) is a covariant functor ι∗ : C → IC which
is the identity on objects. 3

(9.1.3) The assignment β 7→ (id |β) is a contravariant functor ι∗ : C → IC
which is the identity on objects. 3

(9.1.4) From (9.7.2) and associativity of composition we obtain the rules

(α| id) ◦ (β|γ) = (αβ|γ), (β|γ) ◦ (id |δ) = (β|δγ).

The identity of A in IC is represented by (idA | idA); this follows from (9.7.2).
Diagrams (α| id) and (α′| id) are isomorphic if and only if α = α′. Therefore ι∗
is an embedding of C. We identify C via ι∗ with a subcategory of IC. Similarly,
ι∗ yields an embedding of the dual category Cop into IC. Since, by (9.7.2),
(β| id) ◦ (id |α) = (β|α), we see that the images of ι∗ and ι∗ span IC. We call
β the covariant and α the contravariant component of (β|α). 3

For an isomorphisms σ in C we record the following special relations

(β|α) = (βσ|ασ)
(σ| id) = (id |σ)−1

(id |β) ◦ (σ| id) = (id |σ−1β)
(id |σ) ◦ (α| id) = (σ−1α| id).

Proof. The first one stems from the isomorphism definition of diagrams and
the second one is a special case of the first one. The third and fourth one are
a consequence of the second and axiom (9.7.2ass1.3). 2
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We display an identity of the type

(id |α) ◦ (β| id) =
∑
s
ns(αs|βs) =

∑
s
ns(αs| id) ◦ (id |βs)

in the form of a diagram ∑
s nsZs

αs //

βs

��

A

α

��
B

β // X

and think of it as a replacement for a pullback diagram of (β, α). The identity
(??) then says that both compositions from B to A yield the same result; here
we have to read the vertical morphisms as morphisms in the dual category.
In the sequel we refer to this diagram as a pullback and call (ns, Zs, βs, αs)
the pull back data of (β, α). The transitivity of pullbacks is implicitly
contained in the associativity of composition in a category, if applied to (id |α)◦
(β| id) ◦ (β′| id). Explicitly, it amounts to the following: Let

∑
tmstYst

βst //

β
′
st

��

Zs

βs

��
B

′ β
′

// B

be the pullback data for (β
′
, βs); in the summation, the index t runs through

some set I(s). Then the diagram

∑
s,t nsmstYst

αsβst //

β
′
st

��

A

α

��
B

′ ββ
′

// X

displays the pullback data for (ββ
′
, α). In fact, these relations are the basic

ones:

(9.1.5) Proposition. Suppose for each pair α : A → X and β : B → X a
composition

(1|α) ◦ (β|1) =
∑
s
ns(αs|βs)

with ns ∈ R and ααs = ββs is given such that for each isomorphism σ

(1|σ) ◦ (β|1) = (σ−1β|1), (1|α) ◦ (σ|1) = (1|σ−1α)
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and such that

((1|α1) ◦ (1|α2)) ◦ (β|1) = (1|α1) ◦ ((1|α2) ◦ (β|1))
(1|α) ◦ ((β1|1) ◦ (β|1)) = ((1α) ◦ (β1|1)) ◦ (β2|1)

whenever these expressions make sense. Then

(α1|α) ◦ (β|β1) =
∑
s
ns(α1αs|β1βs)

is a well-defined associative composition and thus yields the structure of an
induction category IC. 2

We can also specify the preceding proposition in terms of coefficient matri-
ces.

(9.1.6) Proposition. Write the composition in the form

(1|a)(b|1) =
∑

(c,d)

λa,b
c,d(c|d)

where the sum is taken over pairs of morphisms (c, d) such that ac = bd. Then
these data define an induction category if and only if the following holds:

λm,ab
cd,n =

∑
w
λm,a

c,w λ
w,b
d,n

λab,m
n,cd =

∑
w
λb,w

n,dλ
a,m
w,c

Let s, t be isomorphisms. Then

λa,b
cs,ds = λa,b

c,d

λs,b
s−1b,1 = 1 = λa,t

1,at−1

and λs,b
m,d = 0 = λa,t

c,n if c and d are not isomorphisms. 2

Suppose the induction category has a self-duality D. Then we obtain: Sup-
pose (id |α) ◦ (β| id) =

∑
s ns(αs|βs). Then (id |β) ◦ (α| id) =

∑
s ns(βs|αs).

The commutativity (??) implies that the diagram (??) is equivalent to the
diagram ∑

s nsZs
βs //

αs

��

B

β

��
Aα // X.
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9.2 Pullback Categories

Let C be a category and let C1, C2 be subcategories. The three categories have
the same objects. We assume that the isomorphisms of C are contained in Cj .
The diagrams

(b|a) : A a←− X b−→ B

with a ∈ C1 and b ∈ C2 are the objects of a category C|(A,B). The morphisms
(b|a) → (b′|a′) are the morphisms σ ∈ C such that a′σ = a and b′σ = b.
We assume that C has (strictly transitive functorial) pullbacks such that in a
pullback

Z
b̃ //

ã

��

A

a

��
B

b // X

with b ∈ C2 and a ∈ C1 the morphisms ã ∈ C1 and b̃ ∈ C2. We define a category
PC = P (C;C1, C2) with the same objects as C. The class of diagrams (b|a) as
above is the class MorPC(A,B). Composition is defined as

(c|d) ◦ (a|b) = (ac̃|db̃)

where in the diagram

Z
b̃ //

c̃

��

Y
d //

c

��

C

X
b //

a

��

B

A

the square is a pullback. By assumption (??) this is again an allowable diagram.
This category structure and the category structure on the diagrams induce on
PC the structure of a 2-category. It is called a pullback category.

In most cases the vertical structure of the 2-category is not relevant. In
that case we define P1(C;C1, C2). The morphisms from A to B are the isomor-
phism classes of diagrams above. Composition is again defined by the pullback
construction, but one can now dispense with the strict transitivity of pullbacks.

9.3 Mackey Functors

Let C be a category with induction category IC. A Mackey functor an IC is
a contravariant R-functor from IC into R-Mod. A morphism between Mackey
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functors is a natural transformation. Let M(IC) denote the R-category of
Mackey functors on IC.

A bifunctor M = (M∗,M∗) on C with values in the category A consists of
a covariant functor M∗ and a contravariant functor M∗ from C into A which
have the same value on objects. A bifunctor is called compatible with iso-
morphisms if for each isomorphism α the relation M∗(α)M∗(α) = id holds.
A morphism M → N between bifunctors consists of a family of linear maps
M(S) → N(S), S ∈ Ob(C), which constitute a natural transformation of the
covariant and the contravariant part. We thus obtain the category of bifunc-
tors.

A Mackey functor M is completely determined by the bifunctor (M∗ =
Mι∗,M∗ = Mι∗). This is due to the fact that the images of ι∗ and ι∗ span
IC. By ??, the bifunctor of a Mackey functor is compatible with isomorphisms.
Let f : S → T be a morphism in C. We write f∗ = Mι∗(f) and f∗ = Mι∗(f).
The upper index is for contravariant morphisms as in cohomology. Morphisms
f∗ are sometimes called restriction maps, morphisms f∗ transfer maps or
induction maps. This terminology comes from representation theory.

An example of a Mackey functor is the contravariant Hom-functor in IC.

(9.3.1) Proposition. Let M be a Mackey functor and (M∗,M
∗) the asso-

ciated bifunctor. Then this bifunctor is compatible with isomorphisms. If
(id |α)(β| id) =

∑
s ns(αs|βs) in IC, then

β∗α∗ =
∑

s

ns(βs)∗α∗s

for any two morphisms α : A → X and β : B → X in C. We sometimes call
(??) the double coset formula. 2

(9.3.2) Proposition. Let (M∗,M
∗) be a bifunctor which is compatible with

morphisms and satisfies ?? for each pair of morphisms. Then there exists a
unique Mackey functor M with associated bifunctor (M∗,M

∗).

Proof. We define M(β|α) = α∗β
∗. Since the bifunctor is compatible with

isomorphisms, this is well-defined on isomorphism classes of diagrams. We
extend this definition by R-linearity to the morphism modules of IC. The
double coset formula is used to verify that M is compatible with composition.

2

Let M , N , and L be Mackey functors for IC. A bilinear map or a pairing
M ×N → L between Mackey functors is a family of R-bilinear maps

M(S)×N(S)→ L(S), (x, y) 7→ x · y,
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one for each object S of C, such that for each morphism f : S → T in C the
following holds:

L∗f(x · y) = (M∗fx) · (N∗fy), x ∈M(T ), y ∈ N(T )
x · (N∗fy) = L∗f((M∗fx) · y), x ∈M(T ), y ∈ N(S)
(M∗fx) · y = L∗f(x · (N∗fy)), x ∈M(S), y ∈ N(T ).

A universal bilinear map M × N → M2N is called a tensor product (or,
because of the notation, a box product) of M,N . (Universal means, of course,
that any other pairing M × N → L is obtained from the universal one by
composing with a unique morphism M2N → L.)

In order to establish the canonical associativity of the box product we define
a trilinear map M × N × P → Q between Mackey functors as a family of
trilinear map

M(S)×N(S)× P (S)→ Q(S), (x, y, z) 7→ x · y · z

such that
f∗(x · y · z) = f∗x · f∗y · f∗z

and
f∗(f∗x · f∗y · z) = x · y · f∗z

and similarly if the two contravariant maps appear at other places. In the same
way one defines n-linear maps between Mackey functors.

A Green functor A is a Mackey functor A : IC → R- Mod together with
a pairing A × A → A such that for each object S the pairing map A(S) ×
A(S)→ A(S) turns A(S) into an associative R-algebra with unit such that the
morphisms A∗(f) preserve the units.

A left module over the Green functor A is a Mackey functor M together
with a pairing A × M → M such that for each object S the pairing map
A(S) ×M(S) → M(S) equips M(S) with the structure of a left unital A(S)-
module.

9.4 Canonical Pairings

We fix a category C and an associated induction category IC. For S ∈ C let
U(S) be the free abelian group on isomorphism classes of objects α : X → S
over S. We denote by [α] ∈ U(S) the element represented by α. We make
the assignment S 7→ U(S) into a Mackey functor. Let f : S → T in C be
given. Then f∗ : U(S) → U(T ) is defined as composition with f ; functoriality
(gf)∗ = g∗f∗ is obvious. Suppose (id |f)◦(α| id) =

∑
s ns(fs|αs); then we define

f∗[α] =
∑

s ns[fs]. The functoriality (gf)∗ = f∗g∗ is a direct consequence of
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the transitivity of pullbacks. Thus we have defined a bifunctor. The double
coset formula is again a direct consequence of the transitivity of pullbacks.
By ?? we have a Mackey functor U . The following results show its universal
character.

(9.4.1) Proposition. Let M be any Mackey functor. There exists a canonical
pairing U ×M → M . If u = [f : X → S] ∈ U(S) and x ∈ M(S), then u · x is
defined as f∗f∗x.

Proof. We have to verify the axioms of a pairing. Let h : S → T in C be given.
Then

h∗(u · h∗x) = h∗f∗f
∗h∗x = h∗u · x

since h∗u = [hf ]. Let ∑
s nsZs

hs //

fs

��

S

h

��
X

f // T

be the pullback data in IC. Then h∗u =
∑
ns[hs] and therefore

h∗(h∗u · x) =
∑

s

nsh∗hs∗h
∗
sx =

∑
s
nsf∗fs∗h

∗
sx = f∗f

∗h∗x = u · h∗x.

The computation

h∗(u · x) = h∗f∗f
∗x =

∑
s
nshs∗f

∗
s f

∗x =
∑

s nshs∗h
∗
sh
∗x = h∗u · h∗x

shows the second axiom of a pairing. 2

(9.4.2) Proposition. The pairing of the previous proposition, applied to M =
U , makes U into a Green functor and M into a left U -module.

Proof. The relation 1·x = x·1 = x is easily seen. We have to verify associativity
of the multiplication. Let u : X → S and v : Y → S be given. On the one hand
u · (v · x) = f∗f

∗g∗g
∗x. On the other hand

(u · v) · x =
∑

t

mt(fft)∗(ggt)∗x =
∑

t

f∗ft∗g
∗
t g
∗x = f∗f

∗g∗g
∗x.

Here we have used the pullback data mt, ft, gt of f, g.
The same proof shows that M is a U -module. 2

The multiplication in U(S) has the following description. Suppose (id |α) ◦
(β| id) =

∑
s ns(αs|βs). Then [α][β] =

∑
s ns[ααs] =

∑
s ns[ββs] (compare

axiom ?? of an induction category). The identity is represented by idS . The
next proposition is easily verified from the definitions.
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(9.4.3) Proposition. The ring U(S) is canonically isomorphic to a subring
of the endomorphism ring EndIC(S), namely as the subring generated by mor-
phisms of the type (α|α) under the map α 7→ (α|α). 2

(9.4.4) Proposition. The pairings Σ: U ×M → N correspond bijectively to
the morphisms σ : M → N of Mackey functors.

Proof. Given a morphism σ, we obtain a pairing U ×M → N by composing
the canonical pairing Λ: U ×M →M of (??) with σ.

Given a pairing Σ: U ×M → N we define

σΣ(S) : M(S)→ N(S), x 7→ 1 · x.

From the axioms of a pairing it is verified that the σ(S) constitute a morphism
of Mackey functors.

The two constructions are inverse to each other. 2

(9.4.5) Proposition. Let A be a Green functor. The morphisms

λ(S) : U(S)→ A(S), [f ] 7→ f∗f
∗(1S)

are ring homomorphisms and constitute a morphism of Mackey functors.

Proof. Let ns, fs, gs be the pullback data for f, g. We compute

λ(S)([f ][g]) = λ(S)(
∑

s

ns[ffs])

=
∑

s

nsf∗fs∗g
∗
sg
∗(1S)

= f∗f
∗g∗g

∗(1S)
= f∗f

∗λ(S)(1s)
= (f∗f∗)(1 · λ(S)(g))
= f∗(f∗1 · f∗λ(S)(g))
= f∗f

∗1 · λ(S)(g)
= λ(S)(f) · λ(S)(g).

Moreover λ(S)(1) = id∗ id∗(1) = 1. The following two computations verify the
compatibility with morphisms. Let h : T → S be given, and let (mt, ft, ht)
denote the pullback data for (f, h). The contravariant case

λ(T )(h∗[f ]) = λ(T )(
∑

t

mt[ht])

=
∑

t

mtht∗h
∗
t 1T =

∑
t

mtht∗h
∗
th
∗1S

=
∑

t

mtht∗f
∗
s f

∗1S =
∑

t

h∗f∗f
∗1S

= h∗λ(S)[f ].
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And finally

λ(T )(k∗[f ]) = λ(T )([kf ]) = k∗f∗f
∗k∗1T = k∗f∗f

∗1S = h∗λ(S)[f ]

settles the covariant case. 2

9.5 The Projective Induction Theorem

Let C be a category and IC an associated induction category. We call any
family Σ = (Sj | j ∈ J) of objects an induction system. We assume that
C ccontains a point P . This is a terminal object: Each object S of C has a
unique morphism p(S) : S → P .

Let M be a Mackey functor. An induction system Σ leads to a homo-
morphism p(Σ), called induction morphism, and i(Σ), called restriction
morphism:

p(Σ):
⊕
j∈J

M(Sj)→M(P ), (xj | j ∈ J) 7→
∑
j∈J

p(Sj)∗xj

i(Σ): M(P )→
∏

j∈J

M(Sj), x 7→ (p(Sj)∗x | j ∈ J).

We call the induction system Σ projective, if p(Σ) is surjective, and injective,
if i(Σ) is injective. Suppose S, T ∈ Ob(C). The corresponding pullback will be
denoted

∑
s ns(S, T )Zs

bs(S,T ) //

as(S,T )

��

T

p(T )

��
S

p(S) // P

with s ∈ I(S, T ). Let Σ = (Sj | j ∈ J) be an induction system. We have
morphisms

p(Σ, T ) :
⊕
j,s

M(Zs)→M(T ), (x(j, s)) 7→
∑
j,s

ns(S, T )bs(S, T )∗x(j, s)

i(Σ, T ) : M(T )→
⊕
j,s

M(Zs), x 7→ (as(S, T )∗x | j, s).

The sums are double sums and s ∈ I(Sj , T ).

(9.5.1) Theorem. Let A be a Green functor and M a left A-module. Let Σ
be a projective induction system for A. Then p(Σ, T ) is split surjective and
i(Σ, T ) is split injective.
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Proof. Since p(Σ) is surjective for A, we can find xj ∈ A(Sj) such that∑
j∈J

p(Sj)∗xj = 1 ∈ A(P ).

Of course, the sum is essentially finite, so that we can assume without essential
restriction, that J is finite. We define a map

q(Σ, T ) : M(T )→
⊕
j,s

M(Zs), x 7→ (a∗sxj · b∗sx | j, s).

Here a∗sxj ∈ A(Zs), b∗sx ∈M(Zs) and the dot denotes the pairing A×M →M .
We claim

p(Σ, T ) ◦ q(Σ, T ) = idM(T ) .

For the proof we use the basic identity∑
s∈I(Sj ,T )

nsbs∗a
∗
s = p(T )∗p(Sj)∗,

valid for any Mackey functor, and the properties of a pairing.

p(Σ, T )q(Σ, T )x =
∑
j,s

nsbs∗(a
∗
sxj · b∗sx)

=
∑
j,s

nsbs∗a
∗
sxj · x

=
∑
j

p(T )∗p(Sj)∗xj · x

= p(T )∗(
∑
j

p(Sj)∗xj) · x

= p(T )∗1 · x
= x.

Thus q(Σ, T ) is a splitting for p(Σ, T ).
A splitting j(Σ, T ) for i(Σ, T ) is defined in a dual fashion

j(Σ, T ) :
⊕
j,s

M(Zs)→M(T ), x(j, s) 7→
∑
j,s

nsbs∗(a∗sxj · b∗sx(j, s)).

A similar proof as above yields the identity j(Σ, T )i(Σ, T ) = idM(T ). 2

An induction theorem for a Mackey functor consists in the determination
of a projective induction system. The significance of (??) is that a projective
induction system for A is also a projective induction system for any A-module.
Since A is a module over itself, a projective system for A is also an injective
system for A.

We remark that the image of p(Σ) in A(P ) is always an ideal. This is a
general property of Green functors (see ??). Therefore p(Σ) is surjective if and
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only if 1 is in the image of p(Σ). If this is the case, then a finite subfamily of
Σ suffices. Therefore, if A has a projective system, then also a finite one.

It is not really necessary that the category has a point. Let P be any object
of C. We can consider the category C/P of objects over P . This inherits an
induction category IC/P from IC. More explicitly: An induction system for P
consists in a family of morphisms (p(Sj) : Sj → P | j ∈ J). All that matters
in the previous proof is another morphism p(T ) : T → P . Note that C/P now
has a terminal object idP .

The induction theorem (??) has a second part. In it we describe the kernel
of p(Σ) and the image of i(Σ). Let M be a A-module and Σ = (Sj | j ∈ J)
a projective induction system for A. We write I(i, j) = I(Si, Sj). In a sum
over i, j, s we understand s ∈ I(i, j); similarly, in a sum over j, s. We have two
homomorphisms

p1, p2 :
⊕
i,j,s

M(Zs)→
⊕
k∈J

M(Sk)

defined by
p1(x(i, j, s)) = (

∑
j,s

nsas∗x(i, j, s) | i ∈ J)

p2(x(i, j, s)) = (
∑
i,s

nsbs∗x(i, j, s) | j ∈ J).

(9.5.2) Theorem. The sequence⊕
i,j,s

M(Zs) -
p2 − p1 ⊕

k

M(Sk) -
p(Σ)

M(P )→ 0

is exact.

Proof. We use (??) and the notation of its proof. We know already that p =
p(Σ) is surjective. In this case a splitting is given by q(Σ, P ) = q, defined as
q(z) = (xj · p(Sj)∗z | j ∈ J). We construct a homomorphism q1 which satisfies

(p2 − p1)q1 + qp = id .

This identity yields that the kernel of p(Σ) is contained in the image of p2, p1.
Since, by construction, p(p2 − p1) = 0, we have exactness. We define q1 as the
direct sum

⊕
k q(Σ, Sk). Note that p2 is defined as

⊕
k p(Σ, Sk). Hence, by

the proof of (??), p2q1 = id. Thus it remains to verify p1q1 = qp. This is a
computation as in the proof of the previous theorem. 2

We also have a dual exact sequence. Its statement uses the following ho-
momorphisms

i1, i2 :
⊕
k

M(Sk)→
⊕
i,j,s

M(Zs)

defined as

i1(zk) = (nsbs(i, k)∗zk | i, s), i2(zi) = (nsas(i, k)∗zi | k, s).
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(9.5.3) Theorem. The sequence

0→M(P ) -
i(Σ) ⊕

k

M(Sk) -i1 − i2 ⊕
i,j,s

M(Zs)

is exact.

Proof. We already know that i is injective and has a splitting j. Dually to the
previous proof we construct a homomorphism j1 which satisfies the identity
ij + j1(i1 − i2) = id. 2

9.6 The n-universal Groups

We generalize the universal functor U to a functor in n variables.
Let S1, . . . , Sn be objects of C. We consider the category C/(S1, . . . , Sn) of

objects (aj : X → Sj) over the family (Sj). A morphism from (X, aj) to (Y, bj)
is a morphism f : X → Y such that bjf = aj for all j. Let U(S1, . . . , Sn) denote
the free abelian group on the isomorphism classes of objects in C/(S1, . . . , Sn).
Up to canonical isomorphism, this group is invariant under permutation of
the Sj . We make this construction into an n-variable functor in IC, given
on objects by (S1, . . . , Sn) 7→ U(S1, . . . , Sn). Fix the first variable. Suppose
f : S → T in C is given. Then f∗ : U(S, Sj)→ U(T, Sj) is given by composition
with f in the first component. We clearly have f∗g∗ = (fg)∗. In order to define
f∗ : U(T, Sj)→ U(S, Sj) we consider the pullback

S

f

��

∑
s nsZs

fsoo

bs

��
T X

boo aj // Sj

and set
f∗(b, aj) =

∑
s
ns(fs, ajbs).

The relation (fg)∗ = g∗f∗ follows from the transitivity of the pullback. In
general we define (β|α)∗ = α∗β

∗. In order to see that this assignment defines
a contravariant R-functor on IC and that these functors in different variables
commute, one uses the transitivity of pullbacks.

The n-universal groups allow a characterization of pairings and n-linear
maps. Suppose P (S) ⊗ Q(S) → R(S), x ⊗ y → x · y is a pairing. For objects
S1, S2, S3 in C we define a homomorphism

π(S1, S2, S3) : U(S1, S2, S3)→ Hom(P (S1)⊗Q(S2), R(S3)),
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which maps the basis element (y1, y2, y3) of U(S1, S2, S3) to

x1 ⊗ x2 7→ y3∗(y∗1x1 · y∗2x2).

(9.6.1) Proposition. The homomorphisms π(S1, S2, S3) form a natural trans-
formation of functors on IC in three variables.

Proof. In order to read the proposition correctly, we have to interprete the
variance of the functor in an appropriate manner. When we use the bifunctor
language this means: Let f3 : S3 → S′3 be a morphism in C. It induces f3∗
and f∗3 in the third variable of U . Similarly, it induces homomorphisms when
R is applied and then the Hom-functor. In the first and second variable we
have to compare f∗ with the Hom-maps induced by f∗. The compatibility of
the π-morphisms with the f∗ on the left follows directly from the definitions.
The compatibility with the f∗ uses the pairing axioms and the double coset
formula. 2

Conversely, we can characterize pairings by natural transformations. Let a
natural transformation π(S1, S2, S3) as above be given. Let

πS : P (S)⊗Q(S)→ R(S), x⊗ y 7→ x · y

denote the homomorphism which is the image of (id, id, id) ∈ U(S, S, S).

(9.6.2) Proposition. The πS form a pairing P ×Q→ R of Mackey functors.
2

Via (??) and (??) we obtain a bijection between pairings and natural trans-
formations. We have a similar situation for n-linear maps P1 × · · · × Pn → L.
They correspond to natural transformations

U(S1, . . . , Sn+1)→ Hom(P1(S1)⊗ · · · ⊗ Pn(Sn), L(Sn+1)).

9.7 Tensor Products

In this section we make the category of Mackey functors into a symmetric
tensor category1. We begin with the construction of the box-product.

Suppose M1, . . . ,Mn are Mackey functors. We consider U(S1, . . . , Sn, T ) as
a covariant functor in the Sj by using the self duality of IC. We form the tensor
product N of this covariant functor over (IC)n with the contravariant functor
(Sj) 7→M(S1)⊗ · · · ⊗M(Sn). This is, by construction, a Mackey functor. We
show that it gives the universal n-linear map.

1Also called symmetric monoidal category.
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Let M1×· · ·×Mn → L be an n-linear map between Mackey functors. Note
that N(T ) can be defined as a quotient of

Ñ(T ) =
⊕
(Sj)

U(Sj , T )⊗M1(S1)⊗ · · · ⊗Mn(Sn).

Let (aj , b) ∈ U(Sj , Z) denote a basis element. We map (aj , b)⊗x1⊗· · ·⊗xn to
b∗(a∗1x1 · . . . ·a∗nxn) ∈ L(T ). Here the dots refer to the given n-linear morphism.
One verifies

(9.7.1) Proposition. The linear maps Ñ(T )→ L(T ) factor over the quotient
N(T ) and the resulting maps N(T )→ L(T ) constitute a morphism of Mackey
functors. 2

We have seen in the previous section that the pairing M1 × · · · ×Mn → L
corresponds to a natural transformation. When we take the adjoint of
π(S1, . . . , Sn) we obtain a homomorphism

U(Sj , T )⊗M1(S1)⊗ · · · ⊗Mn(Sn)→ L(T ).

The set of these homomorphisms yields the homomorphisms Ñ(T ) → L(T )
above; and the fact that the π(Sj) form a natural transformation is equivalent
to the fact (??) that these homomorphisms factor over N(T ).

(9.7.2) Proposition. The canonical maps

M1(S)⊗ · · · ⊗Mn(S)→ U(S, S, . . . , S)⊗M1(S)⊗ · · · ⊗Mn(S)→ N(S)

which send x1 ⊗ · · · ⊗ xn to the class of (id, . . . , id) ⊗ x1 ⊗ · · · ⊗ xn form an
n-linear morphism. This is a universal such morphism. 2

The last proposition says that N is an n-fold box-product M12 · · ·2Mn.
One verifies that the two canonical maps of M(S) ⊗ N(S) ⊗ P (S) into
((M2N)2P )(S) and (M2(N2P ))(S) are both universal trilinear maps. This
gives the canonical isomorphism (M2N)2P ∼= M2(N2P ) which satisfies the
pentagon axiom for tensor categories.

The functor U is a neutral element for this tensor product. This follows
from ?? and ??.

The symmetric pairing in this tensor category is simply given by the canon-
ical morphism τ : M2N → N2M which makes the diagrams

M(S)⊗N(S)
τ(S) //

��

N(S)⊗M(S)

��
M2N

τ // N2M

with the twist maps τ(S)(x⊗ y) = y⊗x commutative. One verifies the axioms
of a braiding.
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Problems

1. Here is a slightly more elementary construction of the tensor product (= box-
product). The tensor product of Mackey functors M and N is constructed as follows.
Let R(S, T ) denote the free R-module om the set of morphisms S → T in C. The
group (M2N)(T ) is a quotient of

L
S R(S, T )⊗M(S)⊗N(S) (tensor products always

over R): We factor out the submodule generated by the elements

gh⊗ h∗z ⊗ y − g ⊗ z ⊗ h∗y, g ∈ R(S, T ), h ∈ R(U, S), z ∈M(S), y ∈ N(U)

g ⊗ h∗z ⊗ y − gh⊗ z ⊗ h∗y, g ∈ R(U, T ), h ∈ R(S, U), z ∈M(S), y ∈ N(U).

This becomes a covariant functor in T from the covariant Hom-functor R(S, -). In

order to make it into a contravariant functor, let ϕ : Z → U be given. Suppose

〈ϕ, h 〉 =
P
t nt(αt, βt). Then ϕ∗ maps h ⊗ a ⊗ b ∈ R(S, T ) ⊗ M(S) ⊗ N(S) toP

t ntαt⊗β∗t a⊗β∗t b. It is shown with the transitivity relation (4) of the double coset

decomposition that this is compatible with the equivalence relation. The same rule

is used to show functoriality and the double coset formula, so that we have obtained

a Mackey functor.

9.8 Internal Hom-Functors

An internal Hom-functor for the category of Mackey functors in IC assigns to
each pair P,Q of Mackey functors another Mackey functor HOM(P,Q) which
is right adjoint to the box product

HomIC(N2P,Q) ∼= HomIC(N,HOM(P,Q)).

Given P,Q we let

Λ(T ) = NatS1,S2(U(S1, S2, T ),HomR(P (S1), Q(S2))

denote the R-module of natural transformations of Mackey functors in the
variables S1, S2. These modules form a Mackey functor in the variable T . We
call this Mackey functor HOM(P,Q). In order to establish the adjunction (??)
we take another Mackey functor N and consider a natural transformations
N → Λ. By adjunction, the natural transformation consists of a family of
homomorphisms

N(T )⊗ U(S1, S2, T )⊗ P (S1)→ Q(S2)

with properties which ensure a factorization over a natural transformation
N2P → Q. This assignment is the starting point for the construction of
(??). A formal consequence of (??) is the formal adjunction

HOM(N2P,Q) ∼= HOM(N,HOM(P,Q)).
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