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COHOMOLOGY OPERATIONS, AND OBSTRUCTIONS

*
TO EXTENDING CONTINUCUS FUNCTIONS.

by N. E. Steenrod

£1. Introfuction.

The class of problems known as extension problems is central %o nearly all
of topology. Many of the basic theorems of topology, and some of its most sﬁc»
cesaful applicstions in"sthér sreas of mathematics are sclutions of ?ar%iaular
extension problems. .ﬁhe deepest results of this kind nave been cbtained by the
methaﬁrcf algebraic topoiogyg The egsence of the metha&-is a egnversi@n of the
geometric problem ioto an elgebraic problem which is sufficlently complex o
embody the essential féatareﬁ of the geometric problem, yeit aufficianﬁly aimplé
4o be solvsble by standard slgebralc methods. Many extensioﬁ problems remain
unsolved, and much of the current development of slgebralc topology is insgir@é
by the hope of finding a truly gene?&& solution.

To place#my contribution to these §e¥ezepment5 in its proper setting, I
will begin with e discussion af the extension ?rahlemg and the nethods of finding

solutions in speclal cases,.

82, fThe extension problem,

Tet ¥ and Y be topologliesl spacss.  Let A be e closed subset of X,
and let h: A —3> ¥ be & mepping, i.e. & continuous function from & to ¥.
A wapping f: X —> ¥ is called an extension of h if £{x) = h{x) for esch

£ & A. The inclusion mapping g: & —> X 18 defined by glx) = x for x g 4.

% z
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Then the condition that T be an extenslon can be restated: b is the compesition

fg of f and g.

X

% i =
?ﬁx 5\ fg =h.
bY

A ——> X

When X,¥,A and h are given, we have an extension problem: Does an

extension £ of h exist?

§3. Transforming geometric into algebraic problems.

The general method of aittack on an extension.prehlem is to apply homology
theory to transform the problem into aﬁ'azgebraic problem. ‘To the disgram of
apaces and mappings we assign a disgram of groups and homomorphlems. Each space
hag a hom@isgy group E@ for esch dimension g, and each mapping induces homo-
'merghisms of the corresponding groups. Thus, for each g, we have an slgebrailc

dingram

H {X)

g
g-ag/g \\ Ly f‘*g* =Ny .
%y
Hi{L} e H LY
{8 > )

Given the three groups and the homomorphisms g,,h., we can now ask the guestion:
Does there exlst & homomorphism é puch that @g* =h, ¥ {1t should be noted that
g, 18 not usuwally an inclusion, because & non-bounding cycle of 4 wmay bound in
¥). If an extension f exists, setting ¢ = £, sclves the algebrale problem

of induced homomorphisms.  Thus, the exist-

because of the property (fzl, = f,.a,

eace of & sclution of ithe algebraic problem is & necessary condition for ithe



existence of an extension. But 1% is not usually & sufficisnt condition. The
reason for thig is that mﬁch of the geometry has been lost in the transition to
algebre, |

It is & prime objective of reséarch in algebralc topology to improve the
algebreic machinéry 80 88 to give a sharper algebrsic ?icture of the geometric
problem. For example, in place of homology we may use cchomology. We obtain an

analogous disgram

79¢a) %w 2{¥)

The chief difference ia’ﬁhe reversal of the directions of the induced homomorphisms,
Tf we conslder cohomology solely as additive groups, they have no resl afdvantage
over homology groups. Hovever, unlike homology, the cohomology groups of 8

space admit & ring structure: Iif ﬁ £ ﬁp{ﬁj and v E ﬁg(f)j then they have &

;

product, called the cup-product,
UwY E HIH'Q'(Y Je

This product is bilinear, and satisfies the commtative law uwv = {u15§%?§ﬂ3§

Furthermore & m&ppiag f1 X > ¥ induces & ring homomorphism
* #* *
Cf {uwv )= uel V.

C x
Letting H (¥) = {(B¥(¥), ¢ = 0,1,...] denote the resulting graded ring, the

&1gebraié diagrem becomes




and the algebraic érohlem is'séarpened by ﬁhe.?egpﬁrem&nt that the sclution @
of g%é =h must be a ring homomorphism.

This provides & considerable improvement in the algebréic picture of the
geometric problem. However it ls not the best that can be done. The cohomo-
ilogy groups possess not only a ring structure but alsc a more involved structure

referred to‘as the system of cohomclogy operations. A cohomology operation T,

relative to dimensions g and T is a collection of functions' { j,one for
3 #

each space X, such that
Tt B{X) —> (%),
and, for each mapplng f3 X —> ¥,

# ¥* a
nyuzTXfu for all u g H {(Y).

The simplest non-trivisl operatlions are the squaring operations. For
each dimension g and each integer 1 > O, thers is & cohomology operation,

called square-i,
i ' . +1
sq s BYX;2,) —> BT (X35, )

Here the coefficient group 22 consists of the integers 2  reduced modulo 2.
Also for each prime p > 2, there are cohomology operations generslizing the -

squares called cycliec reduced pih powers. These are funcilons

21 {p-1] .
F: 5 zp}m-;» a2l (e 1)(X;Zp},

S I will discups %hese‘dperatiens in detail laiter on. AL the present time
I wish only to emphesize the importance of cohomology eyeraﬁians to the study of
the extension problem: In the éerived algebraic problem using eohomology, the

%
solution ¢ H (Y} —> B (X) of the algebralc problem 2% = n¥ must be a



A

ring homomorphism, and alsc mist satisfy s§TY = Xé ‘for every cohomology
operation T. Thus, by cramulng as mich structure as possible intc cohomology
theory,; we endeavor io ébtain the strongest poésible necessary conditions for
8 solution of the extensico @robiem;r

Thelultimaﬁe objective is to so refine the algebraic machinery thai the
derived algebralc problem is a faithful plcture of the geometric problem. This
has not yet been écccmpliéhed; but it appears to be within reach,

We turn now to & more deteiled discussion of the ideas presented zo far,

§l, Examples of extension problems.

Examples of solutions of extension problems are plentiful even in the most
elemeniary aspects of teyolcgy.‘ The Urysohn lemms is an example, In this case
¥ 4is & noruwel space, A = Agu Al is the union of two disjolnt closed subsets,
¥ 4is the interval [0,1] of real numbers, and h(ﬁg} = {0, h<Al) =1, 'The con-
clusion of the lemms asserts that en extension always existis. |

The Tietze extension theorem is another example. In this case X 18 nor-
mal, Y,m_{@,l}; and h is arbitrary. Again an extension always exisis.

The éﬁudy of the arcwise connectivity of a space ¥ is another exsmple.
Tn this case X = {0,1], A consists of the two points O and 1, and B{0) =
Yo B{l} = yl; An extensién f of b isapathin ¥ from y, %o ¥,.

Theye is & special clese of extension problems called retraction problems.
7f A X, then & mepping f: X —> A 1s called a retraction 1f £(x) = x
for each X £ A. Given a space £ =and e closed subspace A, there is the pro-
vlem of deciding whether or not such & retraction exists. By setting ¥ = 4,
and teklng hi A = ¥ +to be the identity, 1t is seen that each retraction

problem is an extension problem.



_én dmportant example from @ieéentary algebraic topclogy 1s the following.

: n
et E be the closed n-cell, i.e. the sel zix1:x§ < 1 in cartesian n-space,
and let B Dbe its boundary, 1.e. the {n-1)-sphere zféixi‘wzﬂ Then

The boundary S of the n-cell E - is not a retract of E,

The proof of this for n =1 i readily deduced from the fact that E
‘iz connected and § is not. For n > 1, the proof is not tfivialg although the
conclusion for n = 2 is intuitiyeiy ap?eaiing to anyone who bas tightened a
drum head, or stretched canves tautly over & frame. | Tae proof utilizes the
general method of éonverﬁing the problem inte an algebrale one. Ye take homology

groups in the dimension n-i, and obtain the disgram

g, (B}
¥
B, _,(8) -w-g}:w B ,(8)

. The dimension n-l 18 used since this givés the only non-trivial homology group

of _ﬁQ Using integer coefficients &, we have Hﬁmiiﬁ} = 2, and ﬁnmiiﬁ} = 0,

How b = identity imyligs b, = {dentity. This gives an ipmpossibility: the

identity hémoms;phism of % cannot be factored into homomorphisms

oA §%F> G Eﬁﬁ> Z. Aiherefﬁra +the retraction £ of E into 8 does not exist.
It may be feli that a non-existence theorvem is of iitile ugse, This is not

the cege, By é mild twist, a negative resull can be glven & positive form. In

the case ai hand, ve obtaln as & corollary the well-known Brouwer fixed-point

theorem: Each mapping g3 B —> E has at least one fixed polnt, For suppose

to the contrary that there iz & g with no Tixed-point. As x and gz} sve
distinct points,they lie on & unigue straight line, and x divides this line
into two belf lines, The half line not conteining g{x) meets 8 in a single

point dencted by T(x). The contimnity of g dmplies that of £, In case



% £ 8, i% i8 clear thet #£{x) =x, 8 f is a retraction E —3> 8, A8 this

is impossible, a fixed point free g cannot exiatl.

§5, The use of the cohomclogy ¥ing.

The next example is one in which the cobomology ring must be used to mive

at & decision. Tet X denote the complex projective @.ane R ise, the apace of

3 homogeneous complex variables Ezayzl,z j not all zero. I% ﬁ,s a cm&,'@
fold of dimension b, TLet A be the complex projective line in ¥ defined ‘by
the eguation z2= 0. Topologleally, 4 is a 2-gphere. In this case the con-

clusion is thet A is not a reiract of X.

Buppose that 13 X~ A i8 & retraction so that £g = identity where

@s A —3> ¥ is the inclusion. Passing to cohomology, we heve the

%

€ ' #
5 (x) ==Y £ (A}, g'e" = identity.
£

Wnen two groups are so related by bomomorphisme, the ieft hand group splits into

g direct asum:
# # #
B {(X) = Image of £ + Kernel of g
The sbbreviated notation is
o % # | &
(5.1} E{X}=Inf +Kerg.
Furthermore g* gives an iggmagr@hism

(5.2) g Im £~ E (A)

‘ % @
T we include the ring structurs, uge the Pacht that T, E are ring

homomorphlszs, then



(5.3} im £ is a subring, =nd Xer g is an ideal.

Turning to the example under consideration, we are given ¥,A =and the

’ Bk
 inclusion ' g, and we can ask if ¥er g is & direct summand. The cobomology
of X ie zero in dimensions > k., In dimensions < k, the cohomology of X

and A with integer coefficients Z 1s glven by the table

o 1L 2 3 &

A zZ 0 %2 0 C

X!z 0%0 2

Furthermore g* is an isomorphism in the dimensions ¢ end 2. It ie szen
then that the direct sum decampoggtion.required by 5.1 does éxﬁst aﬁ&, in fact,
is ﬂniquej‘ﬁamely; in the dim&ﬁéioﬁs 0 and 2, ¥er g* ia zero g0 ﬁhaﬁ Im f§
is the whole group, snd in the dimension %, Ker g* is the whole group and
In £ = 0. | |

However, on exemining the fing étructuxes we find thét.the uniguely deter-
mined candidate for Im f* is not & subring. For let u. be a generator of-
E?(X) go that u g Im f*s 8ince X 1s 8 maﬁifcld, the ?bimcaré’duaiity
theorem asserts that Bg‘ is pelf-dual under the cup product psiring to E%g
It follows that uwu must generate. ﬂh(X)@ Eherefore uen iz not in Im f%g
and therefore A is not a retract.

This example ie intimately releted to the mapping h: 83— 8% of the
3.sphere into the Z2-sphere studied first by H, Hopf [1k], In the space of

two complex varisbles, let 8° be the unit sphere zgfig-g« 2,%, = 1, and o

1L
the unit becell zé%éa% zlg <i. Let 8° be the space of two homogenecus

complex veriables {zﬁ,zlig Then & sends the point {20521} of 53 inte

izﬁgzl} in ggﬁ. Thie is & very smooth mapping. The inverse imeges of polnis



of 32 give & flbration of 53 into grest eiicieﬂg Hoof proved that b

iz not extendable to s mapping E% e 32

. {Notice that {ZQ§313_mmé> {zﬁgzl}
hae a singularity at (0,0).} If we form a new space out of ﬁé by collapsing
1tas boundary 83 into S2 according to h, the resuliing apace 1s bomeo-
m§r§hic +o the complex projectlve plane ¥, and 52 correspo§ﬁs o the complex
projective lins. A. Since' & dis not a retract of X, it follows that h cap-

not be extended over Ei#s

§6. The use of the squaring cperations.

The_next exenple ls a rétracticn problen for which the cchomology ring
does not provide an answer; but the squaring operations g0 give an angver, L&t
P’ denote the real projective space of dimension 5 (6 homogeneous real variahlea§s
Let ?% i}PB :Efg be projective subspaces of the indicated dimensions. Let X
be the space obtained from ” by collapsing P toa point, and let A ' e
e the image of Ph under the call&paiﬁg map 3 . ?ﬁ e & Agein the assmertion

is that A is not & retract o% X.

We tackle this problem in the same menner as the preceding one, and begin
* #
by asking vwhether ¥Ker g is a direct summand of H (X). Kunowing the cohomology
of B°, one readlly deduces that of X and A. With 7, =8 coefficients, the

cohomology is given by the following table
1L 2 3 & 5

A '@22@ 0 Z, %0

z 22 e 0 EQ 22 22

: #
Furthermore, g 18 ap lsomorphism in dimensions < 0. Therefore there is &

direct sum splitting as in 5.1 and 41 is unigue: Im §§ mast be the whole group
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in dimensions < 5, and it is zerc in the dimension J.

In this cese the éanéi&a@e fO? Im f% is e%viausly g subring. The
reason ig that the cup product of elements of dim > 2 has dim 2 6, and is
therefore zerc. Thus, insofar ss the cohomology ring is concerned, A could be
& retract of X. To show that 14 is not & retract, we must use the cohomology

eperétion

8e%: B(x;2,) ~—> B (X;2,)-

1f u is the non-zero element of ﬁ3§ & suitable calenlation shows that ﬁqgu

is the non-zero elément cf‘Hﬁ, Now the unigue candlidate far Im f* contaline 1
‘and is zero in dimension 53 hence it is not closed undey ngw But it would |

have to be closed 1f a retraction f existed because f*§§? = 3q?f%s Therefors
n retraction does not exist.

This result has a good application in differential geometry. It lg well
known that a differentisble manifold has.& sontinuoue field F of non-zero
tangent vectors if and only if 1te Buler number is zerc. This implies that the
n-gphere g% has 2 tangent field F if and only if n 18 odd. SE in fact has
3 fields which are independent at each point because 1t is & group manifald {unit
ggaternions), .The guestion erises as to the maximum pumber of fields tangent
o 35 which are ia&épenﬁent at each point. The answer is 1. ¥or, by a éirecé
construction, two indspendent fields cen be made to yleld a rvetraction of X
into A {see [281}. |

whe same method can be used Lo pé@?& a more general result 8], If n
is a positive integer, and Ek 1g the largest power of 2 dividing n+l, then
epny set of 28 yector Tields tangent to 5% arae dependent at some point. This

seault ig the best possible for o < 135.



Heviang demnstmﬁe& the need of finer and finer algebraic tocls, it is
netural to ask 1f there iz an end o ﬁze process. The saswer is that there iz
real hope of achieving a eomplete seluticm Ty exhibit the basis for oy hape 3
I mst delve moxre deeply into '%:he geometric aspects of the extension problem.
For this, the cancept of hemotopy ia vita.},@ Iet b be s mapping A —> I,
and let I = [0,1] be the unit interval, then a mapping H; AXI—> ¥ 18 called
s homotopy of h if H(x,0) =k{x) for x € A Betting nt{x) = B{x,1}, H
. is called a homotepy of h :i.rste bt a.nd we write bk’ (h is nomotoplc to
L'y, This ia an. equivas.,ence relationy and the set of maps homotopic to b is
called the hamotopy class of h. The set of homotopy clesses'of mappings
4 3> Y 18 denoted by Map(X, Y ).

A basic result, due to Borsuk, is the

Homotopy Extension Thecorem. If f3 X ~—3> ¥, A is closed in X, and

h = £|A. Then any homotopy H of h may be extended to a homotopy of f.
Precisely, the mapping G of the subset XXQwAXI of X XxI into ¥, glven
by G{x,0) = £f{x) for x g ¥ and G(x,t) = B{x,t) for x e A, t &€ I, may be

extended to a wapping FiX X I —> ¥,

The intuiti*é’e ides of ?.hé theorem iz that 1if ve grab hold of the imege of
4 and pull it along, theﬁ_ ﬁhje image of X will come sliding after.
- Pae theoream ls net true i_a the generallity statedj some restriction on
.K 4 or ¥ ie neeessarya It aaffiées fax" 'emeie i.f "X ‘iﬁ triangula’h&e or i1F
X and A are triangulableg It alse sufﬁeea f2] ix@@ee t,he condition of belng
an sbsolute ﬁaighhorhoe& retract on ¥ or on £ and A, In the future va

| assume some such restrigﬁi@ﬁ wi@h@uﬁ further mention.
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Notice that the theorem agserts the extendability of certain kinds of
meppings. This solution of & special extension problem is of the utmost ime

portence for the genersl problem because of the following

Corglliary. The extendability of hi A—> Y o & mapping f3 X =—> ¥
depends only on the homotopy cless of h: If b is extendsble and B ™ B,

+hen k' 3is exiendsble.

I+ iz only neceseary to extend the homotopy to F: XX I —=>7Y and set
£r{x) = F{x,1}).

One advantage this gives us is that, in any particuiar extension problenm,
we may vary h by a homotcpy and obtain & simpler but eguivalent probieme: Fbr.
example, suppose it were known that h - is homotopic 1o a constant mapping hf
{1.e. B'{A) is = single point). Since such an h' is obviocusly extendable,
s0 is h.

The result alec ensbles us e rephrase the extension problem in an appar-

ently weaker form: Does there exist an £ such that fg U h1 Given such an

£, we have that - f§A ig obviocusly extendeble, and fiﬁiﬁ h, and 80 h s
extendable.

Having freed one aépect of the extension problem {replacing fg = ﬁ by
fg = b}, it is natural to consider freeing other parts of UNDSCSARAYY Té-
+yictione. The condition that .g be the inclusion mapping A C ¥ 18 ne
longer en essential feature. ILetl ¥,A ;¥ be any three spaces end let
h: A ——> Y &and g1 A ——> X be mepplings. Does there exlst & mapplng
£y ¥ > ¥ such that fg o~ 87 This problem is called the “ieft-factorization™
problem, The clase of these problems snciudes the extension problems and many
MOTE Broadening thus the class of problems does not increass the difficulties

necanse of the following result.



¥ach left-factorization problem is equivalent to some retraction problen,

. T see this, we start wiith a ieft-factorization §rableg ag above, and
construct a space Z as follovs. Tn the union of ¥, Ax I and 1, i&entify-
each point (8,0) with gla) in X, sod identify each point (a,1) with n{a) in
¥. The resulting space Z contains % and Y and a homotopy of & into h.
Tt follows quickly that ¥ ig a retract of Z if and only if there exists a
mapping T X —3> ¥ such that fg x=h.

Thus the broadest type 'of problem is equivalent to the narrowest type.

It is easily sho%u that a lefi-factorization problem depends only on the
homotopy classes of g and h. Even more it depends only on the homobopy
EEEEEKQf +he three spaces involved. Tvo spaces %X, X' have the same homolopy
Lype {are homotoplceally eqﬁivalent} 1f there exist mappings ég X s> X' Bnd
$'s X' —> X such thet ¢4’ = identity of X' and db' = didentity of X.

We may substitube %! for ¥ in any problem if we et g’ = ég. Anslogous BUD=
ﬁtiiutieng can be made for A and Y.

An advantage of this flexibility is that any particular problem can often
e greatly simﬁlified by homotopilc alterations of the spaces and mappings in-
volved. . |

More impertaﬁt nowever is the 1light which it casis on the class of all
provlems . If we consider only those spaces samitting finlte triasngalations,
then there are only & countable numver of homotopy types of spaces, and for any
TWe spaces therearezﬁﬁy;gcaumtable number of homotopy classes of AAPRANES .
This stetement can be proved by the use of the well-known simplicial approxima-

tion theorem. It is & consegﬁen ce that there are enly a caunta%le number of

extension problems. qnis in itself mekes 1t rean@aabie to hope for effective

methods of solving any extension problem.

T substentiate this bope, sonsider the notlon of the induced homomorphlsm
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E'S L e R .
£ of cobomology assigoed to a mepping f: X —> Y. A well-known property

is that homotopic maps induce the same homomorphism. Hence we have s function

Ryt Map (X, 1) ——> ﬁom'-g-;ﬁ%(x},:ﬁ%{xw

% -
defined by EXY{f) = £ , By Hom we mesan al%{functiﬁns preserving whatever
algebraic séracture we are able to put into the cohomology theory of spaces.
Suppose we have an extension problem with spaces %, 4, ¥ such that RXY is
onto, and RAX is 1-1 4npto, Buppose moreover that the slgebralc problem

# # :
g4 =nh haeasolution ¢. Sinee R, 1s onto, there exists an 3 X —3 X

* * +* . :
such that f =¢4. Then (fg) =h . @Since R,, is 1-1 into, this implies

AY
fg ®h, Hence the solvabilliiy of the algebrisc problem is both necesssry and
sufficient for solving the geometric problem. |

Thue we would have a complete hold on the extension problem if we knew
that RXY iz 1~-1 onto for all triangulable spaces X, ¥, This is true for some

3 and I= 32; then

spaces and felse for others. For example, let X =3
Hom (E1(52),57(8%)) = 0, end Map(s>,8%) = }?3{82} is infinlte, However our
point of view above has been too narrow in specifying the range of RXYE Some
mOre in%&icate algebraic gadget should do the trick. The possibilities are meany.
For example Exgif) eoulé be taken te be the cohomology sequence associsted with
the mapping cylinder of 1.

The finding of a suiteble 1-1 mapping Ry oé Map {X,Y) into a computable

algebraic object is called the homotopy clapsification problem, Sciving it come

pletely will solve the extemsion problem completely. Why should we be hopeful
of solving this? First, Map (X,¥) is s countable set, and l1s therefore sult.
aple for algebraization. Secondly, in many special caSeg‘{aa will be shown}
we nave obtained sclutions. Thirdly, we have available now a variety of

funciions EXE: which taken together may provide the complete solution.



id

§8. Lifting problems.

There is & class ;:mf provlems called E,if‘tix;xg problems which are dusl in
2 ceritain sense to extension prablems; In & lifting problem, we are given a
fihre bundle ¥ over a base space Y with projectlon f3 ¥ —> i, This
means that each y € Y.+'has a neighborhbo& ¥ such that f"l‘é’ iz representable

Eal

aa & product space Vv x F for some Tixed space F called the fibre. FRurther-
more, f restricted to 2y is the projection V X F —> V. In the lifting
problem, we are salso given & space A and a mapping hi A = Y3 and the
problem is to decide whether there exlsis & mapping g: A —~—> X such that

fg = h.
X

"\ .

A > ¥

i
¥

The condition that X —?—-> Y iz & bundle is dusl to the condition of an axien-

sion problem that A £ ¥ is sn inclusion mepping.

An elementary example of a lifting problem and its solution is the

%

Monodromy theorem. If X 18 & covering space of Y with projection £,

then 2 mapping hi A ——> ¥ can be lifted to g: A —~> K if asod only if the

slgebraic problem posed by the fundamental groupshas & solutions

m, (X} |
gijg LN £f.8, = b

& 2

It should be recalied that, since ¥ covers ¥, f, Imbeds ?a‘l(x} ig0=

morphically inte ??‘ﬁfis Also, since base points ars nolt specified, the images
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of £, and b, are only defined up to inmer sutomorphisme of ﬁi(Y}e
Thus to decide whether the algebraic problem has & solution it suffices %o
determine whether some conjugate of fﬁgi(x} contains h*ﬁliﬁ}@

The monodromy theorem is used in complex varisble theory in order to find a

eingle-valued branch of the compositlon of a single-valued and s multiple-valued
Tundtion. .

If ¥ 1is s bundle over Y with projection £, we obtain a specisl 1ift-
ing problem by takling A=Y and b = identity. A solution g: Y = % of

fg = identity is called & cross-section of the bundle. Cross«seéﬁ%qning problems

are the dusle of retraction problems.

A great variety of these problems arise in differentisl geoma%xy {ses [2B]).
Let Y be s differentiable manifold. For any tensor of & spacifled glgebr&ic
type, the set of all such tensors at.edl points of Y forms & fibge Bungle. X.
e¥er‘ k) A.cress—section of this bundle is a tensor fleld defined on Y of the
gpecified type. For example, let X Dbe the manifold of non-zero tangent s
vectors of Y. A cross-section is & coatin#@us field of non-zero vectors, For
a compect ¥, such a fleld exists if and only if the Buler number of ¥ is zeroc.
Tnis is proved by using cohomology groups of the dimension of Y. Many applica-
tions of algebralc topology to problems of this type have been mede. But meoy
more remain §ut of reach,

We propose to show now that the duallity between extension and Lifving per-

sists in considerable detail. The dusl of the homotopy extension theorem is the

Covering homotopy thecorem. In the situation

H
=3

X
N .
& vwmégwé}g

where ¥ 48 a bundle over fg let § be any homoLopy of h. u?ﬁea-ééeﬁa exists




s homotopy § of g such thet G = H, 1.e. any motion in the bhase space

¥ can be covered by & motion in the bundle space X.

The proposition asserts that a certain kind of lifting provlem always

has a solutlon. Tn snslogy with the case of the extension problem, we have the

Corollary. In any lifting problem, the 1iftability of & mapping
%

h: A ~—> Y depends only on the homotopy clags of R

In any iifting pfoblem, s solution g' of the weaker problem fg! 2:%
1eads to & solution of the problem fg = h. It is only necesssry o covef the
nomotopy of fg' into b by & nomotopy of &°.

As before we cen abandon nov the restriction that X iz a Fibre bundle

over ¥, We define a right-factorizetion problem to consist of three spaces

A X, ¥ and mappings hz.é.——~€> ¥ gnd ¢ X —b Y. A solution is & mapping
gy A —> X such that fg ™ h. - The exisitence of a solutlon depends only on
the homotopy clasges of the mappings and the homotopy types of the gpaces.

Thé general method of handling & 1ifting problem or & right-factorization
problem is the same as that used for extension end left-factorization problems,
We transform the pr@bleﬁ to an algebrisc one by epplying & functor from topology
to algebra. All of the discussion of the derived slgebraic problems applizs
equally well to the new situatiéna When we are able to cram into the algebraic
runctor enough structure to be able 1o solve the homotopy classification problem,

then we will be able to solve any lifting problen.
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£G, The classification theorems of Hopf and Hurewics

Thers are certain restricted situations wﬁere homaiogy=and'cehomoleg§,
considered as having additive structure only, ere adequate to solve the homo-
topy clessification problem. Two theorems proved ebout 1935 mark high spots in

this directiocu, These are the theorems of Hopf and Hurewlcz.

Hopf's clessificalion theorem. T ¥ is & finite complex, and n > §

is an integer such that H(X) = 0 for ell g > n, then the natural function
vap ( X,8°) —> Hom ( E'(8%), B" (X))
is one-to-one and onto.

Since HO(8") is infinite cyclic, we bave
¥

Hom (E™(8%),H (%)) ~ X (K); [ i
therefore Map ( X,8") 1is in 1-1 correspondence with ER(KEeE

Hurewicz's classification theorem. Tf ¥ 4is a connected and simply-

connected space, and n 1s an integer such that Hi(Y} =0 for 0<1<n,

ks

then'the netural function

vap (87,¥) ——> Hom (8 (8"),H, (1))

iz one-to-one and onto.

Again EE{SHE iz infinite cyclic, and therefore Map (87,Y) 4s in 1-1

correspondence with EE{EEE

As ie well known, Hurewicz defined a group structure in M&§§3ﬂ§fé

giving an abellan group denoted by ﬁé{Y} and called the n®h homctopy group.




ig

The conclusion of the theorem can be restated: Then ﬁi(Y} =0 for o<1i<m,
and @:ﬁ{g} =2 Hn{".‘{}s |

The homotopy groups, like the homology gféu§s§ form & functor from topology
to algebra, and convert geometric préblems into algebraic ones. They can be and
are used to solve extension problems. However, unlike homology groups, there
ia a severe reatriction on thelr use. Homotopy groups are very diffiéﬁlt £0
caloulate effectively. Computing a homotopy group requires us to solve & homo-
topy clessification problem; and this may be a problem of the same order of
4ifficulty as the extension problem under consideration. A& chief virtue of
Hurewicz's theorem is that 1t reduces the calculation of a particuler homolopy
group to thet of a homology group.

The Hopf end Burewlcz theorems have an intersection; the hém@topy elasges
of mEppings R s® are in lui corrésyoa&énce with the homomorphisms
Eﬁ{sﬁ} e Eﬂ(gn}, Since Eﬁ{Sn} 15 infinite ecyclic, any such homomoyphism
T, is characterized by an integer 4 called the degree of the mapping f, and
it satisfies f,(z) =dz for z e ﬁn{sn)g

There 18 a unlon of the two theorems which is due %o Eilenberg [111:

Homotopy classification fheorem. et X be a finiite complex and 1 &

positive integer such that HYK) =0 for g>n. ILet ¥ be a connected and
simply-connected space such that ﬁi(Y} =@ for 0<1i<n., Then Map{X,¥Y)
ig 1n 1-1 correspendence with EE(K;EQ(Yéég i.=2, the a2 2 cohomology group of

¥ using Hﬁ{f} as coefficients.

Notice that the hypotheses allow only & single dimension n  in voich
the cohomology of X 1s non-zero and the nomology of ¥ is non-zerc. A8

soon s we allow an overlepping of non-trivielity in more than one dimension,

the additive stryucturs of bomology cohomology becomes inadequate.



810, Obestruciions.

Tho method introduced by Bllenbery to prove the above resuli has very

general applicability, snd is colled obstruction theory (see [24, Part III] }.

Let K be o complex, L a subcomplex and f: L —> ¥, For ithe salke of slmpli-
eity sssume that ¥ 1 orowlse connecied and eimpiyuconﬁected, Iet Kg _den@te
the g-dimensional skeleton of K. ‘The subcomplexes Low Kq Tor 9=90,1:9-
form an expanding sequence., Lot us atiempt to extend f over each in turn,
An extension f. over I u K@ iz obtained by defining f

0 O
and to have arbitrary values on the veritices of K not in L. Por any 1l-cell

to be £ on L,

g of K-L; fg is defincd on its vertlces and gives two points in I. Aas

¥ 4s arcwise connected, we muy map o 1nto a path jJolning the two polnts.

Doing this for each such ¢ glves an extension £ of f_ over L w Kl. For

1 G
ench Z-cell o of K-L, fl is defined on its boundary % glving & icop in
¥. Since %i{Y} = 0, the mapping f, on % may be extended over g, Doing
this for ench ¢ gives an extension fe of fl over L owu ng How 1T ench

Wi(YE =0 for 1 < dim{K -1}, there is nothing to stop us Irom continuing this
process and obtaining an extension over all of XK. Dut this is too severe &
reguirement, and we mus£ ask what hoppens in the general case,

Agsume now that somehow an extension fg of ¥ over L uK® has been
achieved for some g, ond consider the extension problem posed by each {g#l)-
eell o of K-L. We heve that fqgé is defined, and is a mopplng of &
g-sphere into Y. This determines an elemenl of the homolopy group ﬁé{YE IO
vided we give & an orienitation. This is daﬁe.%y first orienting o, and then
giving & +the orientation of the algebrulc boupdary g, Then, Tor such orient-
ed cell g, f@é%g defines an element of ﬁ@{Y} denoted by c{f§36}s Jhis
function of {g#l)-cells may b regarded as a {g+l)-dlm.cochain of K with cow-

gfficlents in ﬁg{y}; amni le denoied by g{fﬁ;g Since f% cnn be oxtended



over ¢ if and only if c(fq,a) = 0, we call e(fq) the cbstruction to ezém
tending £ g 8ince f,q is ﬁefingd on each cell of I, «e{f‘g) is zero on |
L. It is therefore 2 cochain of X modulo L. |

Most important is the fact that c(fq) is & cocycle, i.e. it venishes on
bounderies, This follows because it waé defined using the boundary, and aa = {3,

I% éetg’ﬁmixz_es therefore & cohomology class

S(e) e KW“(K,L;WQ(Y)) .

Consdider now what happeﬁs 1f we retreat one stage to fq-l and extend it
over LUKQ’ in some other fashion obtalning f;f On any q—éell T of K»Ia;
the ty:o mappings i_‘q_,f‘q' agree on the boundary, and give two cells in ¥ with.
5 common boundery. !Ihese determine a map of a g-sphere In ¥, and hence an
glement of Hq{Y) denoted by d‘(fq,f&,‘;)n The resulting q«éochain is called
the diﬁ“arence cochain, Its main property is that its coboundary is the differ-

ence of the two obstruction cocycles.
8a(f ,#') = e(f )}~ e(f’
( q:f q) c( q) ( q)

This gives "g(fq) = ?(f;‘q} . Therefore 'g(fq} depends only on fg«-l and can

be written E‘gﬁ(fq’_‘l), It is the obstruction to extendipg £ _

g-1 over

% oKe‘é‘l knowing ﬁhat it can be extended over L quo

Now suppose we retreat two stages to fq_'e and extend over Lwiﬁﬁ”l in
some other fashion cbteining f;dla This gives & {g-1)-cochain d(f@nlgféul},
Its hcbogmiary ie -cq(féwl)s 8o if the alteration f{;& is chosen so that
’d(fg_-iﬁféml} is a cocycle, it may be extended to a map fé of Lwk?®, n
this cese E(fq} and ¢ fag} .Q&n be differsnt cohomology classes. Their

difference is some functlon of the cocycle d4(f

§
a-1 f’fq«i}’ In fact they are

related by the squaring operstion
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2 o 1 L - 3
8q d{fqdff%&} c(fq} c(fg}s

it follows that the obsiruction to exiending fqua over L K§$&, assuming

it can be extended over Lw KQ 3 isAazz element of the gquotient group
EEQ“?I j SQ? Rq;»},a

IT we now retreat three steges to f§=3 and extend over &xgx‘§ in some

2

other fashion obtaining fé, then 4(f } is a (g-2)-cycle, and 8¢~ of

k
Qwe’fqeé :
-its cobomology class is zero. The difference E(f%)« gff;) is some function of

ai{r The relationship in this case has been studled by Adem [1].

g-2'Tq-2)"
He has defined quite generslly a cchomology operation, denoted by ;@3; which
increases dimension by 3, is defined on the kernel of 3§?' and hss values in
the cokernel of Sq?e .The operation provides the desired conmnection .

The three stage retreat is as far as this game hes been apalysed in s de-
tailed and effective manver. The general pattern is clear. If _fq and f;
sre two extensions of f over LuXY which agree on L wKT {0 Sr < g-3 s
then d(fr+l,f;+l
3 -1s defined on 1t, and it lies in the kernel of @3; hence

) is an {r+l)-cocycle. Furthermore 1% lies in the kernel of
Sq?; hence 9
some unknown operation @h is defined on it. If = < g-k, 1t lies in the kernel
of ®k; and some operaticon @5 is defined on it. This continues up to @qﬁag

g ol il H
and this operation applied to d{fr&l’fr$l) gives the difference c(fﬁ}sﬁez(fqﬁ

modulo images of Sq?s @3, cosp g T3

Te method of succesaive-absﬁ%ﬁétien& has two main phasee. PFlrsi._one
must compule effectively those bhomotopy groups HE{Y} whick appesr as co-
effic;ent groups. This in itself is a difficult problem. It is worth noting
in this connection that E.H. Brown [6] has shown that the homotopy groups of a
simply-connected finlte complex are effectively computable. The second phase

i

is to give effective methods of computing the operations 4 for 1 > 3. Much
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work remains to be done. But encugh has been accomplished to make one hope-

ful of ultimate succeséa

§11. Tne cchomology ring.

Ye shall turn now to the methods of comstructing cohomology operations.
Perhaps the simplest operation is the cup product which gives the riﬁg strucburs
+o the cohomology groups. When first discovered ébout 1936 by Alexander, fech
end Whitney, the cup pfoduct appeared to be very mysterioue. It wes not knowa
for exsmple why cohomology admits a ring structure but ﬁom@lcgy does not. The
formulas defining the cup product gave litile insight into the siructure of the
cohomology ring. | | !

Lefschetz ip his Colloquium book of 1942 presented & new ayyroaeh‘ta Yo~
ducts which dispelled muchk of the mystery. 1% was based opn producks of com~
plexes, If K and L are cell complexes, then thelr topologlicsal product
¥ % L may be regarde& as & cell complex in w+hich the cells are the products
gx 1T of cellé ge K snd TEL. 11 follovws é?at the chein groups of

K % T, are sums of tensor products of the chain groups of K and L

clexL)~g . ClK)® ¢, (u)

Introducing orientatione sultably (i.e. defining incidence numbers in X X L

in terms of those in K =and L)}, one arrives at the boundary formila
Ma®b) =08 @b + (-1¥ a®3b, dima =p.

Prom this 1t follows that the product of two cycles is & cycle, and 1T elther is

& boundary so¢ is their product. Thue ve heve an induced hopomorphlsm

o SP{K} ® ﬁQ{L} mi% %_ﬂi(‘ﬁ{ ® L),
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Z H ® H
pEg=r P 9

with a dirvect summend of Er(K % L), Abbreviating o(x®y) by x Xy, we

Tn fmct, with integer coefficlents, & is an isomorphism of

obtain & bilinear product which is assoclative and computative; 1f T iInter-

changes X and L, then
T lx X y) = («1P%y x z.

An entirely anslogous gsme can be played with cochains and cobomology. If
y @nd v are cochains of X and L respectively, define u X v by apecify-
ing its values on product cells as follows

k) (ox 1) = (ue a)ver)

#

{It 1s understoocd here that usg 1is zero if v and ¢ bave different dimen.

sions). This gives sn isomorphism (K or L finite)

¢ (K ®x L) = of (x) ® oL},

E@+q=y
satisfylng the wccbounﬁary relation
sluxv)=Buxv+ (“15? u'x by,
and inducing | .
o FP(K) @ BHL) —> FTHK x L),

This yields a bllinesr product which is associative, and commitative. It is
also highly pon-trivial in that « maps 213 +qer 7 1% isomorphically onto
8 ﬁﬁrec% summand of H (x ¥ L} 7

Up to this point the results Tor bomology and cohomology ars on & par.

Wow take K= L, and let

d: X =i K X K



25

be the disgonal mepping 4{x) = {x,x}. Passing to homology and cchbomology

gives two dlagrams of Homomorphisms

dy
(X ¥ ¥} <

91
EP(KE R Eq{i{) - g

Eoig i,

' #
B (k) ® a4k} -S> BPPI(K x K) — EPHA(K).

#
Cleerly 4, and © cannot be composed, but d apnd Q can be hecause cOw
homology ie contravariant. The cup-product of u & #F(K) esd v e #4x) is

defined by

uy = d*a(u Bv) = ﬁ*{u ¥ Ve

Tois gives a product in the cchomology of K which is associstive and commta-
tives uv = {-1F%vu . -

This method of Lefechetz makes 1t completely clear why cobomelogy has &
ring structure but homology does not. It slso shows that the study of the co-
homology ring reduces to the study of the homomorphism ﬁ*g i.8. ¢ an investl-
gation of the way in which the diagonal is imbedded in the product,

A& very beautiful appl&caticg of the ring structure was made by Hopf [15]

in determining the cohgmology of Lie groups as follows

Hopf's theorem on group manifolds. If G is the space of & Lls group,

then the cohomology ring of G over a field of coefficiente of characteristic’
O is the same as the cohomology ring of the product space of a collection of
spheres of odd dimensions. ZEgquivalently, H*(G} is an exterior algebra with

0dd dimensiopal geperators.

There ie en extension theovem hidden in this proposition. To see this,
iet ¥ be a finlte complex, and let 1 denote a selected vertex of X. In

the profuct K X K, let K v K denote the unlon of the subsets K X 1 end



Lox Ky it is the union of two coples of K with a point in common.

Deline
i ¥ v K e B by ﬁ{xél} B g o= ﬁ{i§£}$

Then for each K, we have an extension problem: Can _h be extended to

£1 XX K —> K? A very §irong necessary condltion for this is that §§{K}
rust be an exterior algebrs with odd dimensionsl generators. For the exipi-
ence of f definss & ?Qﬁiiﬁ&%ﬁﬁ miltiplication in ¥ by xv = f{x,y) heving
i ag & two-sided unlit. And such & maltipiicetion was all that Hopl aseumed
in proviog his theorem.

An extensive generslilzation of Hopf’s theoresm has been glven by A. Borel
L3P He relaxes the hypotheses by allowing the gpace G to be inlipite
dimensiocnal, and the coefficlent field 1o have & prime charscieristle {g&@?ﬁéiﬁg
the field is perfect). He concludes that ﬁ%iﬁé is =& tensor product of exe
terior algebras and polynomisl rings {(which may be truncated },

Another application of the cohomology ring was made by Ponbrjagin to the
computation of %& obstruction [15]. A simplified form of the result goss as
follove, Let hs K3 o> B° mep the 3-skeleton of & complex K into the
Zeppberey and let u %é & geperator of the Infinile cyeilc groug 22{32} uaing
integer coefficients. Sincs KE is ths 3J.skeleton, the inclusicn g3g$ S
induces an isomorphism %; §£{K§ s h&ggﬂgg Then the cohomology ciass of the

4
h

wl ¥
ehatruction o extending over K is the sguare of é Zf 2, Theralore

I DS . , 2
{9 1 a }E = O 18 & pecessary end sufficient condition that h|X™ be extend.

é%
ghie over K .



§19, HMotivation for nga

Because the method of construciting the s'quaring operstions appears to
be semewhét arpitrary, it iz warthwhile to give the motivation vwhich led thely
discovery. DBriefly, obstrucilon theory gave s non-constructive proof of the
existéaee of Sg?;

To see this clearly, let K be s complex, and let v be an n-cocycle of
¥ representing u £ HH{ng}s Construct s mapping € of the {ﬁé&}mﬁk&i@tﬁﬁ
& 1nto the n-sphere S° s follows., First, shrink K% to a point to
be mapped by § into a polot Yo € g", Bach oriented n-cell g of ¥ be-
comes an n-sphere and may be maepped onto 8" with the degree v o ﬁ. {= the
value of v omn o). For each {n#l)-cell 7T, the boundary of T is mapped
on §n with totel degres = v+ 30, By deflnition of coboundary, vwe bhave
yedg. = Bveog= 0 because v is a ceeyele; Bo the mapping of the boundary of
T =extends over T. Doing this for each x. defines I: K?+i — B0,

The obstruction to extending £ over "2 is an {042 j-coeyle c{f} with
{8"3, Its cohomology class ¢ {f ) dependas only on the

clase u of v, and may be written z(f) = ngu. When m = 2, we have

cpeffTiclients ia—-@é%&

ﬁggﬁg} = Z, snd Pontrlagin's extension theorem (8§11} gives gff} TRV
When n » 2, Freudenthal proved that ﬁé$l{8n} = 22} and therefors Sg? is

a mepping H {K;Z) —> Eﬁ%gixszﬁ§s

§13. The homology of groups.

The Tivst effective definition of the sguares used explisit formilas in
simplicial complexes. These vere generaslizations of the Alexender formuls for
whe cup profuct; and they gave no Intultive insight. To obtaln such insight

it was deporitant o find & conceptual definition ansicgous to Lefschetz's
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construction of cup products using K x ¥ and the disgonal mepping d:

¥ ——3> K %X ¥. This was found; and, surprisingly, 1t revealed a comnection
with another development of slgebraic topology, namely, the homology groups
of & group. We turn to this now.

Let T be s group (possibly non-abelian}. In the applications we have
in mind ¥ is e finite group. A complex W is called & w-complex If 7 is
represented as a8 group of automorphisms of W. 4 Te-complex W is said to be
w-free if, for each cell o of W, the transfoirms of ¢ under the various
elements of 7 are all distinct. ILet W/ﬁ denote the complex obtained by
identifying pointe of W equivalent under . Then w-Ifreeness implies
that the collapsing map W -~ W/W is & covering uith‘ ¥ as the group of
sovering transformations. Let Alw) denote the family of 7w-free complexes
which are eiso acyelic {(l.e. all homology groups are 2T ), There ars two
important facts sbout the family A{w). TFirst, it is non-empiy. BSecondly,
if W end W' are in A{w), then there are chain mapplngs
Wfﬁ e W?% e W/W giving a homotopy eguivalence., It fcllowa th&t ihe

homology of Hfﬁ depends on 7 alone, and we define the homology of 7 by
aq(?r} = HQ(W/?!) for W e Alwl.

Tais concept was developed first by Ellenberg and MacLane, and independently
by Hopf.
As an example, let ¥ e the cyclic group of order 2 vwith generator 7.

et W be the union of a seguence of spheres

P s e

vhere the n-sphere s is an equator of gn%1§ et T Dbe the éﬁti@@é&l

trenaformetion in each gﬁs The wwo hemlspherss of 8" determined by Sn&l



ars p=cells depobted by dn and ‘Efdn., The collection of thess cells for
n=0,1,2,:+» gives a cellular structure on ¥W. CUbviously W i1s rw-fres,

e Qrient the cells so that the following sre the boundary relstions:

04, =MW, -4, 3IT4 =d,- Td,,
38, = &+ M,, JTd,=M,+d,,
ddy = Pd-d,, BTAg= d,-Td,

# s &

0dpy = dn o+ Tdy 55 Wy =T, ¥4y o
34 aman 1" 'dan“ TdEn .

In an even (odd)jdimension, every cycle is = multiple of iﬁzaw dan

(d21‘1+1+ Td}.’n +1} and this cycle bounds, Therefore W is scyclic. Collapsing

=Td, =4

2n+l 2o 2nf

Y oot Wf'ﬁ’ glves a seguence of real projective spaces
6] L n
P C P C X C ? C EXY o

The cells f@»n; ’iﬁn come together to form & single cell dé 3 &nd the boundary

relatlions becone

-

T 3 -
aéan - adéaml ? 5é2 B+l ¢ .

Using Z, (= the integers mod 2) es coefficlents, we obtain 'ﬁQ{?F,sZEB = Z,

for all Q.
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€1k, Construction of the squares.

We are prepared now to define the sguaring operations in & complex X,
Recall that the diagonal mapping d; K —> K x K is used to comsiruct cup
- * *
products by the mule uwv =4 (ux v}, To compute d , one must obtain

from 4 & chaln mapping
aq¢ cq(;{} i cq(x XxK), ¢20.

Since the cells of K X K are the products of cells of K, the dlagonal 1s

not a subcomplex of XK x K. Hence there is mo uniqnely determined &@3 but
one mist choose ﬁo from a collection of algebraic'approximaticns to 4.

We proceed to describe these, For each cell ¢ of K, define 1ts carrier

¢(o) = jo x ¢ to be the subcomplex of K X K consieting of ¢ x ¢ and all

of its faces. We refer to C{g)} as the dlagonal carrier, Because o and

1tas faces form an acyclié complex, G{o) is lilkewise acyclic. It is the
minimal carrier of 4 because C(o)} 1s the least subcomplex containing é{s};
Any chaln mapping a@ such that dga is & chain on C{o} 4is called an
eyproximation to 4. The two principal facts sabout such approximations are
that they exist, and any two are chaln homotoplic. These facts are proved by
constructing the chsain maep, or the chein bomotopy, inductively with respect

€0 the dimension astarting in the dimension zero. The acyclicity of the carrier
iz g1l that iz needed for the general Step, Any approximation &Q induces a

, #
homomorphism 4 , and the homotopy equivaelence of any two lnsures that they

%
glve the same 4 .
The importent point to be observed about the construction of dﬁ is
this: although the mepping 4 is symmetric, there is no symmeiric approxims-

tlon ﬁﬁs Precisely, if T 48 the sutomorphism of K X X which interchanges



the two factors, then Td =4 but there is no ég such that Tdﬁ = ﬁgg
) H o
This is essily sean by taking K '“to be a l-simplex- ¢ 80 thet K X K is

& sguare. The l-chain &Qg must connect the two end poinits of the diagonal

and lie on the periphery of the square, s0 It muat go arcund one way or the
other.

Thisz difficulty cen he restated in a move 1lluminating fashion. Tet T
act also on X as the‘identity mag'ef K. Then 4  is equivarlant, i.s.

Td =4T. But there is no chain approxiﬁatien 4 _which is equivarisnt. The

¢

reason 1s that 7 acts freely on the set of possible cholces fsrwaﬁgg bub

leaves g Tixsd.

Given & 4

of We cen measure ite deviation from symmetry. 8iuce éQ and
ng are carried by €, there is a chain homotopy ﬁl of éé into T§§ N
Precisely, for each ge-cell o, thers is a {q+l)-chain 4,0 on ¢{c) 'such
that
3&1@=:ngs - &Qa=-ﬁlésﬁ
Tohen |
%Tdia = ﬁgg_&: ‘fdgg - ?dléc R

E

It followe that di + Tdi‘ is & homotopy of @Q

itself. For sach gecell ¢ this homotopy lles on C{a}; it is therefore

arcund s oircuit beck into

homotopic to the constant homotopy of 4 Precisely, there is a {g+2)-chain

@a
d,o on G{s) such that

o %ﬁgéa

§§2652§3§€°T§1

At this stage, the construction should remind one of the construction,
glven in the preceding section, of the w-free complex W. The anslogy is

made precise as follows. Form the product complex W X K. Define the
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action of 7 in WX X by T{wx o) = (Tw) X 0. The composition of the
projection WX K > K and d: K —3> X X K has “thé minimal carrier
Clw x o) = |ox ol; 1% is acyclic, and satisfies TC = OF. Since W is

w-free, 80 8lso Is W X K. It follows that there is & chein mapping
$: WOK —> K®K

carried by C which is egulvariant: 4:‘13 = ’E’q‘:g {The tensor product ® is
used Instead of X Tbecause W and K are now regerded as chaln complexes ).
Recalling that W consists of cells 4,, T4, , we nov identity %(dgﬁ& g}

with the disgonal approximation 4 .o, and é(dJ_@ o) with the chain homotopy

o
dlﬁ’, etc. ‘Then the Jd-relations given above for dgg,'dl% ége correspond,

exactly to the fact that ¢ is a chein mapping: of =423.
For each integer 1 > 0, we define a product calied cup-i, as Tollows.

I ue &PK), and v e c¥x), then ey V€ Pl (k) e defined by

{u wiv} e =u®y »fé(ﬁi @e), ¢t Gi)'%‘@_“i{}{}$

Using the fact that é is equivariant we obitain the coboundsry relations

modulo 2
&lu —y v} SU g gV F Vg qud BUM Y b0y By,

{By conv’eﬁtion, U o, Vv ® 0), If we set u = v and assume Bu = 0 mod 2,

L

it follows ithat u g U is B cocycle mod 2, Pasging to cohomology classes

gives a function denoted by
Ba, s ﬁ}?{i{;z_e} e ﬁgp”if%’;z 3

which assigns to the clsss of u the class of u Sy U it 1z notetionally

more convenient to define
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J

- +
8qYs B (K52,) —> BV (52,

by sebting Sg_‘ju = qu“;i u.

The cup-l products depend on the choice of é@ However any two é‘s
are comnected by & cheln homotopy which iz equivariant, It follows that Sq;

is independent of the choice of 4.

§15. Properties of the Squares.

 The elementary 'propertiés of the é:;’w:g_i 'are ag -foilewa,

o * #
1. If £ is a mepping, then £ qu“ = Sqif . This expresses the

toplogical invariance of Sq;.
2, Sqi is & homomorphism.
3. Sqe = identity.

il

b, 8cfu =uwu if p = dim u.

5. ch,iu O 4if 1 > dim u.

ft

6. Ir LCK, and &: BP(L) ——b HP':'J'(K,E.,} is the usual coboundary,

then 83¢) = sq’s.

#
7. If &3 (K;ZQ} e Hpﬂ'(}{; 22} is the Bockstein coboundary for

N

the coefficient sequence O ———i» Z, > 2, > %y > 0, then Sql = éﬁ
and
st = g%5¢% for 430 .

These can be proved readlly by using the machinery already set up. Less

elementary is the Cartan formala:

8. &1’3 {u v} =, %Q ﬁq,ixs qué"g’v .
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is can be proved by su explicit computation of a w-mapping W —> W & W.

Using these properties one can compute the sgqueres in meny specisl cases.

*
If ddlmu =1, its only non-zero squares are Sq?u = 11 and Sq}u = 5 U = U s .

It

% .
If dimu = 2, 1ts only non-zZero BQUATES Aare ngu U, Sq}a = B u, and
Sq?u = U s Us These facts combined with formule 8 ensble us to compute
#*
sguares in the subring of H (K;ZQ) generated by 1 and 2Z-dimensional clasees,

For example,

9. sqt(u) = (K if atmu = 1.

In this formula, (i) is the binomial coeffliclent mod 2, and ls zerc if 4 > k.
In the real projective n-space Pn, the cohomology ring is the poly-

nomial ring generated by the non-zerc element u g El(Pngza)g truncated by the

relation uu+l = (O, Clearly formuls 9 glves all squares in Pﬁg Let ?r

ve & projective subspace of Pn’{0<:z“< n}, and form a space Eﬁ%jPr by cellagsing

Pr to & point. The collapsing map 1 Pn o Pan? induces lsomorphisms

£ Ek(Pnf?r) ~ Hk(Pﬂ} for all k > r because P 4is an r-dimensimnal

ekeleton of P, Let W, £ H&{Pn/?r} be such that f*wk = u¥. Using 9

and 1, we have Sq,iwéc = (?}Wk+1 for k>r eand all 1. In particular,

when n=5% and r==2,! we have Sq?wB = wﬁs I used this example in §6 to show

that ngyg is not & retract of ?ﬁjPe, This is the simplest case known %o

ms Whers a Sq} gives & relation between cocycles which are not alrsedy re-

lated by a cup product or s Bocksteln coboundary opsrator.
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§16. Reduced power operations.

Tne sguaring G?ex;a.i:iens are assoclated with the symmetric group of
degree 2, It is %0 be expected that more cohomology operations are 1o he
cbtained by studying the n-fold power K =K X c+» X K, and the action of
the symmetric group 8{n) as permutetions of the factors of k', This e
the cese. The general definition goes as followe.

Let 7T Dbe any subgroup of 8(n); and let W be a w-free scyclic
complex. Let C{d X g) = |o|® be the disgonal carrier from W x K to X,

As 1t is equiveriant and acyelic, ihex‘é is an equiveriant chain mepping
é‘é W ® K " Kn L

Iet K* = Hom{l{,z) be the cochaln complex of K. Define a cochain complex
WRK® by

&

CFHERK™T) = Egci(w} e ¢ ™)

The terms of the sum sre zero for i >np dlm K-, If weg ﬁi(w} and
v g §r+i(§§§n), set

By ®v) =3v® v+ {»;L}iwﬁ v,

Thie defines B in W@ K*ﬁ and makes of it s cochaln complex, Define a

cochaln mappling
B HRE ™ e K
dusl to ¢ a&s follows

v @v)eo = {«l}i{imljﬁw ${vw ®5)
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H#1 #
whers 1 =dimw, v iIs & cochain of X ~ K » and ¢ is a chain of
K with dim ¢ = dim v =4, |

L 0 .
The asctlon of 7 in WHREK is defined by
W ®y)=Tw® Ty, TerTs

And T acts as the identity in K . Then the equivariance of b implies that
of ‘é’s It follows that éi transforms cochalns equivalent under ¥ into
the éame cochain. I we ldentify eguivalent cochains of W @iﬁ%ng we obtain
the gquotlent complex denoted by W 8%.K*ﬁs Then ég induces &.cochéin

mapping

dhwe X7 —> K

Passing 4o cohomology with coefficilent group G, we obiain an induced

homomorphism
& w(w ® K@ 6) —> 1 (K" ©¢) = 1(K;0)

' - #* ' .
How let u be & ge-cocyele mod € of K, Treating uv a8 an integer
cochaln, we have &u = 9v for some V., Then the miltiples of u and v
i . # ;
form & cochain subcomplex M of K . Let ¢ denote the inclusion mapping

5 _
L The product mapping %n; M i K%ﬁ is equivariant, bhence

@n and the identity map of W induce a cochaln mepping

H o
é’g?@ﬁ_éﬁa mP?i@gKﬁnc
Tensoring with ¢ and passing to eohomology gives an induced mapping
# e
i EMEH ®0) —> FHE X T0a).

Composing %ﬁbgné é§ gives a mapping



o: B (w ' ®6) —> 5 (K;6).

It depends apparently on the choice of ¢ and the cocycle u mod @, In
fact it iz independent of ¢ (any two ¢'s are equivariantly homotopic);
and 1% depends only on the cghs#ology class u of u. The image of @,
for all r, is called the set of 7w-reduced powers of u g EQ{ngg)e

The groups H*{W @%,ME ® )} depend only on the groups 7, ¢ and the
integers @, 4, n. They are generalizatipns of the ordinsry homology groups
of 7. In the special case that u is an integral cecycle'{ﬁ =0} and g

ig even,; we have
H(W g M ®c) ~E _ (10).

For, in this case, M = Z 18 generated by w, and M~ 2 is generated by

u? with 7 acting as the identity. Therefore W @%}Mﬂ ~W @z~

If we take account of the dimensional indexing,the assertion follows, Then,

to put 1t roughly, each homology class of a permutation group of degree n

gives & cohem@logy operation.
IT we recall that the sguarses Sqi are the mod 2 homology clssges of
8{2), it is clear that we have availlsble a greai wealth of cehomology Opara-

tions,; and that these demand anslysis.

817. A bapls for reduced power operstions,

A rather slaborate snalysis [26,27] shows that a relatively small col-
lection of reduced power operations generate all others by forming compositions,
Tie analysis has two maln steps, The first shows that we do not need to con-
slder all permutation groups; it suffices to consider, for eech prime », the

syelic group §§ of order p and degrese p. The second siep analyzes ihe
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h@mology\(in the generalized sense) of I

Just as ﬁj{p2522} ~ Z,, we have 33{Qp5%§} = zpa A generator §j
for this group gives a cohomology operation analogous to Sqég When p > 2,
this operation 1s identically zerc for most of the values of Jj. The reason
for this is that the homomorphism of homology induced by the inclusion mapping
Qp e SP has o large kernel for p > 2. If we discard the operations

which are zero; we obitain an infinite sequence of operations called the cyelie

reduced povars
i +21 {p-1
P pt HQ(KEZPE — HY (e ){K;ZPL ' =04 ...

The operation (P; reduces 1o Sq?i when p = 2, and the msin prapefties
of these operations are mild modifications of the properties of Sg?i iisted
in §15,

To complete our list of basic cohomology operations, we need to adjoln
for each prime p‘ the Pontrjagin pth power. For each integer k > 0, it

iz & function

. 74 Qe
Bos B (K52 ) —> P LIS

At firet glance, the bper&tion may seem mysterious; however it is only &
mild modification of the p™ power in the mense of cup products. For, if
g?Pu is reduced mod pk; it becomes uF, Pontrjegin [20] discovered the

operation for p = 2, He observed that, if u is a cocycle mod QK, then

U xﬁ}u + uwuﬁ‘&a

is & cocycls mod Qk*ls The operations for p > 2 were found and studied

by P.E. Thomas [29,30].

There are certain elemeniary cohomology operations which are taken for



granted but must be mentioned in corder to state the malp result. These
are: sddition, cup products, homomorphisms induced LY homomorphlsme of

coaefficient groups, and Bocksteln coboundary operators associated with exact

coaefficient sequences O > 31 > > " > O, Then the melin ree-
suli becomes:

The elementary operati@né and the operatioms Sq? %9 (?1 ‘%P genarate
PRetY ptlp R

gll raeduced pover operations by forming compesitions,

§18. Relations on the basic operations,

The generators listed above satisfy mumercus relations. Some of the
relations satislied by the 8q% are given in §15. They patisly also & mors
complicated set of relations which were found by J, Adem {1} If &< 2 b,
then

faf2] :
ks bed l}sgﬁbi&ﬁs

. &
1=0 a-21

Thig holds for theindicated operstions applied to & cocycle of any dimension,
Toe clarify the rough lmplication, let us call an iterated square Sq?é?qg
reducible if 1 < 8%, Then the formule expresses sach reéucible itersted
square &s & sum of irreducible ones. Iterated squares, as réduced power
operations, appear as homology classes of the Z-Sylow subgroup of sk},
These relations were found by computing the kernel of the bomomorphism in-
duced by the inclusion of the subgroup in the whole group. They have two
important conseguences.

L. Each sgé can be expressed as a sum of lterates of

od
g% }gggfl;2§a§@ =
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2. Tet us call the iterated sgquare Sq ~Sg. seefg © admissible if

2 @i, 1 220

ie -1 T
Then every lierated square is unlguely expressible as a sum of sdmissible
iterated sQuares.

The first result shows that the systenm of generators given in §17 is
too large, we can throw out each Sqé for which 1 1is not a power of 2.
{E§ is to be noted thatrif we do éhis, then the fel&tieng satislied by ths
remaining sqgarés are not readily written).

The second resilt was proved first by J.-P, Serre {22] using an entire-
iy different meithod involving the Ellenberg-Maclane complexes, The result
can be expressed In & more 1lluminating fashion. Let A be the associative
{non-commutative ) algebra over ZE generated by the Sqé sublect to the
relations of Adem with qu = 1., Then the admissible elements form an addi-
tive vasis for A. -

u

J. Milnor has shown [17] that the mapping é: A > AD A given by
i i3 1-3 .
$(sq”) = =z sg’ ®3q -
J=0
(compare with formule 8 of §15) defines a homcomorphism of algebras, and con-
varts A Into s Ho§f aloebra, He shows that the dual Hopf algebra %ﬁ
(which is commutative) is & polynomlal ring in an easily specified sel of
genarators. Dualizing gives an additive base for A gquite different from
that of Serre. An important conseguence of Milporis work is that the algcobra
A is nilpotent.
Analogous regults heve been obtained for lhe (?%g for primes p > 2,
Adem [2,3) wnd Cartan [7] found independently the iteration relations, and
proved the analops of proposition 1 ané.ﬁ above. Milnor hondles ulso the

case Do Ze
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by

To state the situaticn roughly, we heve g véry good bold on the re-
létisns satisfied by %he cyclic reduced powers in spite of the fact that
these relations are complicated. ‘

Az For the'PQntrgagin yth powers, the situation iz not ss satisfactory;
however it is exceedingly interesting. Thomas hes given a set of relations
which the gth powers satisfy, but in & most indirect fashion. He tekes as
coefficient domain a graded ring A with divided powers. The divided powvers
are functions 75¢ Ar — Anr baving the formal properties of the function

*
xn/nz « The cohomology E (K;A) becomes a bigraded ring. He then extends

the definition of '?; to operations 3%1 for all integers n 20 . The
& collection ﬁ?n} are then shown to form a set of aivideé bowers in the sub-

_ *
ring of H (K;A) of elements with even bidegrees. In thie way he obtains

relations such as

Rk - (Y9 ),

-ﬁ{uq-v) = EEO aiu)w?x‘_af‘v};

%2 ?;{u} = 2§:%> 3§:§ ree (sizi}zglr{u)'
Although eaeh.$§n ;s expreseible in terms of the =%% for primes p dividing
n, it would bs exaeedingly clumsy to write the sbove relations using only the
povers with prime indices.
It iz not yet known whether we have = complete set of relations on the
bagic genersiors. One can ask, for example, whether expressions of the

Torm %%@(?%g aré reducibley
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§19. The Filenberp-MocLane complexes.

There is aaather‘appreach to the subjecthaf cohomoloyy operstions which
mekes uée of the special complexes, called {v,n)-spaces, due %o Eilenberg and
Maclane [12,131], These spaces appear to be fundamental to sny study of
homatcp?; and 1t seems likely that the complete solution of the extension
problem will meke vital use of them.

Ifiaﬁ 1s an abelian group and n > 0 is an integer, then a spece ¥
le seld to be a {w,n)-space if it is arcwise connecied and all of its homo-
iopy groups are zero except ﬁhif) vwhich is& isomorphic to 7.

There are & few relatively simple examples. The circlie Sl is &
{Z,1)-space (&ll ite higher homotopy groups &re zero because its universal
covering space, the stralght line, is contractible}. The infinite diwensional
real projective space (§13) 18 a {Ze,l}-space {1t is covered twice by g~
whose homotopy groups are zez‘;o)e Another example is the complex projective
space of infinite dimensiong It is a {Z,2)-space because it im the base
space of & Tibration of & Dby circles, i.e. by fibres which are (z,1)-
BEpaces,

There are (7,n)-spaces for any prescribed 7 and n. This fact is
not evident, and will be discussed in some detall in later sections. For the
present; it is helpful to anticipate two broad conclusions of this discussion,
First, s {7,n}-space i usually infinite dimensional. Secondly, although
the homotopy structure of a (w,n)-space 1s simple, its homology structure is
asuﬁliy mest Intricate, This is in sharp comtrast with a space such as &0
whose homology is simple, and whose homotopy i1s intricaete,

Let Y be u {7,n)-space. Attached to ¥ is its fundamentsl clacs

u e Thie 15 an element of H {¥;7) obtained as follows. Since ﬁi{f} = 0
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for 1 < n, Hurewlcz's theorem asserts that the naﬁaral map ¢ of ﬁh{f;
into En(Y} is an isomorphism, Since also HQWI(Y} = 0, it follows that

the natural mappling
rf‘(y;::rnm) ~—=> Hom { € _(¥),7_(¥))

is an isomorphism., Then uo is the element on the left whose image on
the right is é“l; We may alsc describe U 1s the primary obstruction to
contracting Y to a point [2%; p. 187 ] . The Ffirst important result about

(w,n)-spaces, is the

Homotopy classification theorem: If ¥ 4s a (w,n}—syace§ and X

G

# . IES ,
is & complex, then the assignment to each £ X ~> Y of £ u, sbts UP B o o]

1-1 correspondence between Mep(X,Y) and E{(X;7).

A proof of this proposition, in the geometric case, can be found in
[11; p.243, T™.II]; and, for the pursly algebraic case of seml-aimplicial
complexses, see. [13; paper III, pp.520-5211, CIn egsence, the argument iz
the one used in proving Hopf'is theorem (§9). If ¥, 1n the theorem, is also
& (ﬁgn)aspace; the conclusion aseerts that there i1s a map £t ¥ —-> Y such
that féue is the fundamental class of ¥, and this mepping is & homotopy

equivalsnce:

Corollary. Within the realm of complexes, any two {w,n)-spaces have
the same homotopy type. Thus their homology and c&hcm@lcgy depend only on
¥ and n; hence ﬁ*{Y;G} mey be written E%{wyngé}e.

The importance of (w,n)-spaces to the situdy of céh@m&imgy cperations
is seen as followsa, Recall that a cohomology operatlon ¥, relative to

dimensions g, r and coefficlent groups G, G' i1s & set of functions




Tt BHX;0) ~> B (2000

) . * #
for each zpace ¥ such that 7 T = i{‘xf for each mapping f . 2 Y.

Let @(g_,@;r A dencte the set of all such operations. If we 2ad opera-

stions in the usuel way {T%T’}X =T, + T'X; then  H{q,G3r,G6') 1is an

abelian group.

Now let Y be a (G,q)-space, and let 4, be its fundamental class.

It T e (Hq,63r,6°), then
Tu, & E (¥36') = H (G,q;6' ).
Theorem, The assignment T —i> Tu o defines an isomorphism

@(%G;r ¢) = Hr(G TIAD R

I ———— WWW

This result is due Lo Serre [22§p.220], and ::T}_;.%ldepemiemly to Eilenberg.
Meclane [13].  The proof runs as follows. Suppose T, T' arve operstions
such that Tu, = Tau(}e Let X be a complex and u g RQ‘(X;Q}E By the
eiaasifieatiane theorem, there 1s & mapping f: X ——> ¥ such that f%u_@ = U,

Therefore

Tous T =T in  ({q,6;7,G'). For the other part, let w & H(3,q;67 ),

Construct & T g Oq,0jr,6') as follows. If X is any complex, and

3
uE HQ{X;G), choose & mapping f; X =—3> ¥ such that ¢ u, =u and define

&@ and

fl

#
Tu =T w, One verifies that Tu, =w by taking X =¥, u

0
T = identity.
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§20. Semi-simplicial complexes,

The rough conclusion of the preceding section is that ﬁhe determination
of ell cohomology operations is equivalent to the problem of computing the co-
bomology of the (w,n)-spaces. The latter problem has been the subject of
extensive research by Eilenberg-MaclLane {13}, H. Cartan i?;3,9§, and others,
A brief review of their work is in order. |

The basic construction of (7,n)-spaces is given in the language of semi-
simpiicial complexes. This sppears to be a most convenient eﬁneeﬁt for néaxiy
all question concerned with homotopy. ‘The following definition of an abstrmet
semi-gimplicial complex K is obtained by writing ddwn fai:ly obvious properties
of the singula: complex of a space. '

‘AEirst, f@r-eaeh dimension q 2 O, .there is & get Kq ‘yhOﬁe @lemenés are
éallad g-simplexes (to be thought of as ordered simplexes), For each g4 and
each 1 =0, 1,...,9, there is a function éi: Kq e Kﬁyl celled the 1B
face operator, and if x g Kq, then d,x  is the 18 face of x, Again,
for each g aéd each 1 =0, 1,...,9, there is a function 8, ¢ Kg > K@&i
called the 450 degeneracy operator., {Picture the collapsing of a {geL )~
slmpilex into a g-simplex obtained by bringing the 1B apg (i+l}sg vertices

togethery then 8, 18 the inverse operation). The definition is completed

4
by lmposing the identiiies:

3ié§ = §5~13i§ 1<4d;

5is§ = ﬁésimis i>» 4,

éisé = sémléig i<,
_@iﬁi = 51%1&1 = identity

a,8

18 = Eé =T i > ¥l
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A mepping It K e I of one semi-simplicial complex into another

3

conslets of & function  f § ¥ e [, Tor each such that . f = ¢
e g g 4 POt T %

L

and = T

1%q = Tquts ,_
An ordinary simpliciel complex X can be cénverteé in various ways into
8 seml-gimplicial cemélex x'. For example, i an ordering of the vertices
of K is glven, one defines K!q to be the set of order preserving (monotonic)
simplicial mappings of the standard ordered g-simplex &ii inte .
As already remarked, the concept of the singular complex of a space is &
functor 8 from the category'éjﬁ of spaces and mappings 4o the category @3 of
seml~simplicial complexes and mappings. There is & functor R: (B (7.

called the geometric realization. In fact if K e B then R{K) is a

CW-complex. 7The particular realization given by Milnor [18] nas very useful
properties.  Each non-degenerate simplex of K determines a cell of -R(K).
Also R behaves well with respect to standard. operations such as sa8§ensiap$

and products. How there are natural mappings

RS{X) —p X for Xe ,

K > SR(K) for xe (4.

The second of thease is always a homotopy equivale;cee ‘ If ¥ 48 5 reasonable
space (e.g. trianguiabie}ﬁ the first mapping is aise a homotopy equivelence,
The conclusion is that all guesiions in CZ, depending on hogetoyy type only,
are equivalent to the corresponding guestions in é§ « This is true in
particular of extension problems and homotopy classification problems, Since
this is our psin concern we will 1imit all subsequent discussicn to the
category Cg ®

Fach X & §§ determines a slmpliclal chain complex C{¥) as follows.

The free abelian group genersted by the set K%. is dencted by §%§K} and is
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called the group of g-chains, The functions 5i’ 8, extend unlguely %o

i
homomorphisms of the chaln groups denoted by the same symbols., The identi-
ties listed sbove remain valid. Now define J: CgiKE — ﬁ@flix} by

3= z&ﬁe(-z)‘aig.' Then &0 = 0, and one defines homology and cobomology in

the usual way.

§21. Constructions of (m,n)-spaces.

i

Eilenberg.and MaclLane assign to {w,n) & semi-simplicial complex K(w,n}
in the following rgthér slmple way. Let AQ denote the complex ol the
standard g-simplex with ordered vertices; Let Zﬁ(égéﬂﬁ be the group of
n-cooyeles of éq with coeffilcients in w. These sre normallzed cocycles
in the sense that they have the value zerc on degenerate n-simplexes, 'Then
e g-simplex of K{w,n} is defined to be such a cocyeles KQ = Z?{éﬁfﬂﬁs The
standard map éq;l mmenc éé, get%eg vy skippling the 1tk vertex, dnduces a
homomorphism kz“(aq;w} a2 Zn(ég_l,ﬁ§ which is denoted by Ei; Kq e Kqﬁlg

T™e degeneracy & is likewise induced by the 1th gdegenaracy A ., e—— ég‘

i g+l :

Mach work must be done to show thait the homotopy groups of K{ﬁ;ﬁ} a7

BOTO save W = 7T," 1.2. 1t is a {(w,n)-space, Orsnting this, one can ask
what hinders & successful computation of 1is homology or cohomology. if

T ois infinite; 2.8: W = L, then each Kg is infinite, This means that
Cq(x} is not Tinitely generatedy and therefore the standard methods of
acmpgtation can not be appléede it L2 ;g a finlte group, each K@ is finite,
and we are in the reelm of effective computability. BPui dus to ithe largs
mumber of n-dlmensional faces of ﬁgg the standard methods are not practical,

80; in elither case; some large scale reduction of the problem must Le achioved,
2 &



The first observation is that K{w,n) &n@; K{w,n+l) are related.
Define & complex W(m,n) in the same manner as K{w,n) except for setting
W = Cn{%}zr}g Since & 1s acyclic, Zn(&qg?ﬁ is the kermel of
Bs cn(éq;w} i z“”g'liaq;zr}, and B 13 an epimorphism. From this it follows

that we have semimsimpliéial mapplngs

K{m,n) -E;mw> Wim,n}

> K{w,n4l )

where p 1s & fibre mapping with the fibre X(m,n). The argument which shows
that K{mr,n} is a (7,n)-space, shows #lso that Wiw,n) is‘hometopicaiky
eguivalent to & point, The second observation is that K{w,n) is an abelian
group complex. This means that each Kq is an abeliasn group, 1i.e. zﬁ{é@§¥}§

and each Bi, 8 is 8 homomorphism. The grcugrstructura of K@ induces 8

i
ring structure in Cq{K}a

These observations motivate the construction of a new sequence of com-
plexes A(w,n) given by Ellenberg and MacLane. They start with A(w,0) = K{r,0).
Then, for any abellan group complex [P, they construct & nomotopleslly trivial

complex B(I), and a fibre mapping
i e
v P e B{F) == B{F}

with fibre [I. Filnally, A(m,n)} is defined inductively by A{m,n) = B(A{r,n-1)).
This constructicn is referred to as the bar eoéétructione An inductive argu-
ment based on the two fibrations leads o the conclusion that Alm,n} is homo-
topleally equivalent to X{wn).

In case ¥ 1is finitely penerated, the complexes A{w,n) are finite
in each dimension, and hence their homologles sre effectively computable, This

iz a large reduction of the problem. Using the Alw,n), Eilenberg and Maclane
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successfully copputed the flrst few aanmtriviai:hsmﬁlagy groups, and obtained
laportant a@plieatiensg. However the eampuﬁaﬁibn problem was still far from
aclived.

The next large reductlon of ﬁh@ ovroblem was made by ﬁs Cartan. He

formaleted s general concept of fibre space construction of which the two con-

gtructions given above are exomples, He showed ﬁhat any two acyelic cone
structions appiied to homotopicelly eguivaleni group complexes gave homo-
topically equivalent base spaces. He was then able to glve relatively simple
constructions for cyelic groups 7. Qéisg these, the computation of g%{ﬁ}ni
Por finitely genersted w's is almost practical.

To 1llustrate the cooplexity of the situstion, we will state Cartan’s
result on %he structure of the ring E%{w}agzh}l when 7 is infinite cyclic
and p 1s an odd prime., Flrst, there is a sequence Xy5 Xppees of elements

o

of H such that g is jsomorphlic to the tensor product ﬁ@:'lP{xi}

“where P{xi} is the polynomisl ring over Zp generated by x, 1if dim x

i i
is even, and it is the exterior algebra generated by Xy if dim Xy is odd,
¥or any dimension g, ooly & fluite number of xi’s have dimensiony < g,

Tt remains to specify the x,'s. Thls is done most efficiently by using the

f

evelic reduced pt DOVETS @ﬁi, A finlte sequence of posiilve dintegers

(8,500,868, )} is called admissible if
S £ e

{1} each &y is a positive integer,

has the form 23§{§u1} +€, where X,

and €y s O or 1L,
{11} By 2 P8y, 1<i <k

{144} pa, < &wi}{a%&i%***%&k}
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Define S@ai = {?%i if €7 0 and Stai = 6%63ki i € 0= 1 whore é*
is the Docksteln operator for 0 —> 2? ~w4§ %pg «wwbwz? —ix 3. Lot ug
be the fundamental class of K{w,n). Then the set {xié consi$zs of the
element U mod p. snd the elements
By 2
5% =ss St v

as (aiﬁ...gak} ranges over all admissible seguences.
A corollary of this result is that all cohomology operations with 2 as
initial and ;? as terminai coefficient group are genersted by the overations:
¥ i
addivion, cup-product, & and the B
Using the full strength of Cartan’s results, Moore [18] has shown that

all cohomology operations, whose inltial coefficient groupe are finitely gener-

sted, are generated by the cohomology operations listed at the end of §17.

§22. Symmetric products,

We have described two methods of obtaining cohomology operations. The
first dnvolved nth powers of complexes and the acﬁicn of the symmetric group
on the factors. The second made use of the Ellenberg-MacLane complexss,
Each method has its advantages, The first gives specific operations with
convenient properties. The second gilves E%é cperations, Since they lead to
the same results, 1t should be possible o bring the two methods together as
& single meéhéﬁs' The basis for gccompliahiﬁg this:is pre#ided by 8 theorem
of Bel& and Thom [10] as follows,

Let SP'X denote the symmetric n ? power of a s?a@e {or complex) ¥,
i§ég e@ii&pse X? by idenfifying points equivalent under S{nl, Choose »

base polnt x. € ¥, and use 1% Lo zive an imbedding

0



%
(22.1) gy ¢ eP™tx

by identifying (xl,aaa,xr) £ X with {xg,xlj$aggx?} 3 Xnﬁl, The union

over n of SPX gives the infinlte symmetric product SP°¥. The rough

assertion of the Dold-Thom result is that there are isomorphisms

(22.2) vi(SPwX ) ~ 1 (X), i>1.

This 1s a moet surprising result. It offers an entirely nevw method of
constructing (w,n)-spaces., For example, if X is the n-sphere Sn; it
follows that SPw{Sn) is & {Z,n}-space. The case n=2 of this was already

known for elementary reascng: SPW(SQB 1s the infinite dimensional complex

srojective space. To see this, regard g¢ as the space of 2 homogeneous

complex variables {&Ojalj, and also as the space of linear funciions a. + &.z .,

0 1
Congider the complex préjectiye n-gpace cP”  as the space of n+4 1 homogeneous
variables Eaﬁ,al,...,aﬁ},, and also as the space of polynomials Z?jz@ 8 zig
Each polynomial factors lnto the product of n linear functions, and determines
thersby an unordered set of n elements of Seo This glyes & 1.1 corres-
pondence beltween SPH(SE) and CP", Letting n —> « yields the sbove
sgsertion.

It is easy té construct & space ‘X whose homology 1s zero save Eﬁ{ﬁ}
which ig prescribed, If HH(X} is a cyclic group of order &, let ¥ bhe
8" with an {n+l )-cell attached by a map of degree ©. If Hﬁix} is a
direct sum of cyclic groups, let X be a cluster of n-spherss having a
common point together with (n+l}-cells sttached to the spheres with sultabls
degrees.

411 of this can be done guite effectively. The guestion of the moment

is the effectiveness of the construction of SP"X. The latier, a8 &
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compley, sppears to have infinitely many cells in each dimension, “The fact

which renders the construction effective is a natural direct sum decomposition
[

of the chain complex C(SP XEs The basic step is a splitting into chain sube

complexes

(22,3) o(sPx) =~ c(aety) 4 i

The exlstence of such a subcomplex ﬁk is easily established in the language
of gemi-simplicial complexes as follows. et ¥ be semi-simplicial, let 1

denote the C-simplex which acts as the base point x., and let l@ be the

05
g~simplex {so}q 1. The kB power X° is taken in the sense of cartesian

products, and SPkX has as g-simplexes unordered sequénces Kl”’xk of
k=l

g-simplexes of ¥, BSuch a simplex is in BF "X if some xi'a iqg The
g-dimensional part of ﬁk is defined Lo be those g-chaine generated by chalns
of the form

3
{32@4‘} {Xl“ lq} ® 8 @ {x}c"’ lq}o

{It 48 clear thét expanding this product into a sum gives a chain of S?xx}s
Under a face or degeneracy operator, this expression reitains the same form or
becomes zero, Thus u§ is & chain subcomplex {FD-complex in the'langaage of
Eilenbeyg-MacLane}s‘ }
If we dterate the decomposition 22.3, we obtaln
c(s¥x) ~ £ U,

c{aP™) =~ 3;;0 Uy .

Passing to cobomology gives
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% = #
(22,5) H {(8PY) =~ I H (U )
By 22.3,
(22.6) H*(ﬁkg ~ 1 (sP°%, 59" %)

Sloce the finiteness of X (in each dimension) implies the same fo-» S?kx
there is no question sbout the effective camputability of U, eand E (ﬁ }
If X is connected, there is an additional fact: 31{15 ) =0 for i<k,

Thus for any dimension 49, the sum in 22.5 ig finite. 7o state it othervise:
{22.7} = EQ{SP‘“X} = Hq(SPk’X} for k> q.

Eiements of H*(Ek} are sald to be af.gggﬁ Ko We obtain then s -
natural bigrading of ﬁ%(SP“k} by dimension and rank, Dold [18] hae shown
that the deccmpositinn 22.5 dependa only on the homology groups of X, It .
f@li@ws that H {E;ﬁ) admits & natursl bigrading by dimension snd rank In
H {Tgn) the rank of & product i1s the sum of the ranks (for bomogeneous elements ),
In facti this he;ds in H {sP“k} whenever X is s suayeﬁsiana

When the decomgositioa by rank was discovered through the symmetric Pro-
ducts, 1% was then seen how to define it directly ‘through the constructions of
fartan. It follows that Cartaﬁ 8 methods of computation may be applisd 4o
compute effectively the homology of SPnX This is an old problem of algebraic
topology, and many bapers have treated speclal cases, ﬁ?ﬁ, Tor the first
time, we have & generally valid method,

The welding together of the two methods of congtruciing cohom@iag&
operations 1s not yet coamplete, By the methods described in §15, one can

define s homomorphism

2w & M) > B (3P)



which, for 7 = S{n), is an isomorphiem for 1arge r but not for all. Much

work remaing to be done to complete the glcﬁurea

§23. Spaces with two non-zero homotopy groups.

A good start has been made on the analysis of spaces with just two non-
zere homotopy groups. The rough oversll plcture is known but most of the de-
tails are missing.

First, we kﬂow how to comstruct such spaces, Suppose the prescribed

NOn=Zero groups are ﬁh(Y) =7, and Eﬁ(?} =7 with g>an. ‘The product

space K(m,n) X K{w',q) has the required homotopy groups; but there are many
others which are homotopically distinet, To obtain these, we must consider
fibre spaces baving K{w,n) as base and K{m!,q) for fibre. Recall {§21}
that W(r',q} is an acyclic fibre space over the base space K{(7',q+l) with
fibre K{w]q). Any mapping f: K{m,n} ——> K(7',q+l) induces & Ffibre space
¥, over K{w,n} with the same fibre {see [24, §101 ). sing & semi«
simplicial version of the classification theorem [24,8§19], 1t follows that
the assignment ,ef Yf o f sets up a 1-1 correspondence between equiva-
lence classes of such fMbre spaces and homobopy classes of mappilngs. That such
a Tibre space has the prescribed homotopy groups follows from the exaciness of
the homotopy sequence of the fibre Bpace {2%, §171.

The hometopy classification theorem of §19 dmplies that the homotopy
classes of mappings K{w,n} —> K{7’,q+l) sare in 1-1 correspondence with
the elements of HQ§E{¥QH;§*}, Thus to any clement k g HQ%&iﬁgngﬁgé corres-
ponds a homctopy class of epaces with the prescribed homotopy groups, in
fect this gives all such in & 1-1 manneyr, If Y has the prescribed homotopy
groups, there is a unigque k such that ¥ belonrs to the cluss corresponding

o k. This is scen by mapping Y’mmw& n{&,d 50 as Lo carry the fundamental
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class of K{w,n) into ﬁhai of ¥, and defining k{Y) g HQ+1{ﬁ}n§ﬁ@} to
be the primary obstruction io retracting the mapping eylinder of g dntc ¥,
The class k{Y) 4is called the Eilenberg-Maclane k-inveriant of ¥ (ses [12]).
Automorphisms of 7 and w' induce automorphisms of ﬁq¢l{wgngyé}s
ir kl and 32 £ HQ%l(vyn;ﬁ‘} are equivelent under such an automorphism then
the corresponding spaces have the same homotopy type. ‘Thus the homotopy type
provlem for such spaces reduces to determininé equivalence classes of elements
of HQ+l(ﬂ,n;ﬂ5} under such automorphisms. This problem 1s not yet solved,
In essence we know how to compute the group ﬁq¢l(ﬁgngﬁ’}§ but, if two
elements of the group are given, we do not know how to tell in a finite number
of steps, whether or not they are equivalent undef sutomorphisms of 7,7,
Recoll {§10) that, in the theory of obetructions, we have need of second.
ary cohomology operations {such as Ademsg @3} wiilch are defined only on the
kernel of an ordinary (primary) cohamol§gy operation. In §19 we have zeen
that any k ¢ H%+1(w;ﬁgnd} determines & primery operaetion T{k): for any

space X,
) B (Xgw) —> 58 (x50,

Farthermore k determines, as above, a fibre space ¥ over K(w,n} with
fivre K{r‘sq).

Each cchomolopy class v g HrfY;G} determines o secondary operation

defined on the kernel of T{k).

To see this, suppose u ¢ XR{X;H} lies in the kernel of {x). There is
& mapping  hy X —> K{w,n} which carries the fundamental clasg of K{w,n}
into u, and 1ts homotopy class is unique. Since T{kju = O, we must huave
éﬁk = 0 {see §19%, S8ince ¥ is the charnsteristic closs of ¥ {i.¢. tho

obstruction to 1ifting K{w,n) intc Y), there is o mapping  g: A ——> ¥ which



composes with the pyojection ¥ e K(m,n) to give h., Define the
secondary operation T(k,y}, when applied t% u; 1o be the set of images
g%§ for all liftings g of h. In the atable cagse 1 < n+g, one can
describe precisely the nature of the set T(k,yJz as followa, The reg-
triction of y 1o the fibre K{r',q) determines & primary cohomology
operation T{y): HHA7!) ~mmd> H (X;G). Then the set of possible images
gﬁy is obtained by adding one of them %o the image of T{y).

The result just proved emphasizes the importance of computing the co-
homology of Y. This problem has barely been touched, &5 8 fibre space,
we know the cohomology of its base K(w,n} and its fibre K{w',q), and
we know alsoc its characteristic cless k. This gives us a Bold on ite cow
homology structure via the spectral sequence., Bub we are far from having

it in our grasp.

§24. Postnikov systems

Spaces with three or more NON-28Y0 homotopy groups can be built by
continuing ﬁhé pattern of the preceding section, Suppose we wish to build
epaces having homotopy groups W, T, " in the dimensions n < g <7y
respectively., PFirst we bulld & space Y having tWwo non-zero homotopy
groups ¥, ¥' in the dimensions n, g. Let k ¢ HQ%l(wgnswij be iis
k-invariant. Now choose an element k' e Hr+l(Y§w”}a The homotopy classi-
fication theorem (§19) assims to k' a mapping £ ¥ e K{w",r4d ),

et ¥' be the fibre space over ¥ induced by £ and the aeyelic fibre

space Wiw",r) > K(7",r+1), Then Y' wme>> Y has kK(r",r) as its fibre;
snd therefore Y' has the reguired three non-zero homotopy groups,
Glven a fourth homolopy group, say o, 1o be inserted in the dimension

. : S+
8 >, we start with the ¥' abdve, choose a cohomology class k¥ g o %i§¥§§a}§



select a corrvesponding map Y -3 K{og,s+1}, and form the fibre spuce Y
over Y' induced by W(og,8) ~> K(g,s+l).

It is clear thail we have described a'semi«egfeétive mebthod @flhaildiﬁg &

great variety of spsaces using the Eilenberg-MaeLané‘complexes a8 bullding blocks,

The fact of the matter is that any space can be built, in the sense of homotopy
type, by a sequence of such constructlons. "This'i&aais due to Poginlkov [21].
Precisely, with any connected épacg X, we can assoclate a sequence of spaces

Xng n = ﬁf'l, 2, 000, & seguence of progéctions pn: Xﬁ w2 and &

17

sequence of mappings fn:_X - Xp such that ¥  is & single point, and for

0
each n > 0
{1} \?ri(xn) = 0 . - for i >n,
{113} L ”i{K} R:ﬁi(XnB | for ;ig 1,
{411} pnfn o fnf-l 5

{iv) X, is s fibre space over X .o vith respect to ,, the fibre is a

{ﬁﬁix}yn}wspace and can be taken to be Kiﬁ%{X},n}§

Such & system is called a Fostnikov system for X, It is not unigque but any
tWo {Xn}, iX’n} are egquivalent in the sense that there are mappings
Xn o X?n — Xn which give a homotopy equivelence, and, in fact, a fibre

bomotopy eguivalence of the Tibre spaces Xn o Xﬁ and X?ﬁ —_— X

=1 n=1°
This is indeed s most interesting way of éisseciing a spacs, Topro-

vides a fresh pelnt of vlew, ‘and ralses many questions whose answers moy cast

iipht on our basilc problems. Some useful answers have already besn obiained,

E.H. Brown [6] has proved the following theorem:

If ¥ dis o Tinite complex which 1s comnnected and simply-connected, then

a Fostnlkov systenm for X is. effectlvely constructible.




An immediste corollary is that the homotopy groups of X are effectives
ly computable. At one time this problem wes thought to be of the same order
of magnitude as the exitension problem itself. It was regarded as a basic
weakneés of obstruction theory that it used homotopy groups as cosfficients
when these groups were not knowmto be computable.

t may be useful to conclude with scme questions supgested by these
results. Can Brown's result be improved? If ¥ is a finite connected
complex, and the word problem for ﬁjﬁx} is effectively solvable, does it
follow that a Postnikov system for X is effectively constructible? A usge
ful special case is that in which ﬁiﬁx) is abelian. It will be important
to find efficient methods of computing the Pasﬁnikpv systems of specisl kinds
of spaces such as spheres and spaces with one or twe non-zeroc homology groups.

Perhaps 1t 1s more important to analyse the basic extension problem in
terms of the Postnlkov systems of the spaces involved in the problem. Brown
has given a partial result in this direction,

Let X, ¥ be finite simplicial complexes, let A be a subcomplex of X,

and let hi A ——> ¥ be gimpliclal. Alsc let Y be simply-connecited and such

that Hq(Y;Z} iz a finite group for all g > 0. Then there is a Tinite DroO-

cedure for declding whether h  is extendable to a mapplog K ——> ¥,

This result 1s obitained by studying a Postnikov system for Y. The res-
triction that each EQ{Y) be finite is most severe, and should ultimately be
UNECeS53aTY.

It may be that what is needed is o method of dissecting e mapping {or its
homotopy class) similar to the disscetion of 5paces, one esn always treat a
mopping us an inclusion mapping (into the mapping cylinder ). This suspests

trying to construct simultaneous Postnikov svetems for o pair conslsting of &
{ S }

space and o subspaco. galn, & mapping is always homctoplically eouivolent Lo
# PP d ¥
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the projection of some fibre space onto its base. Starting with such =

rrojection one can represent i as the composition of & sequence of fibre

space projections for which the successive fibres are Eillenberg-Maclane

complexes. This ig done by dissecting the original Ffibre a homotopy group

at & time., How effective is this procedure? How does it behave under SO

positicne of meppinge? It is easy to ask gquestions, it is hard to find good

ones.
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