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On the formal definition of categories™

By
JOHANN SONNER

This paper is an attempt to modify set theory in such a way as to provide
for the existence of objects (like the category of groups) indispensable in
modern mathematics. Guided by the ideas of TARSKI, VON NEUMANN, BER-
NAYs and GODEL, and inspired by the rapid development of category theory,
we are going to describe axiomatically a generalized set theory J, which is
stronger than the set theory J, (in the sense of [3]). It follows that every
theorem of , is a theorem of 7, a fact which is very convenient since most
mathematical theories are tacitly assumed to be stronger than J. For this
end, we consider sets called universes which are stable with respect to the
elementary set-theoretical operations. The proposed set theory T, differs from
the usual one in a single axiom: Instead of the existence of an infinite set
we require the existence of arbitrarily large universes. This in turn guarantees
the existence of an infinite set. Recently, the author was told that Grothen-
dieck uses a similar approach. He (reputedly) employs an axiom which is
equivalent to our axiom A 5’. Each axiom of 7 is introduced with the under-
standing that one risks having to abandon this axiom one day if it leads
to a contradiction. (Compare this standpoint with the famous address of
N. BourBaki delivered at the eleventh meeting of the Association for Symbolic
Logic, 1948 [2]). The reader will find axioms and further references on the
TARSKI, vON NEUMANN, BERNAYS, GODEL system in [1], [4], and [9]. The
logical difficulties encountered in dealing with categories are exhibited in [4]
and [14] together with literature on the subject.

The paper is intended for the working mathematician who is familiar
with Bourbaki’s approach to formal mathematics (see [3]; also [11], appendix).
The reader is not required to know about ‘‘non-simple applied first-order
calculus”” in order to understand its contents. The proposed set theory is
treated like any other mathematical theory (e.g. group theory), its axioms
and schemes being given explicitly. They comprise all the rules which are
necessary for logical deductions (logical theory), for defining quantifiers
(quantified theory) and for working with the equality sign (equalitary theory).
These rules are usually separated from set theory and thrown into first-
order calculus (see [4]).

To facilitate the reading of this note we review formal mathematics in
the first section; the emphasis is on collectivizing relations. Universes are

* This work is part of research sponsored by the U. S. Army Research Office (DURHAM).
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defined and studied in sectton two. They are closely related to Tarski’s in-
accessible sets and Lévy’s standard complete models (see [13], [15] and the
discussion at the end of the paper). In conformity with general definitions
we describe, in section three, a theory J,, called the strong set theory, by
giving its signs, writing down the axioms and schemes, and hoping that it
is non-contradictory (otherwise every statement would automatically be true).
For the sake of completeness, the definitions of categories and functors are
recalled in sectton four, and a systematic terminology is suggested. Examples
which show how the axiom of the existence of arbitrarily large universes
can be used to construct categories (including a category of functors), are
established in section five. We do not succeed in guaranteeing ‘“‘the’ category
of groups, say, but rather “‘a’’ category of groups which, however, may be
chosen as large as one pleases.

One might ask whether it is really necessary to invent stronger set
theories. Since every assemblage starting with «let X €% where ¥ denotes
a category of groups ...», could easily be replaced by «let X be a group ...»,
the answer is “‘no’”’. However, our minds like to ‘“‘collect” objects which
possess the same property. In addition, categories shorten otherwise lengthy
statements and permit the mathematician to think in familiar terms. It is
for this reason that we searched for a grammar to an already widely used
language which would guarantee the existence of categories without en-
dangering the results of contemporary mathematics and the methods employed
for deriving it.

Throughout this paper, the terminology of [3] is employed. No effort is
made to show that the strong set theory J, is non-contradictory. I am in-
debted to Dr. HELMUT ROHRL who experimented with the axioms in a course
on categories given at the University of Minnesota, and who encouraged me
to publish this paper.

1. Collectivizing relations. Recall that formal mathematics is a language
built up by logical signs (O, =, v, 1), letters (a, 4’, ...; 4, 4’, ...) and specific
signs (=, €, D, ...) all together referred to as signs. Assemblages are defined
as juxtapositions of the signs; they represent the words in our language.
Terms and relations are distinguished by formative constructions; they re-
present the objects and the statements made about the objects. Starting
from axioms, theorems are introduced by means of proofs; they represent
the true statements. The relationship is illustrated by the diagram below.

Assemblages

SN

Terms Relations

N

Theorems

Definitions serve to abbreviate cumbersome assemblages using shorter
symbols or phrases of the common language; the assemblages in question



On the formal definition of categories 165

are not required to be meaningful. There are two types of axioms: explicit
ones and implicit ones which are derived from schemes by specialization.
In particular, the set theory is a mathematical theory in the fullest sense,
defined by axioms and schemes. If, in a theory, a relation and its negation
are true, then the theory is called contradictory. (In this case, every relation
is true.) Frequently — as in the theory of groups — we tacitly assume that
the theory we are working in is stronger than the theory of sets. A letter
which appears in an explicit axiom is called a constant of the theory. Note
that the theory of sets is without a constant, while the theory of groups
possesses two constants (the group and the composition law).

Rules which simplify proof procedures and which strictly speaking belong
to metamathematics are called criteria.

One of the most important features of the set theory is the provision for
forming certain sets. In order to illustrate this point, consider the subsets
of X. We are faced with the question of whether there exists an object whose
elements are precisely the subsets of X. If this is true (as in the set theory)
we say the relation ¥ CX is collectivizing in Y.

More precisely, for every relation R, the term

() 7,((V#) (xCyeR)
is denoted by &,(R) and called «the set of the x such that Ry.
Furthermore, the relation

(%) @) ((V %) (x€y=R))

is denoted by Coll,R and called «R is collectivizing in x». (t,(S) may be
interpreted as «the privileged y such that S»). We emphasize that nothing
prevents us from forming the set &, (R) whether R is collectivizing in ¥ or not.

CRITERION 1. If, in some theory I stromger than the set theory, R is a
relation collectivizing in x, then the velations
x€E,(R) and R
are equivalent for all x.

Indeed, Coll,R is an abbreviation of (xx), which in virtue of (*) and the
definition of the existential quantifier can be written in the form

(&, (R)|y) (¥ %) (x€y=R)).
(V¥ %) (x€&,(R)=R)

is a theorem of 7. (Conversely, the last relation implies that R is collectivizing
in x.)

Hence, the relation

Exampres. 1) The relation x€y is collectivizing in x, because (V x)
(x€ye>x€y) hence (32) (V) (vCze>x€y) are true. Therefore, the rela-
tions

¥C€E,(xEY) and x€y
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are equivalent for all x. In general, the relation x€ &, (R) is typographically
simpler than the original relation R.

2) Let R be a relation, 4 a term, x a letter which does not occur in 4.

If the relation R=(¥< 4) is a theorem, then R is collectivizing in x (criterion
Cs520f [3]).

2. Universes. In what follows, we are reasoning in a theory J stronger
(i.e. based on more axioms) than the theory of sets deprived of the axiom
A5 (see [3])

DerFiniTION 1. We say that M is a universe if the following conditions
are fulfilled:

(Uy) (VX)(XEM X(M))

(Un)  (YVX)((XEM)=(B(X)EM)).

Um) (VX)(VY) ((XEMA YeM)=({X, YIeM) )
(Uy) (YX)(VY)(XEMAYEM)=(XXYEM)).
(

Uy) (YD)(VX)(IeMAXeM)=UXEM)).

ExampLE. The empty set @ is a universe.

PROPOSITION 1. Subsets and quotient sets of elements of a universe M
belong to M.

Indeed, XY €M implies X€B(Y)eM by (Uy), hence, XM by (Uy).
The second part of the proposition follows immediately from (Uy) and the
first part.

ProPOSITION 2. Let M be a universe. Then M :YgMY.

In virtue of (Uyy), X€M implies X € {X}EM, hence X¢Y for some
Y€M. On the other hand, X €Y for some Y € M resultsin X € M due to (Uy).

PROPOSITION 3. Let M be a universe. X €M implies M{ X.

Assume for a moment that M (X for some X&€M. Then A M would
imply A€M by prop. 1, hence P(M) M. Write a for Card (M). It would
follow that 2°=<a, which is absurd, the Cantor theorem being true in 7.

CoroLLARY. For every universe M, M ¢ M.

THEOREM 1. Let M be a universe. X €M implies Card (X) < Card (M).

Indeed, YCXEM implies YEM (prop. 1), hence P (X)C M. Let a be
Card (X). Then a<<2°=<Card (M), again using Cantor’s theorem.

COROLLARY. If the empty set O belongs to a universe M, then M is infinite.

Apply (Uyp) and theorem 1.

REMARK. (Uj) and theorem 1 together read: X € M =X M A Card (X)<
Card (M). With the implication sign reversed: X (M A Card (X)< Card (M) =
X €M, we obtain precisely Tarski’s axiom (A,) (see [15]) which we shall
need only in the much weaker version (Uyy).
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PROPOSITION 4. Let M be a uwiverse. Assume that I€M and X €M
Then:
a) NXEM, provided 1=9.
b) UXeM.
c) 2XeM.
d) TXeM.
We remark that N XX, for some €I, which settles a) by prop. 1.

Caseb) is merely a repetition of (Uy). As for c), write XX in the form
.EJI(X ;x{i}), and apply prop. 1, (Upy) and (Uy). Finally d) follows from the
fact that JTX CPB(I xUX); use (Uy), (Ur) and (Uy) to conclude.

COROLLARY. Let M be a universe. Assume that XM and YEM. Then:
a) XnYeM.

b) XuYeM.
) X+«YEM (sum).
d) XxYeM.
e) (X,Y)eM.

C

For a) to d), note that {X, Y}€M (Uyy); for e) observe that (X, Y)€
{X}x{Y}eM.

PROPOSITION 5. Let M be a universe. Assume that X €M and YEM.
Then:

a) YXc M.
b) F(X, Y)EM.

Indeed, YX is a subset of B(X xY)€M, while F(X,Y) is a subset of
PXXY) xPX) xB(Y)EM.

3. The strong set theory: Axioms. Axiomatic set theory in the sense
of [3] or [11], appendix, does not provide any means for distinguishing sets,
classes, super-classes etc. (In other words, it is not a type-theory.) Although
an intuitive interpretation of certain signs can be achieved through the
axioms, no intrinsic meaning is attached to them.

We call strong set theory the theory whose relational signs are =, ¢,
and whose substantific sign is 0. As far as axioms and schemes are con-
cerned, we keep the axioms A 1 to A 4 and schemes S1 to S8 of [3], and
we replace A 5 by the axiom

A5 (VX) @M) ((XEM) A (M is a universe)).

REMARK 1. Axiom A 5’ does not make axioms A 2 and A 4 superfluous.
One could, for example, try to argue as follows: There exists a universe M
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such that X€M. Hence, Y X implies YEP(X)EM, hence YEM; apply
C52 of [3]. However, Y (X does not imply Y €3 (X) except if we know
in advance that the relation Y (X is collectivizing in Y. A slight change
in the definition of universes would remedy the situation; simply replace
(Un) by

(VX)(XEM)=@AZ)(ZEMANVY)(YEZ&Y CX))).

For methodical reasons, we like to keep A 2 and A 4 in the present form.

From now on, we are reasoning in a theory .7~ stronger than the strong set
theory ;. '

THEOREM 2. There exists an infinite set.

Indeed, the axiom A 5’ guarantees the existence of a universe M such
that @€ M. Moreover, M is infinite in virtue of the cor. to theorem 1.

CRITERION 2. The strong set theory I, is stronger than the set theory T .
In particular, every theorem of T is a theorem of I .

This follows immediately from theorem 2.

ProrosiTiON 6. Let M be a universe. If NC M, then Z, Q, R,C, and K
belong to M. In particular, there exists a universe M, which contains N, Z, Q,
R,C, and K as clements. (N, Z, Q, R, Z, K, denote resp. the set of the natural
integers, the rational integers, the rational numbers, the real numbers, the complex
numbers, the quaternions).

Z, Q, R are subsets of B(NXN), B(ZxZ), B(P(Q)) respectively, which
belong to M in turns. C is a quotient set of R™ which is a subset of RVN¢ M.
Similarly for K. The second part of the proposition is a consequence of axiom
A 5’ and the first part.

REMARK 2. The second part of prop. 6 could be proved independently
in the following way: By A §’, there exists a universe M such that {N, Z 0,
R,C,K}c M. Then apply property (Uj) of universes.

4. Categories. For the sake of completeness, we recall in this section the
definitions of categories and functors in a form which is in conformity with
[56], [7], [10]. We introduce a systematic terminology which applies not
only to abelian categories but also to non-abelian categories. The reader will
notice that this section is independent of the preceeding ones, the reason
being that axiom A 5’ can be dispensed with in the definition of categories,
but not for showing the existence of categories as will be done in the next
number.

A. MorpHISMS. Let (x,y)—>xTy be a (not necessarily everywhere
defined) internal composition law between the elements of X, with graph G.
We say the pair (x, y) is composable (or, by abuse of the language, xTy
is defined) if (x, y) €pr,<G>. Note that, if for instance (x 1) T2 is defined,
then (x,y) and (x Ty, 2) are composable. e is said to be a neutral element
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if eTx=x and xTe=2x whenever the left side is defined. Note that the
composite of neutral elements is neutral.

DEFINITION 2. We say (%, %) is a category if € is the graph of an internal
composition law (f, g) —fog between the elements of F verifying the follow-
ing axioms:

(MO;) If one of the elements (fog)o/, fo(goh) is defined, then so is the
other, and they are equal.

(MOy;) If fog and goh are defined, then so is (fog)oh.

(MOyyy) For all €&, there exist neutral elements ¢ and ¢ such that foe
and ¢'of are defined.

The elements of a category are called morphisms (or maps; jections in [5]);
the neutral elements are referred to as objects (or identity maps). The set
of the neutral elements of a category & is denoted by #,.

REMARK 1. Designate by %° the opposite structure on #, i.e., the set
of the triples (f, g, #) such that (g, f, h) €. If € is the graph of the compo-
sition law (f, g) —fo g, then €° is the graph of the composition law (f, g) ~go I
Obviously, (8°, #) is a category called the opposite of (¥, F).

If (f, ¢) and (f, ¢’) are composable, then foe, which equals f, is composable
with ¢/. We infer from (MO;) that (e, ¢') is composable, hence e=e¢oe'=c¢".
Similarly for composable pairs (¢, f), (¢, f). The privileged neutral element ¢
such that foe=f (resp. eof=/) is called the right (resp. left) unit associated
with f, and is denoted by a(f) (resp. B(f)). Some authors (e.g. [5]) call it
source (resp. sink). Note that, if (f,g) is composable, then «(fog)=ua(g)

and B(fog)=p(f). In fact, if for example (fog, ¢) is composable, then so is
(g, ¢) by virtue of (MOy).

PROPOSITION 7. In a category F, the pair (f, g) is composable if and only
if a(f)=Bg).

Let e be neutral. If foe and fog, which equals (foe)og, are defined,
then so is eog by (MO;). On the other hand, if foe and eog are defined,
then so is (foe)og, which equals fog, in view of (MOyy).

For the remainder of the paper, we denote, for each category &, by
F(a, b) the set of the morphisms of # whose source is ¢ and whose sink
is b. Instead of f€F (a, b) one frequently writes f:a—b.

In order to facilitate the intuitive interpretation, the following terminology
is employed in connection with categories:

We say [ is a monomorphism (resp. epimorphism) if there exists g such
that gof (resp. fog) is defined and neutral. In this case, g is called a retraction
(resp. section) associated with f; if g is both a retraction and a section asso-
ciated with f, then f is called an isomorphism. (The corresponding algebraic
terminology is ‘‘symmetrizable’’.)

Mathematische Zeitschrift. Bd. 80 12
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We say f is an imjective (resp. surjective) morphism if fog=foh (resp.
gof=hof)implies g=#; f is a bijective morphism, if it is both injective and
surjective. (The corresponding algebraic terminology is ‘‘regular’.)

It is clear that the composite of monomorphisms (resp. epimorphisms,
isomorphisms, injective surjective, bijective morphisms) is of the same type.

ProposITION 8. Let f be an element of a category F. [ is an isomorphism
if and only if f is a monomorphism and an epimorphism.

The necessity is clear. For the sufficiency, let » and s be such that 7o f
and fos are defined and neutral. By (MOy), the pair (rof, s) is composable,
which due to (MOy), yields s=(rof)os=ro (fos)=vr.

The privileged element g such that gof and fo g are defined and neutral,

is called the reciprocal to f, and is denoted by f In particular, f is reciprocal
-1

to f, and we have oc(f) B(f) and B(f )1 o(f). Indeed, foa(f) which equals
-1 1

f is composable with f. We note from (MO;) that (a(f), f) is composable,
-1
hence a(f)=p(f). Similar in the other case.

PROPOSITION 9. If f is a monomorphism (resp. epimorphism, isomorphism)
and g a retraction (resp. section, reciprocal) associated with f, then f is injective
(resp. surjective, bijective) and g surjective (resp. injective, bijective).

If f is a monomorphism and g a retraction associated with f, then gof
is defined and neutral. Assume that fou=fov. Then by (MOy), go(fou)
and go (fov) are defined, yielding #=(goflou=go (fou)=go (fov)=(gof)ov
=v in virtue of (MOy;). Similar in the other cases.

REMARK 2. Most authors use monomorphism (resp. epimorphism) synony-
mously with injective (resp. surjective) morphism. Compare proposition 8 with
the example of a continuous function which is both injective and surjective
without being an isomorphism of topological structures. On the other hand,

the canonical embeddings em; of a; into the direct sum ), ¢, and the canonical
i€l
projections pr; of the direct product []a; into a; are monomorphisms and
i€l
epimorphisms respectively, provided that for each pair (4, £) of indices, there
exists a morphism f,;:a;—>a;,. (For the definition of direct sums and products,
compare [6]. Unfortunately, direct sums are called inverse products by
EckmaNN and Hirton, which is not in conformity with general usage. Note,
however the use of ‘““free product’ in categories of (not necessarily commu-

tative) groups.)

DEFINITION 3. We say (4, v, w) is a standard decomposition of f if
f=wuovow and if » is injective and w surjective. We say («, v, w) is canonical
decomposition of f if it is a standard decomposition, and if for every standard
decomposition (%', v, w’) of f, there exist morphisms ¢ and ¢ such that
u=u'op and w=yow'
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PROPOSITION 10. If (u, v, w) is a canowical decomposition of f, and (u', v', w')
a standard decomposition of f, then there exists an injective morphism @ and a
surjective morphism p such that u=u'o g, w=yow’ and v'=govoy. If, in
addition, (w',v', w') is canonical, then @ and y are isomorphisms.

Assume that gog=goh. Since («',¢) is composable, we conclude
uog=uoh, hence g=h: g is injective. Similarly, goy=hoy implies g=h:
p is surjective. By the same token, w'ov’ow’=u'o@ovoyo w' results in
v'=g@ovoy. If in addition, (¥, v', w') is canonical, then uw=u"o @, 4’ =uo¢’,
w=yow, w' =y ow for some morphisms ¢, ¢, y, ’. The first two relations
yield u=uog'o @, w'=u'ogog’, hence, a(u)=¢'op, a(w)=gog’. To finish
the proof, start from the last two relations.

From here on, additive and abelian categories F may be defined by making
each & (a, b) into a commutative group. See [10]and, fora generalization, [12].

B. Funcrors. In slight modification of general definitions (functor: re-
presentation of the category structures), we propose:

DEFINITION 4. We say T is a covariant functor defined in (€, F) with
values in (€', F') if T is a quintuple (4,6, F,€', F') such that

(FU,) (€, %) and (€', F') are categories, and (9, F, F') 1s a function ;
(FUy) e€F, implies T(e) €Fy ;
(FUyy) If fog is defined, then so is T(f)o T'(g) and one has T(fog)=T(f)oT(g)-

We say T is a contravariant functor defined in (¥, #) with values in
(€', #') if T is a covariant functor defined in (°, #) with values in (¢', #')
where %° indicates the opposite structure. (By T'(f), we mean the privileged
element f' such that (f, f)€%9.)

PROPOSITION 11. Let T be a functor. If eis a right (vesp. left) unit associated
with f, then T(e) is a right (vesp. left) unit associated with T (f), and one has
T(«(f) =a(T(1)), T(B()=B(T7)-

Indeed, if f is composable with the neutral element ¢, then T (f) is
composable with the neutral element T (¢), due to (FUy) and (FUpy).

PropPOSITION 12. Let T be a functor. If f is a monomorphism (vesp. epi-
morphism, isomorphism) and g a retraction (resp. section, reciprocal) assoctated

with | then T(f) and T(g) share the same property. In particular one has
-1 -1

(=1
Consider for example the case where gof=e¢ with e being neutral. Due

to (FUyy), T(g)o T(f) is defined and we have T o T(H)=T(gof)=Tle),
which belongs to &%, in virtue of (FUy).

Let S (resp. T) be the term (9, %, #, €', ') (resp. (', €*, F*, ¢, F')).
By abuse of the language, the term (#o¥, ¢, F,¢", F") is denoted by
T o S andiscalled the composite of T and S. We say the pair (T, S) is composable

12+
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if (¢* F*)=(€',#'). In this case, ToS is a functor provided T and S
are functors.

DeFinNiTION 5. We say @D is a natural morphism of T into S if the follow-
ing axioms are verified.
(NA;) T and S are functors defined in (%, #) with values in (¢’, #’), and
& is a function defined in %, with values in %"

(NAp) For all f€#, the elements @ (B(f))o T(f) and S(f)o P («(f)) are
defined and equal.

If for allec #,, P (e) is a monomorphism (resp. epimorphism, isomorphism),
then @ is called a natural monomorphism (resp. epimorphism, isomorphism).

ProposITION 13.  Let @ be a natural morphism of T into S. For every
e€ F,, we have o.(D(e)) = T'(e) and B(D(e)) =S (e).

Note that @(e)o T(¢) (resp. S(e)o D(e)) is defined in virtue of (NAp).

5. The strong set theory: Applications. We discuss three illustrative
examples.

1. Recall that a group is a pair (V, X) such that V (the group structure)
belongs to B (X X X x X) and that (V, X) verifies the group axioms (associa-
tivity, existence of a neutral element, existence of symmetric elements).
In particular, (V, X XX, X) is a function, called composition law between
the elements of X. Recall further that a homomorphism of a group (V, X)
into a group (V’, X’) is a function (G, X, X’) preserving composites. For
our purposes, it is convenient to introduce quintuples (G, V, X, V’, X’) (see
[3], Chap. II, 2, n®2; if x is a quintuple (x,, ..., x;), write pr;x for ;) and
to call them group morphisms, provided that (V, X) and (V’, X’) are groups,
and that (G, X, X’) is a homomorphism of (V, X) into (V’, X’). Obviously,
a group (V, X) can be identified with the group morphism (4x, V, X, V, X)
where 4y stands for the diagonal of X x X.

Because (X, X')c M xM implies

) {(G, V,X, V', X E(y,y»)ngM(qs(YXY,) XP(Y XY XY)x{Y}x

XPY' XY xY)x{Y"}),

the relation «x is a group morphism A (pryx, pryx) €M x M » is collectivizing
in x (criterion C 52 of []), resulting in a set ¥, called the set of the group
morphism of type M. In other words, ¥, is the set of the group morphisms
(G, V,X, V', X') such that X€EM and X'€M.

If M happens to be a universe, then (1) can be replaced by
GV, X, V', XNEP(XXX')XB(X xX xX) X
{ X{X}XPBX' X X' x X' ) x{X}eM,
resulting in ¥, € P (M).

(2)
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Evidently %,, can be endowed with a composition law (f, g) —fo g, defined
for all composable pairs (f, g) of group morphisms. Let %, be the graph
of the composition law. Then (€,;, %)) is a category called the category of
the group morphisms of type M. Its objects are the morphisms (4dy, V, X, V, X)
which can be identified with the groups (V, X). Notethat:a (G, V, X, V', X") =
A, V, X, V,X), and B(G, V, X, V', X)=(dy., V', X", V', X').

While, up to now, all the constructions were possible in T ,, it is a special
feature of the strong set theory Z; that M may be chosen as large as one
pleases. For instance, there exists M such that the classical groups (the
additive group of the rational integers, the multiplicative group of the rational
numbers ==0, etc.) belong to %,,: Take a universe M satisfying N¢ M, and
apply prop. 6.

If the preceding construction is repeated with structures of species X
and ¢-morphisms in the sense of [3], chap. 4, one eventually arrives at the
category of the (X, o)-morphisms of type M, each (X, ¢)-morphism being a
quintuple ((Gy, ..., G,), V, (X, ..., X,), V', (X1,..., X)), where V and V'
are structures of species X on (X, ..., X,,) and (X3, ..., X,) resp., and where
((Gy, Xy, X1), ..., (G,, X,,, X;)) is a o-morphism of (X, ..., X,), endowed
with V, into (X{, ..., X;), endowed with V’. Again, the set of the (2, 0)-
morphisms of type M can be made as large as one pleases by choosing M
sufficiently large.

2. Consider now different categories as well as functorsof onecategory into
another. Note that functors were already defined in such a way as to uni-
quely determine the category of departure and the category of arrival, i.e. the
functors are category morphisms. Obviously, a category (¥7, Z) can be
identified with the functor (Ag, ¥, &, V", Z).

As in example 1., the relation «x is a functor A (pry¥, pryx) €M’ xXM'»
is collectivizing in «, yielding a set %}, called the set of the functors of type M'*.
In other words, ;. is the set of the functors (¥4, ¥, &, ¥, Z') such that
ZEM' and Z'€M’. If M’ happens to be a universe, then . € B (M’).

Evidently, 23, can be endowed with a composition law (T, S)—>To S,
defined for all composable pairs (T, S) of functors. Denote the graph of
the composition law by ;. Then (€, #r) is a category, called the category
of the fumctors of type M'. The objects are the functors (4z,%, #, %, F)
which can be identified with the categories (¢, #). If M and M’ are universes
such that NE M€ M’, then ;. contains the classical categories of type M.
This answers the first question posed by MACLANE in [14]. However, we
do not know whether £, belongs to M’.

3. For a category (¥, Z) and an element f of &, let «(f) (resp. B(f)) be
the right (resp. left) unit associated with f. It is clear that a long exact

sequence 0——>eoﬁ> elﬁ> ez—ii e;3—0 of morphisms of an Abelian category (7", Z)

* In conformity with examples 1 and 2, one could call Z a set of type M if M is
a universe and if each element of 2 belongs to M.
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can be represented by a triple (f, fs, fs) EZ XZ X & such that «(fy)=¢,,
B (fs) =e3, together with the conditions for exactness. The set & of those
long exact sequences is a subset of &' X% X%, which yields Ext?(e;, ¢y) C
B(E) CBEXEXE). If (¥, %) is a category of type M’, where M’ is a
universe, then Ext2(e;, ¢y) CM’. Again, one can choose M’ as large as one
pleases. For example, let M and M’ be two universes with M€ M’. Take
for & the set ¥ of the morphisms of commutative groups of type M. Then
%S, and Ext2(e,, ¢,) belong to M’. One can easily extend Ext? to a function
mapping %5 X %5 into the set %% of the morphisms of commutative groups
of type M’. This settles the second problem in MacLane’s paper [14]. The
remaining two problems can be treated in a similar fashion.

REMARK. 1. In example 2., we mentioned that we do not know whether
Ay belongs to M’'. The following criterion clarifies this situation:

CRITERION 3. Let T be a theory stronger than the set theory J,. Let R be
a relation of T, and x, %', y distinct letters, y not occuring in R. Assume, that
the relations

(0 (x’(xAR§x§)=>R§x'§;
(Il) RS, (R)E;
(ITT) Coll,R

are theorems of . Then I is contradictory.

Due to (I) and (II), A&, (R) implies R§{A}, hence A €&, (R) by (III).
We have P(&,(R)) &, (R). Writing a for Card(&,(R)), we obtain 2°<a.
On the other hand, a<<2® is a theorem of J, hence of J. Therefore, J is
contradictory.

Historical Note. A survey of the pertinent literature reveals three ap-
proaches to modified set theories.

The most widely used logical system distinguishes between sets and classes.
It was invented by ZErRMELO and FRAENKEL, and refined by voN NEUMANN,
BernAavs and GODEL. Unfortunately, this two-type system does not provide
for the existence of classes of classes. We mention, however, that the Zermelo-
Fraenkel system gives us an excellent motivation for the choice of the defi-
nition of universes. Indeed, if one formalizes the statement «X is a set»
by «X €M » where M is a constant, then the relations (Uy), (Uyy), and (Uy)
of definition 1 turn out to be translations of the axioms (IV), (III), and
(VI) of [1], pp. 6, 7, 8. (Note that (U)) is tacitly assumed in [1], while the
introduction of (Uyy) depends largely on the concept of (ordered) pairs;
compare [3], Chap. II. §2, exerc. 2.)

If one iterates the idea of ZERMELO and FRAENKEL, one arrives with
necessity at super-classes. An interesting, but highly technical, version (which
is beyond the scope of most practical mathematicians) of such a procedure
was recently described by A.LEvy in [13]. His model-theoretic approach
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to inaccessible cardinals uses a definition of standard complete models which
not only involves the signs of a set theory 7 in question but also its axioms.
More precisely, one obtains the definition of a standard complete model with
respect to 7~ by relativizing the quantifiers in the axioms and schemes of 7.
By adjoining, to 7, an axiom which requires the existence of a standard
complete model with respect to .7, one arrives at a theory J', say. By
adjoining, to 7', an axiom which requires the existence of a standard complete
model with respect to ', one arrives at a theory J ", say. This process
can be continued by transfinite induction, and leads to a Aierarchy of set
theories, which, for mathematical purposes, is inconvenient and confusing.
(For example, on which set theory should one base group theory?) It is
easy to see, that a standard complete model with respect to the set theory
T, (in the sense of [3]) differs only slightly from a universe. Indeed, relati-
vizing A 1 to A 4 results (essentially) in A1, (Upy), A 3, and (Uy), while S8
is responsible for (Uy) and the criteria C 51, C52, and C 53 of [3]. (Note
that (U;) is incorporated in the definition of standard complete models.)

In order to avoid a hierarchy of set theories, and yet be able to climb
higher and higher to sets which are sufficiently large for applications, one
has only to go back to Tarski, and revive his ideas with respect to the
existence of arbitrarily large inaccessible sets within the framework of a single
set theory. The meaning of the phrase ‘‘sufficiently large for applications”
being ambiguous, we replaced in this paper Tarski’s inaccessible sets by
universes. The difference is only slight: Tarski’s relations (A;) and (Ag) in
[15] are equivalent to (U;) and (Uy) respectively; (A,) implies (Uyy) provided
M is infinite. As before, the introduction of (U;y) depends on the concept
of pairs which, in the case of TARsKI, is taken from [8]. The important
axiom (Uy) is missing.

Let me resume, that, even if axiom A 5’ is not quite original, and some-
what narrow for the logician, it is the simplest device available to construct
cffectively categories. To the best of my knowledge, this idea was never
pursued in the literature.
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