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The object of this work is to present a definition of a
two-dimensional conformally invariant quantum field theory in
mathematical language, and to describe the basic examples. I hope this
will be helpful to mathematicians who are interested in physics; but
apart from that there are several areas of pure mathematics where
conformal field theories seem to play a fundamental but quite

unexpected role. I shall give five examples.

(i) The "monster" group of Griess-Fischer is the group of
automorphisms of a fairly simple and natural conformal field theory.
The graded representation of the monster group whose Poincaré series is
the modular function j is the basic Hilbert space of the field theory,

and Griess's non-associative algebra is also part of its structure.

(ii) The representation theory of loop groups and of the group
Diff(S') of diffeomorphisms of the circle is greatly illuminated by
conformal field theory. 1In particular the modularity properties of the

characters of the representations fall into place.

(iii) Field theory shows how the representations of Diff(S') are
related to the geometry of the moduli spaces of Riemann surfaces. Thus
the universal central extension of Diff(S') "is" the determinant line
of the 3-operator on Riemann surfaces; and Mumford's classification of

the holomorphic line bundles on moduli spaces can be simply proved.



(iv) Some, at least, of Vaughan Jones's new representations of
braid groups arise from field theories, and his classification of
subfactors in von Neumann algebras is reflected in the classification

of field theories.

(v) The new "elliptic" cohomology theory of Landweber-Stong and
Ochanine is undoubtedly connected with conformal field theory, though

the connection is still mysterious.

This work is intended to be a coherent and self-contained
exposition of material which is essentially well known. It contains no
new results. The different sections are fairly independent, and aimed
at slightly different readers: they are not meant to be read in order.
The recent wave of interest in conformal field theory began with the
well-known paper [BPZ] of Belavin, Polyakov, and Zamolodchikov, but
I have not attempted the difficult task of indicating the history of
the subject, or the provenance of particular ideas. I should like to
point out, however, that two features of my exposition which I thought
original when I wrote the first versions of this work, namely the
em ohasis on the semigroup A in 82, and the algebraic model of the
fermion theory in 88, had been developed independently by Neretin
[N{],[N.]. Apart from that I am greatly indebted to very many people
who have taught me about the subject, especially Deligne, Frenkel,
Friedan, Quillen, and Witten. Quillen was originally to be a joint

author.
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gl. Introduction

I shall begin with a schematic description of the situation we
want to axiomatize. Suppose that a string in the form of a circle §'
is moving about in a manifold M. The configuration space of the system
is then the loop space LM, and the quantum states are the rays in a
Hilbert space ¥ of complex-valued wave functions on {M. The evolution
iHt

of the system is described by a one-parameter group {e } of unitary

HT

operators in ¥. If T > 0 the contraction operator e~ is an integral

operator in "ﬁ:

o = [ KBy (1.1)
iM

where the kernel KT is of the form

Ko (r,v') = [ e (D g5 (1.2)

the integral being over all paths o : [0,T] -» LM from v to v', i.e.
over all maps ¢ : S' X [0,T] - M which restrict to v,y' at the ends
of the cylinder. The crucial property of the functional S is that it
depends only on the conformal structure of the surface X = S' x [0,T]
the basic example is S(o) = 3 I HDGHZ.

Needless to say, the preceiing integrals have no precise sense.
We extract from the discussion simply the Hilbert space ¥ and the idea

of an operator in 3 depending not so much on a number T as on the

Riemann surface X = S' X [0,T]. We could as well or as ill perform the

integral (1.2) over maps defined on any Riemann surface X whose
boundary consists of two circles, and so obtain an evolution operator
UX . 3£ . If two such surfaces X,X' are joined end-to-end to

form a new one then we expect the semigroup property



UXUX' = UX'UX . (1.3)
It is now natural, given a Riemann surface X with a boundary consisting
of mtn circles, to interpret the integral (1.2) over maps X > M as
the kernel of an operator which transforms functions of m loops to

functions of n loops, i.e. as the kernel of an operator

UX :§4®m > 3£®n .
We might think of this operator as associated with a physical process
in which m strings evolve into n strings. We still expect the
composition rule (1.3) to hold when it makes sense.

The structure so far described is simply a functor from a certain
category ‘@ to the category of Hilbert spaces: the objects of % are
all compact one-dimensional manifolds (i.e. finite disjoint unions of
circles), and a morphism from S, to S, is a Riemann surface X whose
boundary 3X is the disjoint union S 1 S,. Composition of morphisms in
@ is defined by sewing the surfaces together along the common part of
their boundaries. A functor assigns a Hilbert space §£S to each
l-manifold, and an operator UX : 3@80 > 5£Sl to each surface X with
X =S5, uSs,. A conformal field theory is no more and no less than

such a functor.' It must satisfy a number of simple conditions

motivated by the formulae (1.1) and (1.2). The most obvious is that

4 -, o 3
SNTCH S, 5

'Strictly speaking, a projective functor: one should allow a scalar
multiplier in (1.3).



Another is that if X is a surface with exactly two boundary circles
v

then the trace of the operator Uy depends only on the closed surface X
got by sewing the two ends of X together. The motivation for this is
that integrating KX(y,y) over y ¢ LM amounts to integrating e-S(a)
over all maps ¢ : § > M.) This property implies the modularity of

the partition function of the theory, which is defined as the trace of

the operator e HT ags0ciated to the cylinder X = S' x [0,T]. Because
v v

the tori XT and Xl/T are conformally equivalent the partition function

satisfies

-HT -H/Ty

tr(E ) = tr(e

There is another way to approach conformal invariance. The basic
Hilbert space ﬁt = 3‘81 of the theory is thought of as the quantization
of a classical system whose phase space is the tangent bundle TL M.
This can be identified with the space of solutions ¢ : S" X R - M of
the classical equations of motion, which are conformally invariant,
i.e. invariant under the group Conf(S' X R) of diffeomorphisms of S' x R
which preserve df”? - dt? up to multiplication by a function of (6,t).
Thus Conf(S' x R) acts on TL M. We shall see that it follows from our
definition of a field theory that Conf(S' X R) acts projectively on -
One can think of a conformal field theory as a projective unitary
representation of Conf(S' X R) equipped with some additional structure.
Speaking very roughly, the additional structure expresses the fact that
is a representation of a disconnected "group" which has Conf(S' X R)

as its identity component.



The group Conf(S' X R) is a Z-fold covering group of
Diff(S') x Diff(S'). For S’ X R possesses a circle Sé of right-moving
light-paths {6 = t-a : o ¢ Sé} and a circle Si of left-moving paths
{6 = -t+x ©: o € Si}; these two circles are permuted by any conformal

diffeomorphism, and so we have a homomorphism
Conf(s' x R) > Diff(Sy) x Diff(Sp) ,

which is clearly surjective with kernel Z. An irreducible projective
representation % of Conf(S' X R) decomposes canonically as a tensor
product 3F = jéL ® §FR of representations of Diff(Si) and Diff(Sé). One
of the interesting questions to ask about conformal field theories is
how they decompose into left-handed and right-handed theories. These
so-called chiral theories are to a mathematician — not to a physicist —
the basic objects of study. They are rigid in the same sense as the
representations of a compact group. Theories containing both
chiralities, in contrast, are capable of continuous deformation. We

shall consider the simplest example of this phenomenon in §l0.



82. Diff+(S') and the semigroup of annuli

The group Difff(s') of orientation-preserving diffeomorphisms of
the circle is an infinite dimensional Lie group which does not possess
a complexification. In this section I shall describe a complex Lie
semigroup 3? which can reasonably be regarded as a subsemigroup of the
non-existent complexification. The relation between Diff+(S1) and #
is exactly the same as that between the group T = {(z ¢ C : |z]| = 1} and
the semigroup C§1 ={z eC: 0<|z|] <1), or, better, between the
subgroup PSU1’1 of Diff+(S') consisting of Mobius transformations and

the sub-semigroup

< A -]
PSLS(C) = {g € PSL(C) : g(D) ¢ D)

of the complexification PSLz(E) of PSU1,1. (Here D is the unit disc

{z e C: |z| ¢<1), and D is its interior.) Another such pair consists

of Un and the semigroup of contraction operators {g e GLn(E) :oligh < 1),
The semigroup # is constructed by considering Riemann surfaces

with boundaries. The surfaces we consider in this paper will always be

compact smooth (i.e. C*) manifolds X with boundary dX, with a smooth

almost complex structure defined everywhere in X. We shall

usually consider surfaces with parametrized boundaries, i.e. with a

given smooth identification of each boundary circle S ¢ X with the
standard circle S' = R/Z. 1If the parametrization of S agrees with the
orientation induced by the complex structure of X we shall call the
circle outgoing, otherwise incoming. Surfaces with parametrized
boundaries can be sewn together by identifying incoming circles with
outgoing ones. One can also sew together an incoming and an outgoing

circle of the same surface. The sewing-together process is formally



10

characterized as follows. If § is obtained from a (possibly
disconnected) surface X by sewing together some of the circles making
up X, and 7 : X > % is the identification map, then a function
f : U > C defined in an open set U of X is holomorphic if and only if
the composite f =7 : 7 '(U) » C is holomorphic. It is true, though by
no means obvious, that this does define a complex structure (and hence
a smooth structure too) on the interior of i.

Let HF denote the set of isomorphism classes of Riemann surfaces A
which are topologically annuli (i.e. diffeomorphic to
{z e C: a ¢ |z| ¢ b)) and are equipped with parametrizations of their
boundary circles, one incoming and one outgoing. Such annuli form a
semigroup in which the composite A, o A, is formed by sewing the
outgoing end of A, to the incoming end of A,.

If one forgets the parametrization of the ends then any annulus is
isomorphic to A. = {z ¢ C : r ¢ |z| ¢ 1) for a unique r ¢ (0,1). The

only holomorphic automorphisms of A, are rigid rotations, so we have

Proposition (2.1). H is homeomorphic to

(0,1) x (Difft(s') x Difff(s'))/T .

Thus Jg has the right size to be a complexification of Diff+(S').

On the other hand A is a complex manifold in view of

Proposition (2.2). Any element A of H is uniquely representable as an

annulus in C bounded by the circles
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I

Z > fo(z) a,z + a2z2 + ...

I
—
N

Z \—p fw(z)

where f extends to a holomorphic embedding f : D - C, and f_
extends to a holomorphic embedding of D_ = {z ¢ C U » : |z| ) 1} in the
Riemann sphere S?. (We always identify S' = R/Z with T c C by

£ - e27l'lt‘)

Proof: Given an annulus A, let ; be the closed surface got by sewing
copies of D and D to its ends. Then A can be identified holo-
morphically with the standard S?, and the identification is unique with
the normaliztion prescribed in the proposition.

The space Hol(D) of holomorphic functions on D with smooth
boundary values has a natural topology as a subspace of C®(S').
Proposition (2.2) identifies & with an open set in the complex vector
space E =C @ Hol1(D) ® Hol1(D) by Ar> (a

1,a;1f0,fo-o1): here

Hol (D) = {f : £(0) = 0 and £'(0) = 1)

In fact & is a bounded domain in E, because |a1| < 1 and each
coefficient a]‘ai or bi in (2.2) is also uniformly bounded. (The

area of the annulus, as a subset of C, is #{1l - & k|ak|2 - k|bk|2}.)

Proposition (2.3). The compositioanl X Jﬂ- > $$ is holomorphic.

To prove this we must consider the tangent spaces to &&. Because

any annulus can be embedded holomorphically in C we have
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Proposition (2.4). The tangent space to # at A is the space of

complex tangent vector fields to A along dA, modulo those which extend

holomorphically over A, i.e.

Ty = {Vectm(S1) @ Vectm(S')}/Vect(A).

Remark. As A shrinks to S', i.e. to the absent identity element of &,
the space Tp approaches Vectm(S'), as one would expect if JQ is a

complexification of Diff(S‘).

Proof of (2.3). We must show that the map of tangent spaces induced by

JQ-X JQ > is complex-linear. Let A, and A, be annuli, and
A=A, o A Write dA, = S, u S,, and A, = S 1l S,, so that

If (20,51) € Vectm(SO) @ Vectm(S1) represents a tangent vector to
f} at A, and (7,,7,) represents a tangent vector at A,, then the
composition law takes these vectors to (§0,§2), where

£, =My + oS,

for some oy € Vect(Ai) such that

o |8, - 0‘2|S1 =&, -,
(It follows from Laurent's theorem that any vector field on S, is the
difference of holomorphic vector fields on A, and A,.) The

map((50,£1),(n1,n2))}—? (fo,fz) is clearly complex-linear.
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There is an important holomorphic function q : ¢Fl > C* whose
value at A is the modulus of the torus X obtained by sewing the ends
of A together. (A torus with a preferred cycle is isomorphic to Ex/x
for a unique X\ with 0 < |\| < 1: T shall call X\ the modulus.) More
explicitly, if A ¢ C is bounded by the curves f and f_, then g(A) = A
if there is a holomorphic map F : A - CX such that F(fg(z)) =

XF(fw(z)). I shall omit the proof that q : J4~ > CX is holomorphic,

but the following result is almost obvious.

Proposition (2.5). We have q(A) = q(B) if and only if A and B are

conjugate ijlﬂg , 1.e. related by the equivalence relation ~ generated

by
A~B if A=C oD and B = D o C for some C, D

When J& is regarded as a bounded domain in the vector space E its
boundary is made up of several different pieces. One piece lies in the
hyperplane a, = 0. It is of complex codimension 1, and consists of
"infinitely long" annuli. If it is adjoined to #A we still have an
open set of E. Another piece of the boundary consists of the points
such that the embedded discs fD(D) and fw(Dw) in S? touch each other,
i.e. those for which the "width" of the annplus collapses to zero at
some point. This piece is of real codimension 1. It contains an
extremal part Z(3$) where fO(S') = fw(S'). This is a completion of
Diff+(31), in the sense that it contains a dense open subset i(&@)
where f0|S1 and foo|S1 are injective, and i(d&) can be identified with
Diff*(s') by (£,,£) v £.' o f

0" There are also two other parts of

the boundary consisting of points where folD or fwlDw fail to be

embeddings.
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It is natural at this point to ask a number of questions to which
I do not know the answers.
(i) Is (&) a Shilov boundary of H-?
(ii) Does the function q extend continuously from H to T(H)?
(iii) If so, what is the relation between q|Diff+(S') and the
rotation number in the sense of Poincaré?

I recall that a Shilov boundary of J4 as a subset of E is

defined as a minimal closed subset 53 of the closure Jgpl of &i with

the property that

sup(flfi) = Sup(flga)

for every bounded holomorphic function f : 64- - C which extends
continuously to 3@01. If a Shilov boundary of H exists then it is
certainly contained in 2(69), for any boundary point A of &9 which is
not contained in L(H) belongs to a holomorphic curve in 6&91 got by
deforming A ¢ S? by any vector field on $? which is holomorphic
everywhere except for an essential singularity in the interior of A.

An optimist might hope that for diffeomorphisms of the circle the
function q simultaneously measures the rotation number and how far the

diffeomorphism is from being conjugate to a rotation, i.e.

Conjecture. The function q extends continuously from Jg*to TP, and

for a diffeomorphism f of S' one has q(f) = peia, where o is the
rotation number of f, and p = 1 if and only if f is conjugate to a

rotation.

To conclude this section I should mention that the semigroup %% of
holomorphic embeddings £ : D - B is a sub-semigroup of A: one

identifies f with the annulus Ag =D - f(ﬁ). Heuristically, at least,%i
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is "maximal parabolic" in ‘99—, and contains the "minimal parabolic"
80 = {(f e & : £(0) =0). In support of this terminology we notice

that (cf. [BR])

pifft(s")y/T ,

[}

A /8,

R

A /e Diff+(S')/PSU1’1 ,
and also that 80 ﬁo is an open subset of (ﬁ'

It is easy to see that if f e 8 then q(f) = £'(f), where { is the
unique fixed point of f. Thus q|‘8,0 is the homomorphism f v £'(0),

whose kernel is the commutator subgroup of ﬁo'
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83. Wick-rotation, and representations of S

In ordinary quantum field theory there is a Hilbert space §£ of
states on which the group R? of translations of Minkowski space-time
acts unitarily. It is well-known that the positivity of energy can be
expressed by saying that the unitary action of R extends to an action

of the semigroup

C? = (& eC*®: Im(E) e P ) ,

where P ¢ R? is the positive light-cone. The action of Ei is by
contraction operators, and is holomorphic. The "boundary" R? is an
open dense subset of the Shilov boundary of Ei.

Now let us consider 2-dimensional Minkowskian space-time
Y =R x S', in which space is a circle. The group T of translations is

(R x R)y/2xZ, where (£,n) € T acts on (t,0) € ¥ by
(t,0)— (t+¢+m, 6 +& -1n)
The positivity of energy is now expressed by saying that the unitary

action of T is the boundary value of a holomorphic contraction

representation of
T = ((§,m) € (C X C)/2a2 : Im(§) > 0, Im(n) > 0)
This is a covering group of Eé, X E§1, where C§1 - {q e C*: lq] < 1).

If one has a conformal theory one expects the group Conf(X) to act

unitarily on 3£. I have already mentioned that
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Conf(X) = (Diff(S{) x Diff(Sg)/2%Z ,

where Diff(S') is the simply connected covering group of Diff(S'), i.e.
the group of diffeomorphisms ¢ : R » R such that (8 + 27) = p(6) + 2x.
The main idea of conformal field theory - in one interpretation - is
that the positivity of energy is expressed by the fact that the action
of Conf(X) on 3¥ extends to a holomorphic contraction representation of
~n ~ ~

(JQ‘xJQ-)/sz, where & is the simply connected covering group of the
semigroup &Q of annuli which was introduced in §2. 1In fact one wants
the action to extend to a still larger semigroup (or rather category)
which allows circles to split into two: that is described in 84.

The holomorphic action of Ei on a conventional state space is of
course completely determined by its restriction to the cone iP. A
contraction representation of iP can be extended holomorphically to Ei
providing it satisfies the condition called "reflection-positivity",
and then restricted to give a unitary representation of R%. 1In the
two-dimensional case the sub-semigroup of TE which corresponds to iP is
the upper half-plane C,, the covering of C§1. In the case of Conf(X)
the corresponding semigroup is J#, embedded diagonally in
(35)(&1)/2%2. We are therefore interested in two questions:

(i) when are unitary representations of Diff(S') the boundary
values of holomorphic contraction representations of 5%, and

(ii) when can contraction representations of & be continued

~
analytically to holomorphic representations of (~¢9><9¢ ) /2727

Concerning the first question I should mention that the
corresponding finite dimensional situation - where a Lie group G is
essentially the Shilov boundary of an open semigroup GE contained in

the complexification G - occurs frequently and has been much studied
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(cf. [ 1). For example when G is the subgroup PSU, | = PSL_(R) of

1
Diff(s'), and GE is the sub-semigroup of PSLZ(E) described at the
beginning of §2, it is well-known (and obvious) that the irreducible

unitary representations of G which extend to G$ are precisely the

discrete series representations, i.e. the representations of G on the

spaces of holomorphic forms on D, and also the trivial representation.

Returning to Diff+(S1) and J$, the representations of Diff+(S1)

which have a chance of extending to J$ are the ones of positive energy

([s2]1,[Ps]), i.e. those for which the subgroup T of rigid rotations
acts by characters {eiko) for which the wvalues of k are bounded below
These are all projective representations. In the following discussion
we shall tacitly restrict our attention to representations for which
the action of E§1 c & is diagonalizable and extends to an action of

T cC Diff+(S1). I shall also not distinguish between representations

which are "essentially equivalent" in the sense of [PS] Chapter 9.

Proposition (3.1). There is a 1-1 correspondence between positive

energy projective representations of Diff*(s') and holomorphic
projective representations of & . Unitary representations of Difft(s")

correspond to representations of & which are reflection-positive in

the sense that UZ = UK'

Proof: First suppose given a representation A +> U, of H on a

topological vector space E. Let A_ be the standard annulus with

q

parameter q e Ezl, and let Uq = UA . The union of the subspaces Uq'E
q

for all q is a dense subspace E’of E. I shall prove that the group

Diff;n(s') of real-analytic diffeomorphisms of S' acts on ¥, 1t is,
however, well known that all positive energy representations of Diff;n

extend to Diff+.
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If A is an annulus and ¢ is a diffeomorphism of S' I shall write
oA (resp. Ap ') for the annulus obtained by changing the outgoing
(resp. incoming) parametrization of A by ¢. Let us call an annulus
real-analytic if both its boundary parametrizations (in the sense of
(2.2)) are real-analytic. If ¢ is a real-analytic diffeomorphism let
U@ denote the densely-defined operator U¢AUA1 in E, where A is a
real-analytic annulus. This does not depend on A, for if A' is another
choice then there is a standard annulus B = Aq such that A = BoC and

A' = BoC', and

-1 -1 _ -1

(We are suppressing a possible projective multiplier, which is
immaterial.) Then UW maps E to itself, and defines a representation of

Diffzn(S1), because

_ -1 -1
Yo T Uuen)Von’en’a T Byl -

Conversely, if E is a positive energy representation of Diff+(S1)
then there is an obvious candidate for the operator Uq associated to
Aq' But for any annulus A we can by (2.1) write A = pAq¢-1 in an
essentially unique way, and then define U, = U¢UqU¢1. We must show
that U, depends holomorphically on A, and that it defines a representa-
tion of & . For the first, recall from (2.4) that the tangent space to H
at A is (Vectm(S1) ® Vectm(SI))/Vect(A). Let & LE be the

derivative of o > U Writing the derivative of A > U, as

s

_ -1 . -1 -1
6Uy = U¢ {(UW 6U¢)Uq Uq(U¢ 5U¢)} U¢
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we see that A > U, is holomorphic if the map

E,m > LUy - UL, ,

defined on Vectm(Sl) ® Vectm(S1), vanishes on Vect(Aq). But that is
obvious. (Holding q fixed in this calculation is permissible because
q = constant defines a submanifold of A of real codimension one.)
Finally, to show that A +» U, is a homomorphism amounts to proving
that two holomorphic maps 64 x A - End(E) coincide. But they
coincide by definition at points of the form (¢Aq,Aq.¢_1), and as they
are holomorphic that is enough.

The correspondence between unitarity and reflection-positivity
needs no comment, except perhaps to point out that if A = ¢Aq¢" then

o A o1
A = ¢Aq¢ .

I have little to say about question (ii) above, when a non-
holomorphic representation of H can be continued to a holomorphic
representation of the complexification dﬂm = (jiL X.;iR)/ZWZ. It is
certainly true in the reflection-positive case. For any representation
of & gives us a representation of the Lie algebra of 64', which is the
complexification of the Lie algebra of Diff(Si) X Diff(Sﬁ). But it is
known that any unitary positive energy reprgsentation of this Lie
algebra extends to a representation of the group, and then the
representation of Diff(Si) X Diff(S&) gives rise to a holomorphic
representation of 64@ as in the proof above. It would be interesting,

however, to have a better treatment of this question.
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g84. The category %g and the definition of a field theory

The category‘@

The category'ﬂ is defined as follows. There is a set of objects
{Cn}nzo’ where C, is the disjoint union of a set of n parametrized
circles. A morphism C > C, is a Riemann surface X with boundary X
together with an orientation-preserving identification C - C > oX.
(Here C,, - C means G, 1 C, with the orientation of Cp reversed.) We
identify two surfaces if they are isomorphic by a map which respects
the parametrization of the boundary. Composition of morphisms is
defined by sewing surfaces together.'

The set‘gmn of morphisms C > C  is a topological space with one
connected component‘ga for each topological type of surface. Thus when
o is an annulus f; is the semigroup Hof 82. Two other cases are worth

mentioning.

for all discs are the

(i) If ais a disc b is Difet(s')/psU, _,

same except for the parametrization of the boundary. This gives a
description of the complex structure on Diff'"(S1)/PSU1’1 (cf. [BRD).
In terms of the semigroups of §2 we have 6a Exﬁ/@.

(ii) If o is a disc with two holes then'éa has a Shilov boundary
which consists of the space of ways in which a circle can split into

two:

'"Purists will object that the category”e has no identity morphisms, and
will have their preferred remedies.
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As a space Yga is the quotient of the contractible space of
:FC/;P(K.
complex structures on aismooth surface L, of type o by the group of

’

all diffeomorphisms of L, which are the identity on 5X,. On the other
hand it is well known that the moduli space of closed surfaces of a
given topological type is a finite dimensional complex variety with
some mild singularities. If o is a connected surface with k > 0
boundary components the complex structure of'ga can be described by
analogy with the description of #F in 82, as follows. Let g be the
genus of the closed surface got by adding k caps to o - we shall call g
simply "the genus of a" - and letqné’k be the moduli space of closed
surfaces of genus g with k marked points (x;} and prescribed tangent
vectors {Ei) at the points {xi}. The spaceqné’k is a finite
dimensional complex manifold with no singularities, and there is a
tautological fibre bundle over it whose fibre at § is &. The space‘ga
is a fibration overm%’k whose fibre at (i,{xi},{ii)) is the space of
k-tuples of disjointly embedded discs £f; : Do i such that £;(0) = Xy
and fi(O) = Ei. (This description needs adjustment when o is a disc:

then‘ga is the space of embeddings f: D » S? such that £(0) = 0,

f'(0) =1, and £"(0) = 0.
Composition of morphisms is a holomorphic map ﬁkm Xgmn %cgkn. It
is enough to prove this when the composite surface has no closed

components, and in that case it follows as in §2 from

Proposition (4.1). If o has no closed components the tangent space to

fa at X is Vectm(aX)/Vect(X), the space of tangent vector fields to X

along 3X modulo those which extend holomorphically to X.
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Remark. The dual cotangent space is therefore the space of holomorphic
quadratic differentials on X which have distributional boundary values

on °X.

Proof of (4.1). The argument is the same as in §2, except that we need

to know that if X is obtained from a closed surface X by removing
discs, then any Y e‘@a which is sufficiently close to X can be embedded

holomorphically in X. That is true because X is a Stein manifold.

Remark. We could put a finer topology on gmn - without changing the
topology on each ﬁa - so that gmn had just one connected component for
each genus. For if @ is disconnected%;can be stuck on to the boundary

of f& for an appropriate connected oo. Thus the space

{Diff+(S')/PSU }X2 of pairs of discs can be attached to the boundar
1,1 Yy

of # by collapsing the divisor (Diff*T(s")y/T)*? consisting of infinitely

long cylinders. The resulting connected ﬁm would be a complex variety

19}

with bad singularities. We shall not pursue this, however.

The definition: first version

We shall define a conformal field theory as a functor from ¢ to
complex topological vector spaces. We.assume the vector spaces H are
locally convex and complete, and equipped with a continuous hermitian
form H X H » C. We shall not restrict ourselves to Hilbert spaces, as
we want to allow indefinite inner products. We shall state the
definition in terms of tensor products. These should be interpreted in
the sense explained in Appendix A. But if H is a Hilbert space the

tensor products can equally well be taken in the Hilbert space sense.



24

We shall make use of a number of elementary operations which can
be performed on the morphisms of 4.

(a) The symmetric groups S and S act on‘gmrl by permuting the
numbering of the boundary circles.

(b) If X eb then the complex conjugate surface X belongs to

mn

b

ome @nd X+ X is an antiholomorphic map.
(¢) By reversing the orientation of the incoming boundary circles

we obtain the "crossing" isomorphism ~€mn A which I shall

0, min’
write Xv» |X].

(d) By sewing k incoming to k outgoing circles we obtain a

holomorphic map Kmn > Onk n-k-
We now give the provisional definition of a conformal field
theory. We should warn the reader, however, that it is unsatisfactory

because it does not allow for projective multipliers.

Definition (4.2). Let H be a topological vector space with a symmetric

complex bilinear form and a given real structure (i.e. an anti-
involution H » H). A conformal field theory based on H is a continuous
functor U from‘@ to topological vector spaces with the following
properties.
(1) U(C) -H@ ... @ H=-H"
(ii) The map {%n X HQ-(Jm > H®n is compatible with the action of the
symmetric groups S and S..

(iii) "Crossing": for each X e £1m1the operator U(X) : H®m - H®n is
of trace class, and is defined by the element U(|X]|) of & ® p®0
together with the bilinear form on H.

(iv) "Sewing": the map ﬁ;n - ﬁ%-k,n-k of (d) above is compatible

with the map
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Hom(H®m;H®n) > Hom((H®(m-k);H®(n-k))

v
got by taking the trace over H®k. In particular, if X e Y%1 and X is

the associated closed surface, then

v
trace U(X) = U(X)

(v) "Reflection positivity": U is a *-functor in the sense that
U(X) = U(X)* for all morphisms X. Here the adjoint U(X)* refers to the
hermitian structure on H got by combining the real structure with the

complex bilinear form.

Notes. (i) In this definition we ought certainly to allow the space H to

have a mod 2 grading. Then the permutations of H®n

should be performed
with the usual sign conventions, and - most importantly - the trace in
property (iv) should be replaced by the supertrace. We shall for the
most part not bother to make this generalization explicit.

(ii) If we omit to give the real structure on H and the associated

axiom (v) of reflection-positivity then we have a "non-unitary" field

theory.

A conformal field theory is thus, among other things, a trace-
class representation of the semigroup«ﬂ% As we saw in 83, this gives
us a pseudo-unitary action on H of the Lie algebra of the conformal
group Conf(S' X R), i.e. of the Lie algebra of Diff'(s]) x Diff’(s}).
Under the action of the rigid motions the space H breaks up as a
discrete sum of finite dimensional pieces: H = @ Ha,b’ where

(a,b) ¢ R?, and a-b ¢ Z.
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The partition function Zj of the theory is the function on the

upper half-plane defined by
Zy(r) = trace U(Ap) = T anbdim(Ha,b) ,

where q = e2™7 and Aq is the standard annulus (z :|q| < |z| < 1)

described in 82. Because the annuli Aq and Aﬁ produce isomorphic

-2wi/T

tori if q = e the partition function satisfies

Zy(-77") = Zy(r) (4.3)

(but cf. Proposition (6.11)).The partition function completely
determines H as a representation of Diff+(Si) X Diff+(Sé), for the
characters of the representations of Diff+(S1) are all known, and are

linearly independent.

Another aspect of the structure is seen by choosing, once for all,
a disc with two holes X, regarded as an element of ﬁ21_ For any
theory, X gives us a map H ® H » H which makes H into a non-associative

algebra. This composition law is called the operator product

expansion. Together with the partition function the product in H
determines the theory completely, for any Riemann surface can be
obtained by sewing together discs, cylinders, and copies of X, by
suitable diffeomorphisms. 1In the case of the theory whose group of
automorphisms is the monster group, the algebra H contains Griess's
non-associative algebra as a subalgebra.

Friedan has conjectured that a field theory U is completely
determined by its restriction to closed surfaces, i.e. by the

homomorphism U : ﬁ > CX defined on the commutative semigroup’@oo.

00

This seems plausible, but I do not know a proof.
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A field theory is called holomorphic if the operators U(X) depend
holomorphically on X. That is the case if and only if Diff+(SL) acts
trivially on H, and also if and only if the partition function is
holomorphic. A theory is called chiral if it is either holomorphic or

antiholomorphic.

The conformal anomaly

The preceding definition is too restrictive, and we must introduce
slightly more general structures. In the usual terminology these are
theories which have a "conformal anomaly". Mathematically this amounts
to péssing to projective representations of the category ﬁ, i.e. the
operator U(X) associated to a surface X is given only up to an
indeterminate scalar multiplier. Physically one should think that U(X)
is associated not to the surface X alone, but to the surface together
with a chosen metric compatible with its conformal structure. The
dependence on the metric is slight: if the volume element o is
multiplied by e??, for some ¢ : X » R, then U(X) is multiplied by
eicS(¢)’ where ¢ is a constant depending on the theory (the "central

charge") and S(p) is the Liouville action

S(p) = [ﬁ{dw A %dp +4yR)
X

Here R is the curvature 2-form of the metric.

To digress briefly, one can define a general notion of two

dimensional field theory as a representation of a category f% made

etric

from circles and surfaces equipped with metrics. The metrics must be
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piecewise twice differentiable, and the boundary circles must be
geodesics. Circles of different lengths are, of course, non-isomorphic

objects of‘g

metric: It may be that the intriguing work of

Zamolodchikov [Z ] can be formulated in this language, but perhaps

something more subtle is needed.

Returning to mathematics, just as a projective representation of a
group G is a genuine representation of an extension G of G by EX, s0 a
projective representation of a category‘g is an ordinary representation

~
of an extension category f of‘g by C. To give such an extension
category is the same as giving a rule which assigns a complex line Ly

to each morphism X of”g, and a map

Pxy P kg 8Ly > Ly y

to each composable pair of morphisms. The maps pgy must be associative
~
in the obvious sense. The objects of { are the same as the objects of
*6, and a morphism in‘z is a pair (¥X,\), where X is a morphism in‘g and
N € Ly. In the next section we shall prove that there is essentially
only one such extension of‘e, got by assigning to X the determinant
line Dety of its d-operator, in the sense of Quillen [R ] (cf. also
Appendix B). More precisely, the most general extension is of the form’

Ly = (DetX)®P ® (DetX)®q. If p = q = c one says that the theory has

central charge c. (The determinant bundle will be discussed in detail in 8§6.)

The conditions of (4.2) make sense for a projective functor
providing X+» Ly has the properties:
(i) Ly = Ly if X is obtained from X by reversing the

parametrization of some boundary components;

'See (5.18).
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(ii) Ly = Ly ;
(iii) there is a natural map Ly » L§ when % is made from X by
sewing boundary circles together.
When X is an annulus there is a preferred element ey ¢ Ly, and so
we can define the partition function as the trace of the operator
U(eg). It has a modularity property analogous to (4.3), but we shall

postpone discussion of that (and also the definition of eg) until §6.

An improved version of the definition

Definition (4.2) is cumbersome and unnatural, and the following
reformulation is cleaner. I shall give it in the projective version.

We begin with a hermitian vector space H with a projective unitary
action of Diff(S') in which the orientation-reversing diffeomorphisms

act antilinearly. There is a unique way to associate to H a projective

functor S+> Hg from compact oriented l-manifolds (and orientation-
preserving diffeomorphisms) to hermitian vector spaces (and C-linear
operators given up to an arbitrary scalar multiplier) with the two
properties:

(a) Hg = ﬁs if S is S with reversed orientation;

(b) H =H, ® HS

SjuS, 8, 2

Definition (4.4). A conformal field theory based on H is a continuous

natural transformation which assigns to each Riemann surface X with

(unparametrized) boundary a ray Hy in Hyy satisfying

(iii) Hy = trace Hy if X » X is a sewing map.
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Here a sewing map X - % is one which identifies two disjoint
parts S, and S, of X by an orientation-reversing diffeomorphism; and
the trace map Hyy - Hb§ is induced by the bilinear form
H(S,) ® H(S,) » C.

In (4.4) it is important that we do not use Hilbert space tensor
products, for then the Hermitian form H X H - C would not extend to

H@®H.

The idea of a "projective" functor may seem unappealingly vague.
The additional structure which an oriented l-manifold S needs in order
to define a vector space Hg rather than just a projective space can be
described as follows.

We define a rigged l-manifold as an oriented l-manifold S together
with a specific choice L of a determinant line bundle on the restricted
Grassmannian Gr(Q°(S)) of the space of smooth functions on S (see
Appendix B). For given S the bundle L is canonically defined up to
isomorphism, but the isomorphism is arbitrary up to an element of cx.
(A parametrization of S is more than enough to provide a canonical

choice of L.) A morphism from (So’Lo) to (S1,L1) is a diffeomorphism

I

f : 8, > S, together with an isomorphism L/

f*L1.
A surfaceX with X = S defines a point Hol(X) in Gr(Q°(S)). If s
is rigged by L then we define the determinant line of
as tha Ghe Ly of L ot Hel (7).
XA, To obtain a vector in Hg j corresponding to Y we must choose a

point of LX'

To describe chiral theories we shall need an even more general
definition than (4.4), in which a surface X defines a subspace HX of

Hyy which need not be one-dimensional. That is the subject of §5.
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Minkowski space, ghosts, and BRS cohomology

Apart from the question of projective multipliers there are two
other respects in which Definition (4.2) is not quite general enough
for the needs of string theory. It is usual to study strings moving in
a product V X M, where V is Minkowski space of some dimension, and M is
a compact Riemannian manifold. In that case the space of states of the

string is a direct integral H = IHP’ where H_ is the states of momentum

p
p, and p runs through the dual space V¥ of V. A surface X ¢ 6;n
defines an operator U(X) : H®m - H®n which is an integral of operators

U(X : H ... ®H H .. ®H
( )p, Py ® ® . ® ®

ha

=

where X P; = X q; - Each operator U(X)p q is of trace class, but U(X)

=3
itself is not.

More importantly, strings are not supposed to be parametrized,
while the spaces H we have been discussing describe parametrized
strings. One would expect to replace H by the subspace which
is invariant under Conf(S' X R). 1In fact the spaces H which arise are
projective representations of Conf(S' X R) with a positive central

charge ¢, and the invariant subspace would be 0. Instead of the

invariant part of H one has recourse to its BRS cohomology Hprg. The

essential points about this are:
(i) it is defined only for a theory with c = 26,
(ii) it has a bi-grading (called the "ghost number"),

(iii) in good cases, at least, it has a positive definite metric,

®m - H®n

BRS BRS for each surface X e {

(iv) instead of an operator H

one has a top-dimensional differential form Wy on the finite
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dimensional moduli space 7%&+n of all closed surfaces with m+n marked
. . . ®m &n .
points, with values in the space of operators HBRS - HBRS of bidegree

(-m,-m).
In particular, m elements of HBRS of bidegree (1,1) define a

top-dimensional scalar-valued form on 7%;.

We shall say only a little about BRS cohomology in this paper. To

define it one tensors the theory H with another theory H which has

ghost

c =—26. The resulting theory H ® H has a genuine (non-

ghost

projective) action of #. The space H @ H has an operator

ghost
Q=Q, +Q which satisfies Q% = 0, and Q, and Qp raise degree by (1,0)

and (0, 1) respectively. The cohomology (ker Q)/(im Q) is the BRS

cohomology. The theory H will be described in 88, and we shall

ghost

return to Q and the property (iv) in §9.
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85. Modular functors

Definition and main properties

In studying chiral field theories and also the representations of
loop groups one meets the concept of a modular functor. From one point
of view this is a generalization of the idea of a central extension of
Diff"(S'). oOn the other hand it can also be regarded as a coherent
family of projective representations of the braid groups and mapping

class groups.

We start with a finite set & of labels. Let d%)be the category
whose objects are Riemann surfaces with each boundary circle
parametrized and equipped with a label from . A morphism in~3; is a
holomorphic sewing map X - i, i.e. one which sews together pairs of
edges in accordance with the parametrization; we allow a pair of edges
to be identified only if they have the same label. A morphism is
allowed to permute the boundary circles, but it must preserve their

parametrization.

Definition (5.1). A modular functor is a holomorphic functor E from€f¢
to finite dimensional complex vector spaces with the following
properties.
(i) E(X uY) = E(X) ® E(Y).
(ii) If X¢ is obtained from X by cutting it along a simple closed

curve and giving the label ¢ to the two new edges then the natural map

D - %
(Xw) > EX)

p €ed

is an isomorphism.
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(iii) For the Riemann sphere S? we have dim E(S?) = 1.

Notes. (a) To say that E is holomorphic means that when {(Xplpep 1s a
holomorphic family of surfaces parametrized by a complex manifold B the
spaces E(Xp) fit together to form a holomorphic vector bundle on B. In
particular, E defines a holomorphic vector bundle E, on the moduli
space é& of surfaces of (labelled) topological type o, at least if w
has no closed components. (Recall that %ga was defined in 84. We
exclude closed surfaces to avoid the singularities caused by their
possible automorphisms.)

(b) The isomorphism of (i) above is supposed to be compatible with
the maps interchanging the summands on each side. As in 84 we should
certainly allow modular functors to be graded mod 2, and should use the
graded tensor product in (i). The determinant line, for example, is a

mod 2 graded modular functor for which E(S?) is in degree 1.

For any modular functor E we have a map E(X) ® E(Y) » E(X.Y) when
X and Y are composable morphisms in‘é with their boundaries compatibly
labelled. So E defines an extensionﬁgE of the category‘é . An object
of'@E is a collection of circles each with a label from &, and a

morphism is a pair (X,e), where X is an morphism in.g and € ¢ E(X).

Definition (5.2). A weakly conformal field theory is a representation

af@Elfor some modular functor E, satisfying conditions as in (4.4).

Thus such a theory assigns a vector space Hg to each
one-dimensional manifold and a vector space Ey to each surface, and

there is a natural map Ey - Hyy for each X.



35

One may as well assume that the labelling set & of a modular
functor contains no superfluous elements, i.e. no labels ¢ such that
E(X) = 0 whenever X has an edge labelled by ¢. We can then make the

following elementary observations.

Proposition (5.3)

(i) There is a distinguished label 1 € & such that dim E(D) =1
when D is a disk with 3D labelled 1, and E(D) = O if 3D has any other
label.

(ii) If A¢¢ is a annulus with ends labelled ¢,y then dim E(A¢¢) =1
if p = ¢ and E(A¢¢) = 0 otherwise. 1In particular, E defines a central
extension 99W of &4 by C* for each label Q.

(iii) There is an involution ¢w» ¢ of & such that if B is an annulus
with both ends outgoing then dim E(wa) =1 if Yy = p and E(B¢¢) =0
otherwise.

(iv) If‘§ is obtained from X by reversing the parametrization of an
incoming boundary circle and changing its label from ¢ to ¢ then E(is =

E(X) ® E(B¢¢).

Proof: We first prove (ii) by observing that the ¢ X & matrix

dim E(Aw¢) is idempotent with positive integer entries. The matrix
dim E(B¢¢) is then symmetric and invertible, so we obtain (iii).
Assertion (iv) follows immediately, and finally we get (i) by

considering the decomposition S? = D U D.

From now on we shall assume modular functors are normalized so

that E(D) = C when 3D is outgoing and labelled 1.
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The sense in which a modular functor is a coherent family of

projective representations of discrete groups is explained by

Proposition (5.4). For any modular functor there is a canonical flat

connection in the projective bundle of the bundle E, on‘ga, for every
non-closed labelled surface o. These connections are compatible with the
sewing-together of surfaces.

If the modular functor has central charge 0 (see below) then there

is a canonical flat connection in the bundle Ea itself.

In other words, if X and X' are surfaces of type o there is an
isomorphism P(E(X)) » P(E(X')) for each homotopy class of paths from X
to X' in %ga‘ Thus for each o a modular functor gives a
projective representation Wl(é%) > PGLn (C). For example if o is a
disc with k holes then 11(6&) - 7K x CB:k, where CBr, is the coloured

braid group on k strands. If o is a surface of genus g with one hole

then 11(6(1) is the mapping class group of o.

Verlinde's algebra

An attractive way of looking at modular functors has been
developed by Verlinde [V ], following the "fusion-rule" approach of
Belavin-Polyakov-Zamolodchikov [8PZ]. Let ¥ be a disc with two holes,

labelled
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Let n¢X¢ = dim E(X). Then the free abelian group Z[$] is clearly a

commutative ring under the multiplication

(p,X) > Zn¢¢¢.

X

The element 1 e¢ & is the identity element of the ring. We shall

say more about this ring later on. For the moment let us notice that the
ring structure of Z[®] is a very compact way of encoding the dimension
of E(X) for all labelled surfaces X. Thus if M¢ is the operator of
multiplication by ¢ on Z[p] then the dimension of E(X) when X is a

torus with an incoming and an outgoing hole labelled ¢,y is

Poy ~ trace(MwMJO s

and if Xg is a closed surface of genus g then

dim E(Xg) = trace(P&" ") |

where P is the matrix (p¢¢)'

Loop groups

The natural examples of modular functors arise from
representations of loop groups in the following way. I shall suppose
for simplicity that G is the complexification of a simply connected

compact group. Let {E¢} be the finite set of all irreducible

ped
projective positive energy representations of a certain level of the

loop group LG. The indexing set & can be identified with a set of

irreducible representations of G, for the zero-energy subspace of E¢ is
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an irreducible representation ¢ of G. The involution ¢ w» ¢ takes a
representation of G to its dual, and 1 € & is the trivial

representation of G. Let X be a surface with k boundary components,

all outgoing, labelled by ¢ ,...,p € ®. Then the group of holomorphic
maps Hol(X;G) acts on Ewl ® ... ® E¢k via restriction to dX, for the
central extension of (LG)k is canonically split over Hol(X;G). We
define E(X) as the part of E¢l ® ... ® E¢k fixed under Hol(X;G). 1If

somé of the boundary circles are incoming we replace the corresponding
factor E¢ by t*E¢, where t : S' 5 S' reverses the parametrization.
Then X+ E(X) is a modular functor. This will be proved in §ll. The
point of the definition is that a surface X with p incoming and g
outgoing circles labelled Prsee s Pp and ¢1,...,¢q, together with an
element ¢ of E(X) - i.e. a morphism (X,e) in the extended category ﬁlﬂ

- defines a trace-class operator

This is because for each ¢ there is a natural duality pairing

E @® t¥E- » C .
p ® TRy 2 L

The concept of a modular functor is designed, among other things,
to express the modularity properties of the characters of
representations of loop groups. A representation E¢ decomposes under

the action of the rigid rotations of S' as a sum EW . €E5 E g of

00 ¥
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finite dimensional pieces, where the rotation through the angle o acts

as eika on E¢ k- Each piece EP k 1s a representation of the subgroup G

of constant loops in LG. (Thus E@ 0 = ¢.) The partition function and

the character of E¢ are defined as the formal series

B k
xw(q> =Xq

and

k

Xp(a,8) = T q trace(g|E, 1)

respectively. 1In fact these series converge when |q| <1, and x@(q) is
best regarded as a function of an annulus with modulus q. More

precisely,

X¢(q) = trace(UA’6 : E¢ > Ew) ,

where A is the standard annulus Aq, and € is the standard element of

the line E(Aq), where the ends of A_ are labelled with ¢. Then XW(q)

q

depends only on the image, say e of € in E(X), where X is the

q,¢’

torus got by sewing together the ends of A We know from (5.1)(ii)

q
that the elements Eq,¢ form a basis for E(X). On the other hand by
(5.4) the modular group SLZ(Z) acts projectively on E(X). This means
that the partition function X¢ is transformed by a modular
transformation into a linear combination of characters of the same
level.

The character x¢(q,g) should similarly be regarded as a function
of a pair (A,P), where A is an annulus and P is a holomorphic principal

G-bundle on A with a given trivialization of P|3A. Thus X¢(q,g) =

is A, X G with the obvious trivialization over the

X¢(Aq’Pg)’ where Pg q

incoming circle and g times the obvious trivialization over the
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outgoing end. The character depends only on € e E(X) and the

q,p
holomorphic G-bundle on X got by joining the ends of Pg' We shall

explain this in detail in §l1.

An example

The most basic modular functor is the determinant line, which is
the subject of §6. We shall see (see (5.17)) that it and its powers
are the only modular functors with only one label. A more typical
example which can be described very explicitly is the following one,
which corresponds to the level one representations of the loop group of
U,. (We shall meet other simple examples in §7.)

Let ¢ be the set of characters of Z/n. To a surface X with
boundary we associate a Heisenberg group Hy which is an extension of
H1(X;Z/n) by C* with the commutator given by the intersection pairing.
The centre of Hy is the image of Hyy = X @ H (3X;Z/n). A labelling
¢ = (p,,...,p,) of the boundary components defines a character X of
Hyy which is the identity on CX. There is a unique irreducible
representation E(X) of Hy in which Hyy acts by Xp. It is
zero unless dp = 0 in H2(X,bX;EX), i.e. unless II pi = 1, in which case
it has dimension n®, where g is the genus of X. (It can be identified
with the space of 6#-functions of level n on the Jacobian of X.)

The ring Z[®] in this case is simply the group ring of &.

Note. The preceding description is imprecise in two ways. First, Hy
is defined only up to non-canonical isomorphism by the commutator
pairing. Secondly, even when HX is given, the representation E(X) is

only uniquely defined as a projective space.
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To clarify the definition of Hy we first introduce the
extension H% of H, (X;Z) by CX defined by the cocycle

E,m) > ezwi<$,n>/2n ,

(5.5)
and then we define Hy as the quotient of Hg by the central subgroup
HI(X;nZ).

To deal with the second point we consider the extension HE of
H1(X;R) by CX defined by the same formula (5.5). The group HE has a
standard Heisenberg representation on the space Fy of holomorphic
functions on H1(§;P), and we define E(X) as the part of Fy fixed by
HI(X;nZ). (Here ﬁ is X with caps added to its boundary circles, and

A
the complex structure of H‘(X;R) comes from that of X.)

Extensions of 59

Modular functors give us extensions of(ﬂlby EX, and we shall now

explain how these are classified.

Proposition (5.6). Holomorphic extensions of &Qby X correspond

precisely to extensions of Diff+(Sj) by cx.

Proof: We use the argument of (3.1). If A is an annulus we write pA
(resp. Ap ') for the same annulus with its outgoing (resp. incoming)
edge reparametrized by a diffeomorphism ¢ of S'. Suppose that we are
given a line L) for each annulus A. Then we define L¢ for a
real-analytic diffeomorphism ¢ by L¢ = L¢A ® LX, where A is a

real-analytic annulus. The line L@ does not depend on A, and it
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defines a central extension of the real-analytic diffeomorphism group,

because

*x
Lyp = Lypa @ Lp

IR

*
Lyon ® Lin @ Loy @ Ly

IR

L¢®Ls0’

for we can choose A so that ¢A is also real-analytic. On the other
hand it is known that the classification of extensions of Diff+(S1) is
the same as that for the real-analytic diffeomorphisms.

Conversely, if we are given an extension pr> L¢ of Difft(S") we
define an extension ofdﬁ'by setting LA = C for the standard annulus A,

q

It is easy to see that LW ® L

and L = L¢® L depends only on the

soAqt// 2 1
annulus A = ¢Aq¢. The dependence is holomorphic because any central
extension of the Lie algebra Vectm(bA) is canonically split over

Vect(A): see (6.7). We have therefore defined a correspondence

between extensions of Diff+(S') and extensions of &.

Central extensions of Diff+(S1) were classified in [S2]. The
universal central extension has kernel R @ Z, so extensions by c*
correspond to homomorphisms R @ Z - Ex, i.e. to elements of C x CX. An
extension can be completely described by its Lie algebra cocycle, in
the following sense. The Lie algebra Vect(S') has the traditional
basis (L, = einod/de}. When one has a projective representation of

Diff+(S') one can choose the representatives of the L, so that
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[L__.L] = -2inLy + 3 en(n-1) . (5.7)

Then the classification is given by

Proposition (5.8). A central extension of Diff+(S’) by CX is described

by (c,h) ¢ C X (C/Z), where the "central charge" c is defined by
(5.7), and h is any eigenvalue of L . (Thus h is detected by the

restriction of the extension to the subgroup PSLzR.)

A modular functor gives us an extension of #A for each label. We
shall see in (6.9) that the extensions corresponding to the different
labels all have the same central charge c, which will be called the
central charge of the modular functor. The extension corresponding to
the label 1 necessarily' has h = 0. The extension defined by the

determinant line has (c,h) = (-2,0).

The proof of (5.4)

A modular functor gives us an extensioncﬁb of #, and hence an
extension VW of Vectm(S‘), for each label ¢. Consider the bundle E, on

the moduli space ﬁa‘ There is an action of & on ga for each boundary

~
circle, and it is covered by an action of the appropriatetﬁz, and hence

of VW’ on E,. Putting these actions together gives us an action on E,

of a central extension va of Vecty(dX). At a point X e‘ga the tangent
space to ‘@a is Vectm(bX)/Vect(X), and so an extension VX of Vect(X)
acts on the fibre E(X). But the Lie algebra Vect(X) has no finite

dimensional projective representations (see’Appendix *), so the

,ﬁ’\v. F-Ov'(‘ WU v'({ (\-u:; Pu ‘-'t»-( Co pt

'Because DoA = D when A belongs to the subsemigroup 'g,of H (see §2)
the extension is split when restricted to {5, and hence when
restricted to PSL,R.
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extension VX is canonically split, and VX acts scalarly on E(X). Thus
at X we have a differentiation operator DE on sections of E, for each
¢ e vaX/Vect(X), i.e. DE is defined up to an additive scalar for each
tangent vector § to‘ga at X. This is a connection in the bundle of
projective spaces of E,, and it is flat because it comes from a Lie
algebra action of va‘ The nature of the definition of the connection

makes it automatically compatible with sewing surfaces together.

Modular functors from a topological viewpoint

Immediately after the first version of this work was written the
study of modular functors was transformed by Witten''s realization [Ww ]
that the vector spaces in question are in fact the state spaces of 2+1
dimensional "topological" field theories. To explain this it is best
to look at modular functors in a slightly different way.

The main point is that for any modular functor E we know from
Theorem (5.4) that the space E(X) is almost independent of the complex
structure of X. For if X is a smooth surface the space ﬁﬁ(x) of all
complex structures on X (not identifying structures which are
diffeomorphic) is contractible. The modular functor gives us a vector
bundle on (X): let Ej(X) demote its fibre at J. By (5.4) the
projective space of Ej(X) is independent of J. But we can do better.
There is a line bundle on éE(X) whose fibre DetJ(X) at J is the
determinant line of the Riemann surface (X,J). If the functor E has

central charge c the bundle with fibres

EL(X) = E;(X) @ DetJ(X)®(%C) (5.9)
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has a flat connection, i.e. EJ(X) is independent of J. To define

1
Det®(2c), however, we must make a choice (unless %c is an integer).

This can be done universally for all ¢ e C by choosing a universal
~J

covering space ZPX of the principal CX-bundle 2F% of the line bundle
~o

1
Det on éﬁ(x). The space Zf& then has an action of C, and Det®(zc) can

~Y

be defined as 0’ X C, where C acts on € by (A,) - eTichs

Definition (5.10). A rigged surface is a smooth surface X together

with a choice of a universal covering space of YF%.

Of course any two riggings of the same surface are isomorphic, but
the group of automorphisms of a rigged surface (X,%ﬁx) is a central
extension by Z of the group of diffeomorphisms of X. In fact for a
surface of genus >1 it is the universal central extension of the
diffeomorphism group.

I have not been able to think of a less sophisticated definition

of a rigged surface, although there are many possible variants. The

essential idea is to associate functorially to a smooth surface a

space - such as TPX - which has fundamental group Z. Instead of 5%(
one can take g&(ﬂ’(g;R)), which is obtained by replacing the determinant
line on gx by the determinant line on the Siegel domain ?(H'()?;IR)) of
complex structures on the symplectic vector space H’(Q;R). (Here Q is
X with discs attached to its boundary circles.) There is an obvious
natural transformation ix > g(H1 (X;R)). Another variant is to replace
'6% by the Grassmannian of oriented Lagrangian subspaces of H'(X;R).

(Let us notice that if Y is a 3-manifold with 3Y = X the image of H'(Y)

in H'(X) is a Lagrangian subspace.) In [AL] Atiyah, following Witten,
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considers the space E&X of 2-framings of X, i.e. trivializations of the
sum of two copies of the tangent bundle of X. We have 71(?}X) = Z, but
the natural map 11(3)() > 11('3')() is multiplication by 12. The
2-framings therefore lead to an extension of the mapping-class group by
Z whose class is 12 times that of the extension considered here. (In
particular, Atiyah's extension is trivial when X is a torus, whereas
ours is the extension of SL_(Z) induced by the universal covering group
of SLZ(R), and is isomorphic to the braid group on three strings.) In

any case, we can now reformulate (5.4) as follows.

Proposition (5.11). A modular functor defines a functor on the

category of rigged smooth surfaces and isotopy classes of rigged

diffeomorphisms.

The functor on the category of rigged smooth surfaces so obtained
will be called a reduced modular functor. From what we have said so

far it is defined for surfaces with parametrized boundaries (or,

better, with rigged boundaries in the sense explained after Definition
(4.4)) but it is clear that we could equally well regard it as a
functor on the category of closed rigged smooth surfaces equipped with
a finite number of labelled marked points with a preferred tangent
direction at each. If the tangent directions are rotated there is a
flat connection in the resulting vector bundle over the torus of
tangent directions, and the holonomy of a rotation of 27 about a point
labelled ¢ is e2™P,

The central charge of a reduced modular functor is defined only
modulo 1. (It is well-defined modulo 1 because Hz(F;Ex) = CX when T is
the mapping-class group of a surface of large genus.) The original

modular functor can be recovered from the reduced one up to tensoring

with an arbitrary integral power of the determinant line.
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When two rigged surfaces are sewn together the result is rigged,
and a reduced modular functor inherits the composition properties of
Definition (5.1). This follows from the simple behaviour of the
determinant line, which we shall treat in 86. (The variant definitions
of rigging mentioned above are less well adapted to sewing.)

It seems appropriate at this point to mention "Verlinde's
conjecture", which gives a remarkable description of the algebra Z[®]
associated to a modular functor E, which we can assume to be reduced.
(The statement and the idea of the proof are due to Verlinde [V ]; a
complete proof was first given by Moore and Seiberg [MS].) Let X be a
torus, and let o,f be simple closed curves on X representing a basis
for the homology H (X). Because an annulus is canonically rigged we
can identify E(X) with C[®] by cutting X along o and using (5.1)(ii).
The mapping-class group of X is SLz(Z). It acts projectively on E(X),

and we transfer the action to C[®]. Let S : C[®] »> C[®] be a

0 1

representative of (_1 0

), and let M¢ denote as above the operation of

multiplication by ¢ in the Verlinde algebra. Then we have

Theorem (5.12). The matrix of SM‘[,S'1 is diagonal with respect to the

natural basis of C[d].

The theorem implies that the structure of the Verlinde algebra is

completely determined by the matrix S. In fact

Corollary (5.13). The structural constants n¢X¢ of Z[®] are given by

_ -1
Toxy ~ % S oS 0050y 501
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The corollary follows from the theorem because n¢X¢ is the (x,¢) matrix
element of M¢ and the (0,0) entry of the diagonal matrix SM¢S-1 is
So¢/501- That is proved by equating the (6,1) entries of the matrices
SM,, = (SMSOS")S, for (M )y, = 8,
We shall not give a proof of (5.12), but shall explain how it
follows from the 2+1 dimensional description of modular functors to

which we now turn.

Topological field theories

A topological field theory in d+l dimensions can be defined, by
analogy with (4.4), as a system comprising
(i) a functor X+» H(X) from closed oriented d-dimensional smooth
manifolds to finite dimensional complex vector spaces,
(ii) a non-singular pairing H(X) ® H(X) » C for each X, where X
denotes X with reversed orientation, and
(iii) a vector ¢Y € H(d3Y) for each smooth oriented (d+l)-dimensional
manifold Y with boundary.
These data are required to obey the following two axioms.

(a) Multiplicativity: H(X1 u_Xz)

H(XI) ® H(Xz) and

Yy iy~ Yy 8 Yy

11, 1 2

(b) Sewing: if dY = X, u X, U X,, and Y is formed from Y by sewing X,
to X, by an orientation-reversing diffeomorphism, then yy > y+f under
the map H(dY) - H(b%) induced by the pairing H(X,) ® H(X,) -» C.

Witten realized that the modular functors coming from representa-

tions of loop groups are the state spaces of 2+1 dimensional theories,
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and subsequently Kontsevich [K ] and others have given arguments - a
little sketchy - to show that the two concepts are actually equivalent.
Of course one must first widen the definition of a topological theory a
little so that it is defined on the category of rigged surfaces and
3-manifolds. An oriented 3-manifold Y whose boundary 5Y is rigged has
itself a set of riggings which form a principal homogeneous set under
the group Z which is the centre of the central extension of Diff(3Y).

I do not know an altogether straightforward way to define a rigging of
a 3-manifold. One approach is to introduce the contractible space “RY
of metrics on Y. Each metric has an "y-invariant" (see [A’$]) which is
a non-zero element of the determinant line of dY. (The invariant is
essentially the phase of the determinant of the signature operator.)

Thus we have a map
1;:'WQY > Yng .

~
A rigging of Y is a lift of this map to the covering space BOBY which
defines the rigging of dY.

To relate modular functors to 2+l dimensional theories it is
helpful to introduce the intermediate idea of a relative 2+1
dimensional theory. Like a modular functor this has a set & of labels,
and assigns a vector space H(X) to each rigged oriented surface with
labelled boundary circles. It has the same sewing-together property
as a modular functor. As for a field theory there is a vector
Yy € H(3Y) for each rigged 3-manifold with boundary, but it is required
to satisfy a stronger sewing property than (b) above, for one must
allow dY to be decomposed X, ux, UuXx, where the X; are surfaces with

boundary which intersect along various boundary circles. An
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orientation-reversing diffeomorphism £ : X, - X, allows one to sew
. v v v .
together X, and X, to form a 3-manifold Y such that aY = X is obtained

v
by sewing from X . To see that there is a natural map H(3Y) - H(3Y),

we write
H(oY) = @ H(X 50,,,04,) 8 HX 5o..,0,,) 8 HEX 50, ,,0,,),
Po1:¥P022%12
where 1 is a multi-label for X; N Xj' We project this sum to the sum
of the terms where ¢ . = ¢ ,. Then the last two factors in the tensor

product are in duality under f, so the sum maps to

v
<E}E> HX 50015905) = H(X ()

Po1 = Po2
%
The axiom we require is that H(3Y) - H(JY) takes yy to ¢§.

When a reduced modular functor E is given it is obvious that there
is at most one way to define the vectors yy corresponding to
3-manifolds Y. One begins with the standard 3-disc D and chooses Yy in
the line E(S?). This can be done arbitrarily, because any modular
functor has an automorphism which multiplies by A (X) on E(X). Any
other 3-manifold Y can be obtained by sewing copies of D together, and
its vector ¢Y is determined by the sewing axiom. Kontsevich [K ] has
given a simple argument to show that the vector obtained is independent
of the chosen decomposition of Y. I feel, however, that the matter is
still far from well-understood.

I shall conclude this section with the proof of Verlinde's

conjecture (5.12) for a 2+1 dimensional field theory. Let X be a disc
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with two holes, and let Y = X X [0,1]. Then d3Y =X U X UA U A U A,

where A is an annulus. We have

HGY) = @ H(Z,,y) 8 HE )" @ H(A,,) ® H(A\) @ H(ay)
P X ¥

in what I hope is obvious notation. Let

by = 2 Foyy 8 6 8 6 0@ ¢y,
0y XY
where t¢X¢ is an endomorphism of H(Z¢X¢) and ew is the canonical
element of A¢¢' When two copies of the cylinder Y are sewn end-to-end

we have Y U Y = Y, and hence ¢§ = Yy in the algebra H(3Y). But

eé = €y etc., so th¢ is the identity map. Joining the ends of Y

v
together to get Y = £ X S' we have

W= S0,y € 8 6 8 ¢ (5.14)

4
On the other hand we can form Y also from A X S', where A is the disc

From this point of view (A X S$') is the union of eight annuli, and vy

has to be of the form
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zx?@g’o@?‘;, (5.15)

where ?; € H(S' x 8') is formed in the same way as € but with the
axes of the torus interchanged. In terms of the modular transformation
S : H(S' x 8') » H(S' x S') we know that 2; is a multiple of Sew, and
so the equality of (5.14) and (5.15) is exactly Verlinde's assertion

(5.12).

Mumford's theorem

We can now easily prove the crucial theorem of Mumford which
determines all one-dimensional modular functors. (I am greatly
indebted to Deligne for showing me how to correct an earlier version of

the following proof.)

Proposition (5.16). If a modular functor E satisfies dim E(X) = 1 for

all X then it is determined by its restriction to A

Corollary (5.17). The only such modular functors are integral powers

of the determinant line.

The same argument will prove

Proposition (5.18). The only central extensions of the category 24 by

®p

CX are those given by X > Dety™ ® Det®q for p,q. ¢ C such that p-q € Z.

Example. Let Em(X) denote the determinant line of the >-operator

acting on differentials of order m. Thus E (X) = A(2m D (e-1 ®m1(X)
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if m,g > 1 (cf. §6). Calculating the Lie algebra cocycles (see

(8.14)) shows that

(6m2-6m+1)

~ ®
Em(X) = EO(X) (5.19)

when X is an annulus, and (5.8) shows that this isomorphism holds for

all surfaces X.

Proof of (5.16). Let E, and E, be two functors with the same

restriction to #.  Then E = ET ® E, is a modular functor which is
trivial on & The argument of (5.3) shows that for any o there is a
connection in E, which is flat - not just projectively flat - and
compatible with sewing. This means that E, is determined by a
representation of 11(%L)' But it is a classical result that wj(g;) is
generated by "Dehn twists" along various curves <4 in the surface o. 1In
our language, if X is a point of ga one can write X = Y U A, where A is
an annulus containing the curve . Holding Y fixed we have a

map &4+>€

trivial by hypothesis, so the action of w1(‘@a) is trivial, and all the

o and the Dehn twist is the image of w1G#) = Z. But Elfgis

fibres of E, can be canonically identified. This means that X» E(X)
is a functor on the category of smooth surfaces and diffeomorphisms,
and also that the group of diffeomorphisms of X acts trivially on E(X).
The isomorphisms E(X) ® E(Y) » E(X 4 Y) and E(X) - E(XB are still, of
course, natural.

Let us write Eg for E(Xg) when Xg is an arbitrary closed surface

of genus g. If Xék) is got by removing k discs from X_ then E(Xék))

g

can also be identified canonically with E The complete data provided

g

by the functor are then described by the sequence of lines E_ together

g
with the maps
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bl

E
81 B  &t8y

where i is defined by sewing together the boundary circles of x(2)

g ’
and m by sewing together Xé1) and Xé'). To prove the theorem we must
1 2
show that one can choose isomorphisms €g : Co- Eg which are compatible

with the maps i and m. That is possible because the diagrams

E QE 5> E E @E > E
g & 818 ) g1%8)
1 l and l l
E ® E > E E -> E
g1+1 89 g1+g2+1 g ® Eg2+1 g1+g2+l

commute.

Proofs of (5.17) and (5.18). We have seen in (5.7) that a holomorphic

extension of H is determined by a pair (c,h), and that h = 0 for a
modular functor with one label. 1In view of (5.16) it is therefore

enough to show that ¢ must be an even integer. That is true because

N : .
the (C/’.’L) ' PO\A_/er m( D(:t —_ w“‘«‘ - l’i (Y p'cé {—{n e c‘l .(5,» nrxg\ l'(l 5‘ka’f't‘l.tl" L —
does y\,o\' descend te g g ed 3\«.4'1’:(»@(’5 cam less /. I8 cn ..d’.eﬂ er.

< ne e SOV e ﬂuj ﬁ,u{ (1 ¢ st Clhern  clecss c( Det qener ades

1 PRp— .
H / 'ga A Z > > Z whin iv o suvface  of Yo rge A
W\ﬂ\ oue lr\_a&\’ : g (L'Z) \ ‘3# ‘C"\J{J “/ ‘:F ﬁ:‘-& sy I8 LS = ""'Pﬁl v toson
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Unitarity

All the examples known to me of modular functors are unitary in

the following sense.

Definition (5.20). A modular functor E is unitary if there is a

positive non-degenerate transformation

E(X) ® E(X) > |Dety| ©

for each surface X with labelled boundary, such that, in the notation

of (5.1), the diagram

v v
)

1 1
= c
E(X) ® E(X) > |Detx|

commutes.
Thus a unitary modular functor provides unitary projective
representations of the braid groups, etc. More importantly, the

definition is designed to give us

Proposition (5.21). A pair of weakly conformal holomorphic field

theories H and H' corresponding to the same unitary modular functor E
with index set & gives rise to a conformal field theory based on

t H ' tral i ¢ 6.
he space W@¢ H¢ ® H¢ and the central extension |Det| © of
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g6. The determinant line

Definition and basic properties

The determinant line Dety of a Riemann surface X with parametrized
boundary' is the dual of the top exterior power of the space of
holomorphic differentials on the closed surface X obtained by adding

caps to the boundary circles of X, i.e.
Dety = AB O 1 ()% . (6.1)

This definition, however, does not lead one to expect the canonical

isomorphism

Dety ® DetY = DetXuY (6.2)

which exists when surfaces are sewn together.
An alternative definition of DetX is as the determinant line of
the S-operator of X in the sense of Quillen [®]. To define this,

recall that on any Riemann surface there is a d-operator
5 ') - V(X

mapping smooth functions to (0,1)-forms. If X has a parametrized
boundary then SX has a natural boundary condition which makes it a
Fredholm operator: one restricts it to the subspace Q°(X,dX) of
functions which on each incoming boundary circle are of the form

'Sophisticated readers should notice that to define Dety we do not need
the boundary of X to be parametrized, but only to be rigged, as was
explained after Defn. (4.4).
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z aneine, and on each outgoing circle of the form X bneine. Any

ny0 n<0
Fredholm operator P : E > F between topological vector spaces has a
determinant line Detp, which can be defined in various ways. A

convenient definition for our purposes is given in Appendix B. For a

single operator P we have

Detp = Det (ker P)* @ Det (coker P) ,

where on the right Det denotes the top exterior power. For the
operator SX this reduces to (6.1), but the important property of the
definition is that the lines Detp fit together to form a holomorphic
line bundle on the space of Fredholm operators E > F. More
generally, if E and F are holomorphic bundles of topological vector
spaces over some base space, and P : E -» F is holomorphic and
Fredholm (cf. Appendix B), then Detp is a holomorphic line bundle on
the base space.

It should be remembered that the determinant line of a Fredholm
operator is a vector space with a mod 2 grading. The degree is the
index of the operator. For a surface of genus g with m incoming and n
outgoing circles the degree of the determinant line is m + 1 - g. Thus
Detsz is canonically C, but in degree 1. This means that

Det L is also C, but that the group of permutations of

s2us?uy ...

the spheres acts on it by the sign representation.

If the surface X has no closed components there is another
description of Dety. Let Hol(X) be the vector space of holomorphic
functions on X. The space of smooth functions 0°(5X) has a splitting
Qi(éX) ® Q°(3X), where Q° denotes the functions which satisfy the

boundary condition above.
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Proposition (6.3). If X has no closed components then Dety is

canonically isomorphic to the determinant line of the operator
Ty Hol(X) =~ Qi(bX) given by restriction to 3X followed by

. . 01
projection on to (I .

Corollary (6.4). The lines Dety form a holomorphic bundle on each

moduli space \éa of surfaces with parametrized boundaries.

We shall return to the case of closed surfaces below: see the

remark after Proposition (6.5).

Proof of (6.3). We consider the diagram

I

0 5 Hol(X) o ®x) s o9t 5 o
1 Ty 1 d@pr 1l id
0 - QS(BX) > QOl(X) ® QS(EX) > QOl(X) > 0

As the rows are exact this defines an isomorphism

DetX = Deat-g@pr = Det7r ® Detid = Det7r

X X

The essential property of the determinant line is (6.2), which, as

it is obvious that Det = DetX ® Det is a particular case of

Xuy Y’

Proposition (6.4). A sewing map X - i, i.e. one which sews outgoing

edges of X to incoming ones, induces a canonical isomorphism

DetX = DetX.

'It is more convenient for the sequel if we change the definition of =
by composing it with the automorphism of Qi(bX) which multiplies by -1
on the incoming circles. That does not affect the truth of (6.3).
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v

Proof: First assume that X is not closed, and that it is formed by
v

sewing together the parts S, and S, of 3X to form a curve § in X. We

have a commutative diagram

A
0 > Hol(X) = Hol(X) s %) s 0

wi 1 Tl id 1

0 > 06 - 0,065 e i) 5 %) s o
Here A is defined by A(f) = £|S, - f|S,, and = by
~ v
R0 = (], D)

The rows are exact. (To see that A is surjective, let Y be the surface
formed from two copies X, and X, of X by attaching §, ¢ X, to S, ¢ X_.
Because Y is a Stein manifold, any smooth function f on S = X, N X  can
be written fl|S - f2|S, with f£; e Hol(X;).) Thus Dety = Det(w). But
Dety is the determinant of Tt Hol(X) - Qi(bX). We can identify
0°(s) with 09(S,) ® 0°(S,), and hence QJ(3X) with 0%(3X) @ Q°(S). Then
Ty - T is the map f (f|Sl)_ - (f|Sz)+. This is of trace class by
Lemma (6.6) below. But the determinant line does not change when the

operator is changed by an operator of trace class (see Appendix B), so

the result is proved.

The case when X is closed can be dealt with by making a hole in X

so that it does have a boundary, and then using the following result.

Proposition (6.5). For any surface X the line DetX does not change

when the interiors of one or more holomorphically embedded discs are

removed from X.
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If X is not closed this is already implied by (6.4). It is
therefore in keeping with the spirit of our approach to define Dety
when X is closed as Dety ), where D is any disc in X. This definition
does not depend on the disc chosen, for if D, and D, are disjoint discs

in X then we know that

IR

IR
v
0}
t
o

[+] ] o
Dety p Dety b -p X-D

We shall therefore leave the proof of (6.5) to Appendix B (B2 ).

In proving (6.4) we made use of

Lemma (6.6). If S is a union of outgoing boundary circles of a Riemann
surface X then the map £ bé-(fls)_ from Hol(X) to Q?(S) is of trace

class.

Proof: It is enough to prove this when X is an annulus and S = S is
its outgoing end. Indeed because diffeomorphisms preserve the
decomposition Qo%(¢s) = QE(S) ©) Q?(S) up to trace class operators (see

[PS]( )) we can assume that X is {z ¢ C : r < |z| < 1} with the

standard parametrization. But then Hol(X) - Q?(S1) factorizes

Hol(X) » 0J(S,) » Q%(s)) ,

where the second map is the diagonal operator taking zK to rkzk. This

is clearly of trace class.
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The central extension of Diff+(S1)

We can now see why - as was mentioned at the beginning of this
paper - the determinant line gives rise to the basic central extension'
of Diff+(S1). One way of formulating the result of [§2] §7(b) is that
the basic central extension of Diff+(S1) consists of pairs (p,\) with
o € Diff+(S1) and \ € L@, where L¢ is the determinant line of the
Toeplitz operator T, : Q)(S') > OJ(S') which is the (++) block of the

action of ¢ on Q°¢(s'). But Lw is equivalently the determinant line of

P, s 0°(sT) > 0p(sh) @ QI(sh)

£ ( (p*E),, £_)

If the diffeomorphism ¢ is regarded as the limit of a family of annuli

A then P¢ is evidently the limit of the operators
mp 1 Hol(A) - QJ(d4)

More precisely, in terms of the proof of (5.5), if A is the standard

annulus {(r < |z| < 1), we have ToA = P¢”A’ and hence
det(P,) = Det,, @ Dety .

This makes clear the sense in which the central extension of Diff+(S1)
is the "boundary" of an extension of the semigroup .

To understand why the pairs (p,\ ¢ L¢) form a group it is best to
regard L¢, in the notation of Appendix B, as Det(W;¢W), where W is an

element of Gr(Q°(S')): this line does not depend on W.

'The cleanest statement is simply that the extension is the group of
automorphisms of a rigged circle.
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An important property of the central extension of Diff(S') which
is easy to see in terms of the determinant line - or rather in terms of
the splitting of Q°(S') into positive and negative frequency - is the
following "reciprocity law". When we have a surface X with boundary we
can put together a copy of the standard extension of Vectm(S1) for each

boundary circle to obtain an extension Vecta(bX) of Vectm(BX),

Proposition (6.7). The restriction of the extension VectE(bX) to the
subalgebra Vect(X) of holomorphic vector fields on X is canonically

split.

Proof: The extension of Vecty(sX) measures the extent to which the
vector fields fail to preserve the decomposition

QO(3X) = Qi(aX) @ Q?(bX). If we write TE for the Q+ -> Q+ component
of the action of a vector field { then we have the following explicit

formula for the cocycle (cf. [P§](6.6.5)):

(€,m) > trace([Ty, T, ] - Tz 1) (6.8)

= trace(J[J,£][J,n])
Here J is the operator which defines the splitting 0 = Q.+ @ OQ_, i.e.
J|Q, = #1. If the decomposition is changed by replacing J by another
operator Jy such that K = Jy - J is of trace class (and J§ = 1) then

the cocycle (6.8) changes by the coboundary

(¢,m) v~ 2 trace([&,7n]K)

Let us choose Jy corresponding to the decomposition Q%(3X) = Hol(X) @
Hol'(Y), where Y is a collection of discs with 3Y = 3X, so that X U Y

is a closed surface, and Hol'(Y) means the functions which are
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holomorphic except for a pole (or zero) of an appropriate order at the
centre of one of the discs. The difference Jy - J is given by an
integral operator on dX with a smooth kernel, so it is certainly of
trace-class. On the other hand, the subspace Hol(X) is preserved by
holomorphic vector fields on X, so the cocycle trace(JX[JX,S][JX,n])

vanishes on Vect(X).

Another result which fits in naturally at this point is

Proposition (6.9). For any modular functor the extensions of Vect(S")

corresponding to its labels all have the same central charge.

Proof: Suppose that X is a disc with two holes with boundary circles

S_,S

0 ,S, labelled ¢ ,p,,p,. Let c; be the central charge corresponding

1

to ¢;. We must show that c, =c, =c,. Let Ei € H?(Vect(X);C) be the

class of the extension of Vect(X) pulled back from the determinant line
extension of Vect(Si). Then EU + 21 + Ez = 03 but 21 and Ez are
linearly independent, because by filling in, say, the second hole we
embed X in an annulus A in such a way that EZ = 0 but E1If> 0 in
H?(Vect(A);C) = C. Now the modular functor gives us an extension of
Vect(X) with class X Cisi' We know that it is split, and therefore

Y c = 0, and hence c,=c,=c

isi 2 3"

Modularity and the 7n-function

Our final task in this section is to give a completely explicit
description of the isomorphism Det, = Dety when A is an annulus and
X = K is the torus got by joining its ends. We need this to find the

modularity properties of partition functions. Suppose, for example,



64

that we have a holomorphic field theory with central charge c, so that

an operator U, in H is associated to the annulus A together with a

, o
choice of o ¢ Det,, and UA,Xa = ﬁCUA,a for N\ ¢ C. Then the trace of
UA,a depends only on the image & of o in the line Dety. There is a

canonical element €, € Det,, for the d-operator is an isomorphism. The

partition function Z of the theory is defined by

Z(7) = trace U R
where A is the standard annulus determined by q = eZWIT, with Im(7) > O.
If 7 is replaced by 7' = (ar + b)/(c7 + d), for some g =( : gj)in the
modular group I' = SLZ(Z), then A changes to A', but the torus X does

not change, so we have

Z(r'y = p(r,g¥° 2(r) , (6.10)

where p(7,g) is the ratio of the images of the elements €xr and €, in
DetX. (Note that p(7,g) depends on g, and not just on 7 and 7',
because one must choose an isomorphism between the tori X and X'.) The
crucial result is

2ni(r'-7)/12

Proposition (6.11). We have p(7,g) = u(g)e , where

u: Il > p, ., is a canonical homomorphism from I' to the group p,, of

120 roots of unity. In other words

(@) 22¢r") = u(gd® a7 ?2(r)
The line DetX attached to a torus X is the dual of the line of

holomorphic differentials, so it contains a lattice A = H1(X,Z) given

by the geometrical cycles. Let EV ¢ Dety correspond to the cycle ¥.
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If X is formed from an annulus A this gives us a preferred element £,.
It is natural to expect that £, should be related to the image of ¢,,

and in fact it is very easy to prove

Proposition (6.12). The image of ¢, in Dety is

m (1-qM 2.8, .
n>0

When A is changed to A' by g € I' we have

Epr = (er + )7E, (6.13)

and so, in the light of (6.12), the result (6.11) is equivalent to the

modularity property

7(r')? = u(g) "(er + d) "n(t)? (6.14)
of the square of the Dedekind 7-function, which is defined by

n(r) = e™iT/12 g (1-q™)
n>0

Indeed, (6.14) can be taken as a definition of the homomorphism u. The
existence and modularity of the %-function amount to the following
geometrical statement:

if L is a complex line equipped with a lattice A then there is a
canonical isomorphism ®12 & C, i.e. a canonical map £ : L > C which
is homogeneous of degree 12; in particular L contains a distinguished

set “%2 = £77(1) of 12 points.



66

Applying this to the case (L,A) = (C,Z + 7Z) for Im(r) > 0 gives
us a 12-sheeted covering of the upper half-plane with an action of the
group SLZ(Z) on it; and considering how the sheets are permuted gives
the homomorphism u : SLZ(Z) > p,, which in fact describes the
abelianization of SLz(Z).

At this point we could assume the properties of 7 and deduce
(6.11) from (6.12). But it is obviously more satisfying to deduce the
properties of 7 from general facts about the determinant line. I shall
give an argument based on Mumford's theorem (5.9), but I should mention
that Deligne has given a much more illuminating argument, which,
however, it would require too long a digression to explain.

For my argument we consider alongside the line Dety the
determinant line E§2) of the d-operator acting on forms of type (2,0).
From (5.9) we know that E§2) = De€§13, and, more precisely, that
De€§13 ® (E§2))* has a canonical element pg which is multiplicative in
the sense that py,y = py.py. But the proof of (5.9) shows that for an
annulus A one has p, = €A3;A1, where EA is the standard element of
Eéz). (The reason for this is that all of these standard elements are
characterized by multiplicativity with respect to the relation
D o Ao D=D_ o D in the category g. Now the map A » X takes p, to

kg, and so the image of eAS 2A1

depends only on X. But Proposition
(6.12) can be generalized to a statement about the determinant line
E)((m) of the d-operator acting on 0®m for any value of m. An annulus

Eém) has the usual canonical element egm), and for a torus X there is

an element Eém) for each cycle %.

Proposition (6.15). The image of eém) in E§m) is

(- 1) (g2 g
n>0
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On the other hand, when X is a torus E§2) can be identified with

DetX, for

B{? = HOx; R @ H' (x;0%7)

HO(x; (B 2)* @ BO(x;02(-1))*

IR

IR

HO(x:0")*

Il

Detx .

(Here the second isomorphism comes from Serre duality, and the third
from the product P2 ® QGK'1) > 0'.) Under this identification Eéz)
corresponds to £,.

Putting together the isomorphisms Eéz) = Deé?‘a and E§2) = Dety

gives us De€§12 2 C, by a map which takes
q‘l n (1_qn)"24 EAZ — 77(7')_24 £A2

to 1. This is precisely the statement that 7(7)?? is a modular form of

weight 12.

It remains to prove (6.15), which, of course, includes (6.12).
Using (6.4) we can identify E§m) with the determinant line of

isomorphism
Tt O2B@ay - P

given by wA(f) = (¢Tf)+ - (wif)_, where PorPy - S' 5 A are the

parametrizations of the ends of A. The operator =, itself defines the
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element egm), while Egm) is defined by the Fredholm operator = such

*

£ - wﬁf, together with the obvious choice of isomorphism

that 7(f) = ¢
between its kernel and its cokernel. The ratio of ng) to eém) is
therefore the determinant of 7 o wA’ restricted to the subspace of
2(S') spanned by all zKdz ™ with k # -m. This operator is diagonal.

Kgz ® by (1 - ¢¥*™) if k 3 0, and by (1 -¢"¥™™) if k < 0.

It multiplies z
The determinant is therefore (-1)® q'%m(m'1)ﬂ (1-qn)2, which proves

(6.15).
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§7. Spin structures: discrete coverings of'g

The categories ‘g spin and @ G

The kernel of the universal central extension of Diff+(S1) is
R@® Z [S2]. The coordinate functions on R @ Z, in the notation of
(5.8) are (c,h). The determinant line accounts for the factor R,
while Z is the centre of the simply connected covering group of
Diff+(S1), i.e. of the contractible group of diffeomorphisms
¢ : R > R satisfying ¢(0 + 27) = p(0) + 2x. Having discussed the
determinant extension it is natural to ask about extensions
connected with the fundamental group. The most important one is the
spin covering.

A spin structure on a circle S is a real line bundle L on S
together with an isomorphism L @ L = TS. There are two possible
choices for L: trivial or M8bius. I shall write Sp and S, for the
respective pairs (S,L): the letters stand for "periodic" and
"antiperiodic".

A spin structure on a Riemann surface X is a holomorphic line
bundle L with an isomorphism L ® L & TX, where now TX denotes the
complex tangent line bundle. If X has a boundary then a spin structure
L on X induces one on the boundary, for the positively oriented tangent
vectors to the boundary of X have square-roots which form a real line
in leX. Every surface possesses a non-empty finite set of spin
structures: they are acted on simply transitively by the group
H'(X;Z2/2), for two spin structures on X differ by tensoring with a real
line bundle.

The category '@Spin has objects Cn,n' for n,n' ) 0, where Cn,n’ is
the union of n copies of SA and n' of S%. The morphisms Cm,

m' - Cn,n'

are Riemann surfaces (¥X,L) with a spin structure and a given
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isomorphism (3X,L|3X) & C - C It is easy to see that there

n,n' m,m'"

are no morphisms Cm > Cn n' unless m' = n' (mod 2), in which case
b

,m'
the morphisms form a principal bundle over Mor\g (Cptm' s Cpn' ) With
group H'(X,3X;Z/2). In particular the identity component of the
semigroup of endomorphisms of C, is a double covering of H , and its

?

Shilov boundary is a double covering of pifft(s').

There is no obvious generalization of 6SPIn por any n one can
construct an n-fold covering of the semigroup H by considering pairs
(A,L) such that L®n g TA; but that does not work for general surfaces X

th Loot.

because usually TX has no n
There is, nevertheless, an extension ‘ﬂG of @ associated to each
finite group G. The objects of "@G are principal G-bundles over
one-dimensional manifolds, and the morphisms are principal G-bundles
over Riemann surfaces. Unlike %spin’ the extension *@G is split: “@

itself is a subcategory of ‘KG.

The principal G-bundles over S' correspond to the conjugacy

1

g

endomorphisms of Sé in “&G which cover an annulus A correspond

classes of elements of G: I shall write them S_ for g e¢ G. The

non-canonically to the elements of the centralizer Z_ of g in G.

g
(Choose a path vy joining the base-points of the ends of A, and assign
to a G-bundle on A the monodromy along v.) More precisely, the

endomorphisms of Sé over J# form the extension of & by Zg defined by

the homomorphism Z = 1r1((9$) > Zg which takes 1 to g.

The associated modular functors

SPIN ang £G give rise to modular functors in the

The categories '@
sense of 8§5. Let us first consider ﬁG. We shall denote the set of

isomorphism classes of principal G-bundles on a l-manifold S by B(S),
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and if P is a G-bundle on 35X we shall denote by"éKX;P) the set of
isomorphism classes of pairs (Q,x), where Q is a G-bundle on X and o is
an isomorphism Q]bX > P, Thus if S is a union of components of 3X the
group Aut(P|S) of automorphisms of P|S acts on B(X;P). The

patching-together property of G-bundles is expressed as follows. If

X=X UX, is a union of surfaces attached along S, = 09X, N 3X, , and
S; = (axi) -8, then
®x;p) = M P&, ; P, UP) X PE, ; P,uP) ,
POG'P(SO) Aut(P )
(7.1)
where P; = PISi. There is a similar formula far attaching two edges

of the same surface. We can now introduce a modular functor E whose
set ® of labels is the set of isomorphism classes of pairs (P,V), where
P e B(S'") and V is a complex irreducible representation of Aut(P).

For a surface X with boundary circles S,y Sk labelled with (Pi’vi)

we define

E(X;P,V) = Mapp,e(py (P(X;P);V) (7.2)
where P = Pou... LPy and V = V1 ® ... ® Vk' The property (7.1) then
translates into
E(X;P,V) = @ E(XI;P1 il Po’ V1 ® V’é) ® E(Xz;Pz 1L Po’ V2 ® Vo)

(P,,V,)
(7.3)

The Verlinde algebra A of this modular functor has arisen in

another context in work of Lusztig [(.]. Additively we have
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Ag = @ R(C

[g]

g

where R(Cg) is the representation ring of the centralizer Cg of g € G,
and the sum is over the conjugacy classes of elements of G. Thus Ag
can be identified with the equivariant K-group KG(G), where G acts on
itself by conjugation. Analysis of (7.2) When X is a disc with two
holes shows that the multiplication in A; is given by the K, direct
image map induced by the multiplication G X G » G. (Thus if an element
of K-(G) is regarded as a family of vector spaces {Vg}gEG the product

of {Ug} and {Vg} is {Wg}, where

In particular, if G is abelian the ring Ag is the group ring of G X 6,
where 6 = Hom(G, T ).

To make everything as explicit as possible let us observe that
when X is a torus E(X) is the vector space of functions on the set of
conjugacy classes of pairs of commuting elements (g,,g,) of G.
Constructing X from an annulus gives the standard isomorphism

Ag ® C » E(X) which maps x € R(Cg) to the function

(g,,8,) t——>{ x(g,) if g =g
0

if g, is not conjugate to g .

If A; is regarded as a space of functions on a subset I' of G X G by

this map the multiplication is given by (f ,f)) ¥ £ *f , where
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(E*E)(y) = 2 £, (x,,9)
X X_=X
172

The action of SLZ(Z) in this description comes from its natural action
on I' = Hom(Z?;G), and one can easily check Verlinde's theorem (5.12).

Another aspect of the general theory which is easy to see in this
example is the vector ‘/’Y ¢ E(X) associated to a 3-manifold Y such that
dY = X. For yy is simply the function on the set ¥ (X) of classes of

G-bundles on X whose value at a bundle P is given by

1

Yy(P) = 2 TAut@ o] -
(Q,@) e ¥ (Y,P)

Little needs now to be said about the modular functor associated
to ‘@ spin_ Instead of ¥(S) and &(X;P) we have the corresponding sets
of spin structures ¥(s) and 8 (X;0), where o is a spin structure on
9X. The group of automorphisms of o is HO(3X;Z2/2). It acts on

S(X;0), and there is a sewing property just like (7.1). We obtain a
modular functor with four labels A* and Pi, corresponding to the two
spin structures on S' and the two representations of the group (*1) of

automorphisms.

The definition of a field theory based on BC or € SPIM ¢ clear.
For ‘@ spin’ for example, we should have a projective functor (S,c) +>
H(S,0) from oriented l-manifolds with spin structure, and a ray in
H(S,0) for each Riemann surface X with 3X = S equipped with an element

of ¥(X,0). I shall not repeat the conditions to be satisfied, but let
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us notice that Aut(o) will act on H(S,0). If it were not for the
projective nature of the functor we could say at once that such a
theory defines a weakly conformal theory with respect to the modular
functor described above. For each label (0,V) for S we could define a

space

H(S, (o,V)) = {H(S,0) ® V}AUC(U)

and when dX = S we should have an Aut(c)-equivariant map

$(X,0) > H(S,0) which would induce

E(X, (0,V)) = Mapy,¢ gy (§ (X,0);V)
~ (C[8 (X,0)] @ VyAut(o)

> H(S, (o,V))

But not much needs to be altered to take the projectiveness into
account. A central extension of \@spin defines a line bundle L on
8(X,0) which is equivariant under Aut(c), and we simply define a
modified modular functor E for which E(X, (0,V)) is the space of

equivariant sections of L @ V.

The homological description of spin structures

Besides the direct geometrical description already given we shall
need to make use of two other ways of characterizing spin structures.
The first is cohomological. 1If ¢ is a smooth closed curve in a closed
surface X then a spin structure L on X is either Mdbius or trivial on
v. Define oy (y) = +1 or -1 accordingly. It turns out that oy defines a
quadratic form on HX = HI(X;Fz) = H‘(X,Fz) which is associated with the

cup-product (or intersection), i.e.
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o010y, + vy) = o () +op(y,) v, - (7.5)

Obviously the function o7 describes the spin structure completely. This
can alternatively be expressed by introducing the abelian group HX
which is the extension of Hy by F, got by using the cup-product as a
cocycle. The formula (7.5) means that oy, is a splitting of the

extension ﬁX > Hy. A theorem of Atiyah [A1] asserts

Proposition (7.6). Splittings of the extension ﬁX correspond

canonically to spin structures on X.

Remarks. The group ﬁX is simply the group of units of the commutative
ring H*(X;Fz). Another description is that ﬁx = ﬁé(x), and - because a
spin structure is an orientation for KO-theory - the splitting
associated to a spin structure is the corresponding Gysin map ﬁb(X) ->
KO ?(point) = Z2/2. Yet again, the set ZSX of spin structures on X is an
affine space of Hy, and there is a function ¢ : CSX > F, which takes

L to the parity of the dimension of the space of sections of L*. A
choice of spin structure identifies ZSX with Hy and makes ¢ into the

quadratic form oy.

Proposition (7.6) can be generalized to surfaces with parametrized
boundaries. (In fact all we shall use of the parametrization is a
choice of base-point on each boundary circle; and all that is really
needed is a choice of a double covering of the boundary.) If S is a
l-manifold with a base-point in each component, let S, be the set of
base-points, and let HS = H1(S,SO;F2). Define HS = F2 @ HS. Then spin

structures on S can be identified with splittings of ES > Hg. On the
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other hand a spin structure L on a surface X can be described by a

function op, : HX > Fz, where HX = H1(X,50X;F2) and aox is the set of
C \_%e,c o 5 \: wA - ::f_‘q,. . Tiace 2 ,\/\ ATV L o closiee r:(

L {wcj < YLu /e ” G (e |5 (p Coteon v( fle (il L o
wJT N PEN r By xéki» « ‘(n;;-nl! (:Q [SEANR L O :3 )< .

base-points in dX.

p——g '.«

Proposition (7.7). For any surface X there is a canonical extension ﬁX

of Hy by F,, and a canonical homomorphism ﬁbX > ﬁX’ such that spin
structures on X with a given restriction to 3X correspond canonically

to splittings of ﬁX extending a given splitting of ﬁbX'

Proof: The main point is to define EX’ Suppose that oX has k
components. Let Y be a standard sphere with k standard holes and a
chosen tree y linking the base-points of its boundary components. Let
X*¥ = X UY. The inclusion (X,bOX) > (X*,y) induces an isomorphism
Hy - H1(X*,y) 2 Hygy. But we know how to define ﬁX* for the closed

surface X*, and it is now easy to deduce (7.7) from (7.6).

Spin structures and extensions of loop groups

The last way I shall mention of describing the spin structures on

a surface X is in terms of the group E§ of holomorphic maps X -» cx.

Proposition (7.8). For every spin structure on dX (with an even number

of periodic components) there is a central extension E§ of E§ by F,
such that splittings of E; correspond precisely to spin structures on

X.

I shall give the proof in 8l12. (See also the end of §8.) At

this point I shall make just two remarks.
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(i) The group of components of E§ is H'(X,2), and if 3X = S' then
ﬁ§ is induced from ﬁX by the natural map E§ > H'(X;Fz) = Hy. So the
result is clear in this case.

(ii) Given a spin structure L on dX the group E§X of smooth maps
5X » CX acts on the polarized space Q%(bX;L) of i-forms on d3X. This
gives us a central extension E?X of E§X by CX. The extension E; of

(7.8) is a canonical subgroup of the restriction of ng to Eﬁ.
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88. The Grassmannian category: chiral fermions

Linear algebra

For clarity let us begin with finite dimensional vector spaces. A
linear map T : V, » V,  is completely determined by its graph Wy, a

subspace of V., @ V.. It will be convenient in this section to define

the graph of T by

Wp = {(Tv,-v) : Vv € Vo}

One may ask whether the category of finite dimensional vector spaces

and linear maps is contained in a larger category in which the set of

morphisms V0 > V. is the Grassmannian manifold Gr(V1 c) Vo) of all
10

subspaces of vV, ®V,. If W € Tr(V1 @ VO), and W,, ¢ Gr(V2 @ V1) one

would try to define the composite W, * W, by

=
%

=
I

21 1o = v,,-v) eV, @V, : 3v, €V, such that

-v_) e W}

(Vz,-VI) e W and <V1’ 0 1o

21

= pr, ,((W,, ®V) 0 (V, 8 W,)) , (8.1)

where pr V. eV, ®V > V. @ V_ is the projection.
p20 2 1 0 2 0 P J

If dim(WIo) =n, +a and dim(W21) =n, + b, where n; = dim(Vi),

then generically W, * W, has dimension n, +a+b. In fact,

dim(W21 * W1D) =n, +a+ b if the following conditions are satisfied:



(i)

(ii)

Wy W, 2 v,

WZI ® WIO
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is surjective, and
(8.2)

> V,®V, ®V, is injective.

Where these conditions do not hold the composition law is obviously

badly discontinuous.

But we can do better.
the exterior algebra /\(V1 ® Vo)’

linear map Ty :

A subspace W of V. @ V  defines a ray in
and hence, up to a scalar multiple, a
For

AV 5 AV

R

AV, @ V)

IR

IR

The isomorphism Ak(VO) - An'k((V0

choice of an element of det(Vo)*.

need not only W but also an element N\ of det(W) ® det(Vo)* =

we shall therefore write it TW \-

If W

Proposition (8.4). 1o

ACY,) ® AY,)

AV) ® AV )* (8.3)

Hom(A(V ) 5 A(V,))

)* used in (8.3) depends on the
Thus to get a specific map Ty; we
det(V ;W);

One readily verifies

cV, ® V0 and W, <V, @V, then

T o T =T

W, ,p 0 WL

W21*W10,u®x

if the conditions (8.2) are satisfied, where p ® N refers to the

isomorphism det(V1;W21) ® det(VU;W

induced by the exact sequence

10) = det(VO;W21*W10)



If the conditions (8.2) are not satisfied, then T o T = 0.
W21,u wlo’x

Corollary (8.5). (i) The category of finite dimensional vector spaces

and linear maps is a subcategory of a category U which has the same
objects, but in which a morphism from V0 to V. is a pair (W,\) with

W e Gr(V1 @ VO) and \ € Det(VO;W). (Here (W,\) is regarded as

I

independent of W if \ 0, i.e. (W,\) is really an element of
AV, ®V,)) ® Det(VO)*.)
(ii) The exterior algebra functor V = A(V) extends to?f, though

as a functor into vector spaces rather than algebras. The morphism

associated to (W,\) raises degrees by dim(W) - dim(VO).

An endomorphism T of A(V) has a trace and, more importantly, a

supertrace trs(T) = Z(—l)ptr(TlAp). It is elementary to check

Proposition (8.6). If (W,A\) : V > V in 27 induces T : A(V) - A)

then tr (T) is the image of N\ under
AV @ V) ® Det(V)* - A(V) @ Det(V)* > C ,
where the first map is induced by subtraction V@V > V.

Remark. If we used addition V @ V - V rather than subtraction we

would obtain the trace instead of the supertrace.

More generally, a map T : A(V0 @Vv) - A(V1 ® V) can be collapsed

to a map f : A(VU) > A(V1) by taking the supertrace over A(V).
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Proposition (8.7). 1In this situation, if T is induced by (W,\) in

A% v Vv
then T is induced by (W,\), where

\"4
W= {(V1"Vo) € V1 ® V0 : (v1,v,—v -v) € W for some v € V} ,

0 b

v
and N\ is the image of \ under

IR

A(V1®V@V0®V) ® Det(Vo@V)* A(V1®V0) ® Det(VU)* ® A(V@V) ® Det(V)*

> A(V1 ® Vo) ® Det(VD)* .

Polarized vector spaces and Fock spaces

We are not really interested in finite dimensional vector spaces.
Instead we want to consider the category of polarized topological

vector spaces.

Definition (8.8). A polarization of a topological vector space E is a

class of operators J : E -5 E such that J? = 1, any two differing by

an operator of trace class.

Thus a polarized space E has a preferred class of decompositions
E=E' ® E° into the *1 eigenspaces of J. The typical example is the
space 0°(S') of smooth functions on the circle, with EY and E- spanned
by {eine} for n < 0 and n ) O respectively.

A polarized space has a (restricted) Grassmannian Gr(E) which
consists of the -1 eigenspaces E~ of all allowable J's. If W, and W,

are two subspaces belonging to Gr(E) we can define a canonical relative

determinant line Det(W ;W ). Holding W fixed and letting W, vary we
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obtain a holomorphic line bundle Det on Gr(E). These bundles are all

WO

isomorphic, but not canonically: an isomorphism DetW > DetW is the
0 1

same thing as an element of Det(Wo;Wl). For a discussion of all these
facts I refer to Appendix B. Let us notice also that the line
Det(WO;WI) is naturally a vector subspace of G}WO(E)’ i.e. the bundle
Detwaon Gr(E) is a sub-bundle of the trivial bundle Gr(E) X ﬁ-wD(E).
We can now repeat the discussion in this section using the
category of polarized topological vector spaces and systematically
replacing the exterior algebra by its analogue for polarized spaces,

which is the Fock space.

Definition (8.9). For W e Gr(E) the Fock space E}w(E) is the dual of

the space of holomorphic sections of Det;.

Thus the projective space ofJﬁw(E) is independent of W, and an
isomorphism A&W (E) - %W (E) is given by an element of Det(WO;Wl).
0 1

I recall from [PS] Chap. 10 that if E = et ® E° is an allowable

decomposition then we have a map
-k
AEDT @ EY) » B p-(B)

which identifies the left-hand-side (interpreted algebraically) with a
dense subspace of the Fock space.
The analogue of the finite dimensional isomorphism

A(V) @ Det(V)* = A(V)* is a bilinear map

3E+(E) x?}E-(E) s> C, (8.10)
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where E denotes E with the reversed polarization-class, i.e. with J

replaced by -J. (For the definition see Appendix B.)
We now have

Proposition (8.11). (i) There is a category”Zgol whose objects are

pairs (E,J) consisting of a polarized topological vector space and a
choice of J, and whose morphisms (Eo’Jo) > (E1,J1) are pairs (W,\)
with W ¢ Gr(E, ® E,) and X « Det(EY @ E;W).

(ii) The Fock space is a functor from Zgol to Z-graded topological
vector spaces and trace-class maps. It has exactly the same properties
with respect to "sewing" and the supertrace as held in the finite
dimensional case. In particular, a morphism (W,\) raises dimension by

the relative dimension dim(W : E: ® E;).

The category'@gol is thus formally analogous to the category g
made from circles and Riemann surfaces, and the Fock space functor is
analogous to a field theory. To make the analogy complete we need the
hermitian structure. If E has a hermitian inner product, and the
polarization J is self-adjoint, then the Fock space J(E) inherits an
inner product. If E is positive-definite then so is % (E). But there
is another way to give?}(E) an inner product, using the canonical
pairing (8.10). If E has a real structure, i.e. an operation of
complex conjugation, which interchanges EY and E, then¥(E) = F(B),
and (8.10) becomes a hermitian form. If the conjugation exchanges B
and E” only up to a finite dimensional discrepancy - more precisely, if

it anticommutes with J modulo trace class operators - then the hermitian
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form is defined only up to a scalar multiple'. The inmer product on
F(E) coming from a real structure on E is hyperbolic, i.e. as far as

possible from being positive definite.

Chiral fermion theories

We can now give our first examples of conformal field theories.
For any integer o one has the space Q%(s') of differential forms of
degree o on the circle - i.e. expressions of the form f(B)(dG)a. This
is polarized by o~ = Qg ® Q?, where Qg (resp. Q?) is spanned by
eina(dO)a for n < 0 (resp. n ) 0). The class of the polarization is
independent of the parametrization ([PS] p.91), so S > 0%S) is a
functor from oriented l-manifolds to lgol' Reversing the orientation
reverses the polarization class, and so does complex conjugation in O%.

On the other hand for each Riemann surface X with boundary we have the

space Qa(X) of holomorphic «-forms f(z)(dz)%® on X, and (see [PS 1@ H.10)) .

Proposition (8.12). The space O%(X) belongs to the restricted

Grassmannian Gr(Q%(3X)). 1Its dimension relative to Q?(bX) is

da(X) = (2a-1) (g+m-1) ,

where m is the number of outgoing boundary circles.

Here Qg(bX) means the sum of a copy of Q$(51) (resp. Q?(S')) for

each incoming (resp. outgoing) circle.

(*) A better way to say this is: there is a hermitian form on ?}E-(E)
. . =-
with values in Det(E ;E’).

1
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Corollary (8.13). 0% defines a functor from ‘g to W;ol’ and so

S +» JF(O%(S)) is a holomorphic conformal field theory. A surface X

defines an operator which raises degrees by d, (X).

The spaces 0% and Q'"® are in duality, but the duality reverses
the polarization, so the Fock spaces S(Qa) and 3.(91-0:) - and with them
the field theories - are identical. By calculating the Lie algebra
cocycle one finds that the theory 3(0%) has central charge
¢ = 120(1-x)-2. A physicist does this calculation in the following
way.

Let L_ denote e'ipod/de in Vectm(S1), and let ¢q = e—iq0(id0)a in

P
0%. We have

Ly-¥g =—ila + ap)yp,q - (8.14)
Let @ = Yo Ay , Ayp , A ... in F(QY). Then
p-1
w=-1 Y (m - k + ap)
bp o @K

if p > 0, where o, is obtained from w by replacing Y-k PY ¥ If

m-k+p -
p < O then pr = 0. Hence

[L_p,Lp]w = {(a(l-a) - 1/6)p® + (m(m+l) + 1/6)plw .

Comparing this with (5.6) we find

c = 120(l-o) - 2 and h = jo0(l-o) + 3m(l+m) . (8.15)
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The most interesting of the theories & (0% is the one with o = =1
or ¢ = 2, i.e. when 0%(s') is the Lie algebra Vect(S') or its dual.
This has ¢ =—-26. It is the theory of BRS ghosts which was mentioned

at the end of 84. The grading of % (07%(S)) is the ghost number, and

dz(X) = 3(gtm-1) is the ghost number anomaly. We shall return to this

theory in §9.

If o is an integer the space Qa(S1) has no inner product. But if
o = % it has a natural positive definite inner product, and we can use
this instead of the real structure to define an inner product onf}(Q%).
A new point arises, however, because to define Q%(S‘), and still more
to define Q%(X) for a surface X, one must choose a square-root L of the

tangent bundle TS' or TX, i.e. a spin structure. (See §7.) Thus we
g

have

Proposition (8.16). Q% defines a functor from \@spin to ’U‘

pol’ and so

(S,L) v T}(Q%(S,L)) is a positive-definite projective representation
of'@ spin’ i.e. a weakly conformal field theory (cf. (5.2)), with

central charge ¢ = 1.

This theory is called the charged chiral fermion. It is the basic

example of the structure we are studying. For surfaces X with spin
structures which are Mobius (i.e. antiperiodic) on each boundary circle
the dimension of Q%(X) relative to Qi(éx) is zero, and the associated
operator preserves the grading. For the spin structure S%, as there is
no vacuum vector in Q}(Q%(Sé)), it is not obvious how to grade the Fock
space. The correct procedure is to grade it by Z + %, so that

Yo AN¥_, AY_, A ... has degree +}. The operators of the theory then
preserve the grading in all cases. From the formulae (8.15) we find
that Diff*(8') acts on W(0(s})) with (c,h) = (1,0), and on F(Q¥(s}))

with (c¢,h) = (1,1/8).
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Field operators

We have seen that when X is a surface with 3X = §0 _u,S1 the space

0%x), together with a point in its determinant line, defines an

operator

Uy © F @S > FOXE)
If § =X ni[zi] is a divisor on X, i.e. a set {(z,,. ..,z ) of points in
the interior of X equipped with integral multiplicities {n ,...,n},

then it is natural to consider the space of holomorphic «-forms on X
which vanish to order -n; at zj. (1f n; is positive this means that

the form is allowed to have a pole of order n; at z;). This space will
be denoted Q%(X;!). Because it belongs to Gr(OQ%(5X)) it too defines an
operator G}(Qa(so)) > T}(Qa(s1)), at least up to a scalar multiple,

which raises degree by da(X) + X n;. To get a precise operator we must

choose an element of
Det®(§) = Det(Q¥(X):0%X; )

(I shall assume that an element of Det(Qg(bX);Qa(X)) has already been

chosen, and is kept fixed in what follows.) Now

Det¥({) = @Det(Pg (z{)) , (8.17)
i i

where Pg(z) denotes the space of principal parts at z of meromorphic
o-forms with nth order poles if n > 0, while if n < 0 then it denotes the

dual of the space of (-n-1)-jets of holomorphic «-forms at z. Thus
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Det(PX(z)) — (T, xP(-om+in(nrn))

for all n. This means that as the divisor § varies we get not an

operator-valued function on the complex manifold

k
{(z1,...,zk) € X Pozg # zj}
but a holomorphic operator-valued form of multidegree (d1,...,dk),
where d; = —on; + jn;(n; + 1). We write this operator
Y(5)ds® = ¢(n1)(z1)¢(n2)(zz) ¢(nk)(zk) I dz(igdi . (8.18)

Despite the notation it should not be regarded as a composition of

operators associated to the different points z It depends in an

i.
alternating way on the order of the points, providing z; is assigned

degree n.: that follows from the graded nature of the isomorphism

it
(8.17).

We have been assuming that the points z; are distinct. As a point
of the Grassmannian Gr(Qa(bX)) the space Qa(X;f) behaves smoothly when
the points come together (and their multiplicities are added
appropriately), and so does the line Deta(f). The isomorphism (8.17),
however, breaks down and must be reconsidered. As an illustration let

us consider the case of a divisor § = [z,]-[z,] contained in the

annulus

X=X, =1z ¢C : a( |z] < b)
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For simplicity we shall assume that a = 0. We can define a reference
element of Det(QJ(3X);0°(X)) by means of the basis (fy)y, of Q%(X),

where

£,(2) = (z/b)X for k3 0

- (z/a)¥ for k<O .

A good basis for Det?({) is then represented by the basis {oefilkez ©of
Q°(X;¢), where ¢§(z) = (z—zl)/(z—zz). This behaves smoothly when

z, = z,. On the other hand, in terms of the isomorphism (8.17) the
natural basis element (dz1)0(dzz)'1 of the right-hand side corresponds

to the element of Det?({) represented by the basis (&)} of Q%X; ),

where

ge(¥) = (z-2,)7 "= (z,-2z,)7" if k=0
= (-2 ¥ if k>0
= (zF-zK)/ak if k<O .

It is easy to check that the determinant of (p(f}} with respect to (g}

is Z,-Z,, and so we have

Proposition (8.19). The operator-valued form

Y*(z )(z,) (z,-z,)dz, : F(Q°(s")) > B (Q°s"))

on the annulus X is holomorphic everywhere, and its value when z, = z,

is simply the operator Uy associated to the annulus.
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Here we have written, as is usual, y(z) for ¢(')(z), and y*(z) for

¢('1)(z). The proposition is usually stated as an "operator product

expansion"1

1

z -

)W) =

+ (holomorphic)

It remains true when 0° is replaced by 0% for any «, except that dz,

becomes (dz1)a(dzz)'-a.

A similar, but easier, calculation can be performed for the
positive divisor § = [z1] + [z,] + ...+ [Zn] on the same annulus X.
The operator ¢(z1)¢(zz) ... ¥(z,) corresponds to the basis for O%(X; )

which consists of (z-zi)'1

for i = 1,...,n together with {fk}keZ as
above. On the other hand a basis for Qa(X;f) which is everywhere
defined is given by z¥h for k = 0,1,...,n-1 together with the {f},

where h = H(z-zi)'1. The determinant of the first basis in terms of

the second is a Vandermonde determinant equal to II (Zi'zj)‘ Thus we

i<j
have
Proposition (8.20). The operator y(z )y(z,) ... ¢(zn)/ﬂ(zi—zj) is
holomorphic for all Z,,..,2 Its value when z, =z, = =z =2z

n 2 n

is usually denoted

C @Y @) ... (T (2)

where C™' = 112131 ... (n-1)!

'For the omission of Uy from the following notation, see the remarks
after (9.3).
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It is an instructive exercise to translate the field operators
just defined into their more usual description. The Fock space
E}(Q“(s‘)) is a module over the exterior algebra of Qa(S’). As above
we write y, for the basis element z'k'a(dz)a of 0%(s'), and also for
the corresponding multiplication operator on the Fock space. The

formal series

does not define an operator in 3(0°(s")), because it is unbounded and
may not converge. Nevertheless, let U, denote the endomorphism of
ﬁj(ﬂa(s’)) defined by the annulus Xab' This is a contraction operator
which depends only on a/b, and satisfies Uabwk = (a/b)k¢kUab. It is easy
to see that if a < |w| < b and a ¢( 1 ¢ b the composite Ulb\z\(w)Ua1 is a

well-defined operator in E}(Qa(S1)). We have

Proposition (8.21). The operator-valued (l-o)-form ¢(w)dw"a on the

annulus X, is given by

N\
pGw) = U b (U,

Proof: This is simply a matter of unravelling the definitions. The
Fock space 3 = 3 (0¥%S")) has a natural basis {wg), where S runs
through an appropriate class of subsequences of Z. (Cf. [PS] Chap.
10.) The dual space 3* has a dual basis {wg}, where S = Z-S. The
operator Uab multiplies g by (a/bfe(s), and as an element of ?¥‘®'%

we can write Uab in the form

Uy, = g (a/byt(S) ws @ oy - (8.22)
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Now O%(X,p;[w]) is spanned by (z-w)~'dz% modulo 0%(X_). When this

form is restricted to the ends of the annulus it becomes

-1

g WtK Sk
o

(f N g_f__' o Y K—x
on one end, and oo N «
6=-w' S a - Y k-o

k>0

%
on the other. The operator y(w), as an element of 3} ® 3‘, is
therefore given by multiplying the expression (8.22) by 1 ®@ ¢ - 6 ® 1,

and this amounts to the assertion of (8.21).

The bosonic description of E}(Qa)

Each of the theories ?}(Qa) has an alternative "bosonic"
description. We shall explain this very briefly now, and shall return
to it in 89 and §12. For an oriented l-manifold S the group Eé of
smooth maps S - CX acts on Qa(S) by multiplication, and preserves the
polarization class ([PS](6-3.1)). It therefore acts projectively on

'3(9“(3)). To give a bosonic description of the theory 0% means,
in one interpretation, to construct it purely in terms of the represen-
tation theory of the groups E§ and E%, the group of holomorphic maps
from a surface X to CX.

Of course all the spaces Qa(S) and Q%(SG), with o ¢ Z and ¢ a spin
structure, are isomorphic as representations of Ex, and.’%(Qa(S1)) is
the basic irreducible representation described in [P$] Chap. 10.
Nevertheless one must beware of identifying the %(Qa(s)) for different
«, even as projective spaces, as the isomorphisms involve a choice of
parameter on S. (At first sight this seems to contradict Schur's
lemma, but that lemma does not apply to projective representations.)
Concretely, one has a fixed representation H of Cé, but a different
action of Diff+(S1) on H for each . These actions are described on

page 208 of [PS].
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The bosonic description begins by prescribing a definite
projective multiplier on Eé, or equivalently &n extension Eg of E§ by
C* with a definite action of Diff'(S') on it. Then Fg = F(0%(S)) is
constructed as the unique irreducible representation (of positive
energy) of‘Eé. To complete the description}one has only to give the
ray Fy in Fyy corresponding to each surface X. From the Fock space
description we know that the ray is invariant under the subgroup C§ of
E§X, so it defines a homomorphism E§ > EX, i.e. a splitting of the
induced central extension of Eﬁ. From the bosonic point of view one
must give the splitting of the extension of E§ directly. Then E; acts
on Fyy. One proves that there is a unique ray in Fyy which is
pointwise fixed under E?, and calls it Fy. This progrémme will be
carried out in §l12. In 89 I shall try to explain the relation of the

representation theory to "bosonic fields".

Even spin structures and the real chiral fermion

There is an important variant of the linear algebra of this
section. In finite dimensions the exterior algebra functor Vi A(V)
has an analogue which takes a vector space V with an inner product to
the spin representation of the orthogonal group O0(V). To be precise,
let us consider real vector spaces V with non-degenerate quadratic
forms, not necessarily positive-definite. The spin representation of
O(V) is a mod 2 graded complex projective irreducible representation A
on which the orientation-reversing elements of O(V) act with degree 1.
Alternatively, A is an irreducible graded module for the complexified
Clifford algebra C(V). (See [ABS].) If dim(V) is odd then A is
uniquely determined up to isomorphism, but if dim(V) is even there are
two possibilities (which differ by reversing the grading), and a choice

of A corresponds to choosing an orientation of V.
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The spin representation is best understood in terms of the

isotropic Grassmannian y(V) of all maximal isotropic subspaces of Vc .

(Cf£. [PS] Chap. 12.) 1If dim(V) is odd then ?(V) is connected, but if
dim(V) is even ;(V) has two connected components (for W e g(V)
defines a complex structure, and hence an orientation, on V). There is
a holomorphic line bundle Pf on 3(V) - the Pfaffian bundle - and in
the even dimensional case the spin representation A is the space of
holomorphic sections of Pf*, and can be graded in two ways. In
particular, each W ¢ 3300 defines a ray wa in W, which can also be
characterized by the fact that it is annihilated by the subspace W of
the Clifford algebra C(V). Indeed one can identify A with Pfy; ® A(W¥),
because C(V)/A(W) = A(W*). When dim(V) is bdd, however, A is the sum
of two copies of I'(Pf¥*).

Let us also recall from [ABS] that if Ai is an irreducible
C(Vi)—module for i = 1,2 then A1 ® A2 is an irreducible C(V1 ® Vz)—
module unless both V., and V, are odd dimensional, in wh ich case
A1 ® A2 is the sum of the two distinct irreducible C(V1 ® V,)-modules.

We can now define a category Z[orth whose objects are pairs (V,A),
where A is an irreducible C(V)-module. A morphism (Vo’Ao) - (V1,A1) is
a pair (W,\), where W is a maximal isotropic subspace of V0 ® V, and
N € (A% ® A1)even is annihilated by W. (Here V, denotes V with its
quadratic form multiplied by -1.)

A morphism (Vo’Ao) - (VI,A1) in 2)orth defines a linear map
Ao - A1 of degree 0, and the group of automorphisms of (V,A) is the
complexification of SpinC(V). A general morphism (VO,AO) > (V1,A1)
corresponds to a choice of isotropic subspaces P, and P, in VU,C and

V,,¢ together with an isometry P:VPO - Pf7P1.

Now let us turn to polarized infinite dimensional real vector

spaces with quadratic forms. 1In this situation a polarization of V
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means a class of skew transformations J : V - V such that J? = -1
modulo trace-class operators, two members of the class differing as
usual by trace-class operators. (Cf. (10.3 ).) The theory of
irreducible modules for the Clifford algebra C(V) proceeds just as in
finite dimensions. There are two cases, according as dim(ker J) is
even or odd. We shall refer to V as even or odd correspondingly. 1In
either case there is an isotropic Grassmannian gf(V) consisting of
maximal isotropic subspaces W of WD which belong to the polarization
class (i.e. which are the (+i)-eigenspaces of allowable polarization
operators J). It is connected if V is odd, and has two components if V

is even. There are respectively one or two irreducible graded modules

orth

for C(V), and we can define a category prol

Zforth_

analogous to

Finally we come to Riemann surfaces and their boundary circles.
We shall define a weakly conformal unitary field theory based on a
modular functor with three labels which I shall call the even spin

functor. The theory itself is called the real chiral fermion. It has

central charge ¢ = 4, and is the simplest example of a theory with
non-integral c.

For an oriented circle S with a spin structure L the space Q%(S;L)

orth

of sections of L* belongs to the category 2rpol

It is even or odd
according as L is Mobius or trivial. A label for the circle S consists
of L together with an irreducible graded module for the Clifford
algebra of Q%(S;L). To an oriented l-manifold S = S, 4 ... u Sk where
the circle Si is labelled (Li’Ai)’ the theory assigns the Hilbert space
A = A1 ® ... ® Ak. For a surface X with X = S we consider all spin

structures L on X which reduce to L = g Li on S. We define the modular

functor by
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EX;L,) = D EXL) <4,
L

where E(X;L) is the subspace of the even part of A which is annihilated
by I'(L), i.e. by the boundary values of holomorphic sections of L. If
all of the L; are Mébius then A is an irreducible representation of the
Clifford algebra of Q%(S;L), and the maximal isotropic subspace I'(L)
annihilates a unique ray in A. The spin structure L is called even or
odd relative to A according as this ray belongs to the even or odd part

of A. Thus when L is purely Mdbius we have

dim E(X;L,A) = |(even spin structures on X relative to A}|.

If on the other hand L has 2q non-Mdébius components then

I

dim E(X;L,A) 2q"|{spin structures on X} |

= 228%tq-1

where g is the genus of X. (In these statements the set of spin
structures on X means not the set ¥$(X;L) of §7, but rather its
quotient by Aut(L).)

In the Mdbius case we observe that E(X;L) is the Pfaffian line of
L, which is the square-root of the determinant line of the 3-operator
of L. This explains why the theory has ¢ = 3.

The Verlinde algebra generated by the three labels At,P is

described by the multiplication rules

At =1
(A7)? =1
P2 = At + A”

>
La~]
I

lae!
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g§9. Field operators

Primary fields

We shall now describe how to reconstruct some of the usual
formalism of quantum field theory from a functor of the type we are

studying. Thus we begin from a vector space H, and have an operator

U . op® L 8

: when X is a Riemann surface with 33X = C - C , and
X’E n m
£ € DetX. We suppose that
1 1
-ic -ic
- L R
UX,XE = A A UX,E s

whhere (cL,cR) is the central charge.1
First, the morphism G, - C, defined by the standard unit disc D
and the canonical element e € Detp gives us a map C »> H, or

equivalently a vector {1 ¢ H. This is the vacuum vector.

The complex semigroup H acts projectively on H. The semigroup 80
of holomorphic embeddings £ : D > B such that £(0) = 0 is a sub-
semigroup of # over which the central extension is canonically split,
for the standard element ey € Detg is characterized by epes = ¢. It
therefore makes sense to look for eigenvectors of 150 in H. The
possible homomorphisms éo » CX are given by £ v £'(0)PF (0)? with

pP,q € R such that p-q ¢ Z.

'The discussion applies with little change to a weakly conformal theory
based on a modular functor with index set & rather than on the
determinant line. The vacuum vector and the energy-momentum tensor lie
in the space H, corresponding to 1 e &.
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Definition (9.1). A primary field of type (p,q) is a vector ¥y € H such

that
U(f)y = £' (0)PE () Yy
for all f e %30-

The reason for the terminology is the following. Suppose that X
is a Riemann surface with m incoming and n outgoing boundary circles.
We suppose an element £ e Dety has been chosen, but we shall suppress
it from the notation. Then for each primary field y of type (p,q)
there is an operator-valued (p,q) form \px(z)dzpdEq on X with values in

®m @n :
the trace-class operators H > H”'. To define ¢X’ choose a
holomorphic embedding £ : D - X with centre z ¢ X. Because
X_ = X = £(D) i hism C C_ it induces U, : HO"
. = (D) is a morphism i+l -> n it induces :

X
z

and ¢X(z) is defined by ¢X(z).E = UX (¢ ® ¥). The condition of (9.1)
z

®H - H®n,

implies that n//X(z)dzpdEq is a well-defined differential form on the

interior of X. (It probably always has a distributional extension to

the closed surface.)
One can also define multipoint fields. If ¥,,... ¥ are primary
fields of types (pi,qi) then there is a differential form /2N ¢k)X’

usually written
P P -1

¥(z) .. l,bk(zk)dzl ... dz, =~ dz ... dz

defined on the manifold

{ (z1,...,zk) € Xk Yoz # Zj if 1 # 3 )
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with values in the operators ¥ 5 u®. 1t is defined by

(‘h "(’k)XE "‘"UXv(E ®¢1 ® ... ®‘//k) s

where now X' is obtained from X by removing k discs around the points

z,,...,2. 1f v, = ... = Yy then the operator is symmetric with
respect to permuting z ,...,z) (or skew-symmetric if the theory is mod
2 graded).

By their construction the operator-valued differential forms Yy
have the following naturality property, which is usually referred to as

the Ward identity. If Y =2 o X o Z, is a union of surfaces then

YylX =UZ1 o Yy o UZD . (9.2)

We also have, for example,

(l//] ¢k)X ° (¢k+‘l l[/m)Y = (‘[/1 ‘J/m)XoY

when the surfaces X and Y are composable.

One can go on and define secondary, tertiary,... fields: the
bigraded space H is filtered H ¢ H, ¢ H, ¢ ... ¢ H, where H  is the
primary fields, and iio acts scalarly on Hy/H, | for each k. 1In fact
any vector ¥ € H gives rise to an operator-valued function on any
surface; but when we use the notation ¢X(z) we must beware that if ¢ is
an r-ary field then yy(z) depends not only on z but also on the rth

order jet of a local coordinate at z. Thus for any surface X and for

any ¢y € H the formulae
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. d . d =
15 e (2) = (L) i gz ¥ (@) = W@

make sense and are valid, where L1 and f1 are the usual Virasoro
operators on H representing the vector field id/dz = o106 d/dé in the
left- and right-hand actions of Vect(S') on H. These formulae can be

regarded as an infinitesimal version of (9.2). They hold because

X

idu = Uy o(leZ + lez)
z z

In particular, in a holomorphic theory each primary field ¢y gives
rise to a holomorphic operator-valued differential form yy, and even if
Y is not primary Yy is a holomorphic function in the domain of a given
local parameter. If X = X_; is the annulus {z : a ¢ |z| ¢ b} and ¢ is

of type (p,0) we can always write yy as a Laurent series

Yy = Upp {k§z ¢kzk'pdz®p} L (9.3)
where y; is an unbounded operator in H and U_, and U, are the
operators associated to the annuli X, and X ;. The advantage of this
notation is that Y, depends only on y and not on a,b. The reader
should be warned that in usual terminology it is the unbounded operator
X ¢kzk'n which is called the field operator, rather than my yg. In

terms of the ¢k the Ward identity (9.2) becomes

[Lyovg) = -1Ck + n - pn)yy,, - (9.4)

In a holomorphic theory the operators Y are completely characterized

in terms of Yy € H by the property (9.4) together with
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I
<

vl (9.5)

The energy-momentum tensor

The most important fields in any theory are the energy-momentum
tensors T and T. These are secondary fields of type (2,0) and (0,2)

respectively: T transforms under €0 by
Up.T = £'(0)°T + cpSe(0)Q (9.6)

where Sf(O) = £ (0)/£'(0) - 3/2(f"(0)/f'(0))? is the Schwarzian
derivative of f, and cp is the central charge. It should be noticed

that

f'(0)?2 c S£(0)
f r—>
0 1

is the only two dimensional representation of'é0 which combines the
one dimensional representations f V> f'(0)? and fVv> 1.

To define T and T we consider the variation of the vacuum map
Uy : C > H when the complex structure on the disc D is changed. An
infinitesimal change of structure is an element of
vV = Vectm(S1)/Vect(D), so the variation is a map V - H which is
R-1linear (but not C-linear unless the theory is holomorphic). We can
regard it as a C-linear map V® V - H. 1In V there is an eigenvector
of f,o of type (2,0) represented by z 'd/dz. The image of this in H is
denoted by T, and the image of the corresponding element of V by T. (T

use the traditional notation T,T with misgivings, as T is not
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necessarily the complex conjugate of T.) In terms of the Virasoro
generators we have T = iL 0 and T = -iL Q). To obtain the transformation

properties of T and T under & _ we must notice that the map V - H is

0

not %Efequivariant. Because Vect(S') acts projectively on H we

actually have an fo-equivariant map C @ V > H, where € is that of
the central extension of Vect(S'). Taking this into account we find
that T transforms by (9.6). (See [51] ( YD)

On a Riemann surface X the vector T gives rise not to an operator-
valued quadratic differential T(z)dz?, but rather to a projective
connection, i.e. when the local parameter is changed from z to { the

operator T(z)dz’ becomes

T(H)d¢? + cpS¢Uy

where S is the Schwarzian derivative of the change of parameters.

The significance of the energy-momentum tensor is that it

describes the variation of the operator Uy : H®m H®n associated to

>
a surface X when the complex structure of X is changed. An

infinitesimal change of structure corresponds (see (4.1)) to an

element of Vectm(bX)/Vect(X).

Proposition (9.7). (i) The energy-momentum tensor T(z)dz? is a

holomorphic projective connection on the interior of any surface. It
possesses a distributional boundary value. Similarly, T(z)dz? is
antiholomorphic.

(ii) For the infinitesimal deformation of X defined by a complex

vector field £ along 35X we have
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oU, - f £(z).T(z)dz + [ t(2).T(z)dz .
>X 5X

Remark. If T(z)dz? were a quadratic differential it would pair with
the vector field ¢ to give a 1l-form which could be integrated around
5X. But ¢ is really an element of the central extension of Vectm(bX),
for it represents a deformation of a surface equipped with a chosen
point in its determinant line. Thus ¢ pairs with a projective
connection, for the projective connections are precisely the dual of
the central extension of Vect(dX). ([§2](p.335).) If { extends

alse 53]
holomorphically over X the integrals above vanish by Cauchy's theorem
because T (resp. T) is holomorphic (resp. antiholomorphic).
Conversely, the fact that 6Uy = O when ¢ extends holomorphically, i.e.
the fact that the theory is conformally invariant, implies that T is

holomorphic.

Proof of (9.7). Consider the variation of Uy in the space E of

n
trace-class operators H® 5 H®® when the structure of X is changed.

This is expressed by a real-linear map
Vectm(BX)/Vect(X) > E (9.8)

when a section of the central extension of Vectm(bX) has been chosen.
The dual of Vectp(dX)/Vect(X) is the space (! of holomorphic quadratic
differentials on X with distributional boundary values. So (9.8)
corresponds to an element of E ®p Q0 =E Or (Q ® Q). This means that we

have a formula

8U, - J ((ty + EE) (9.9)
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for some naturally defined operator-valued objects tX’EX' Applying
(9.9) when X = D and { = z”'d/dz we find that tp(0) = Tp(0) and
tp(0) = Ty(0). We then deduce that ty(z) = Ty(z) and EX(Z) = Tx(z) in

all cases by using the naturality property (9.2).

Corollary (9.10). If X is an annulus {z : a ¢ |z| ¢ 1) we can write the

energy-momentum tensor in terms of the Virasoro generators:

k-2
T(z) = i{ X z } o U, .
kel Lk X

Infinitesimal automorphisms

An important role of field operators is to describe the
infinitesimal automorphisms and deformations of a theory. An
automorphism of a theory based on a vector space H evidently means an
invertible operator A : H - H which preserves the hermitian form and
satisfies

®n

_ ®m
A OUX—Uon

for each morphism X from C, to C, hn‘@. An infinitesimal automorphism

is accordingly a (densely defined) skew-hermitian operator 6 in H such

that

m
1 ...8680...01) o Ugy=Ugo (2 1@...00...01)
1 j=1

™8

i
(9.11)

th

where the factors § occur in the i and jth places on the left and

right.
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Proposition (9.12). 1In a holomorphic theory a real primary field y of

type (1,0) defines an infinitesimal automorphism 6¢ whose domain of

definition includes UgH for any annulus X, and which is characterized

by

5, o Uy = I Yy (2)dz (9.13)
Y
where 4 is any simply closed curve going once around the annulus.

Proof: The right-hand side is independent of <y because Yy(z)dz is a
holomorphic 1-form, and the formula (9.2) shows that 6¢ is independent

of X and satisfies (9.11).

In a theory which is not chiral the l-form yy(z)dz defined by a
primary field of type (1,0) need not be closed, i.e. holomorphic. In
that case an infinitesimal automorphism is defined by a pair of real
primary fields (¢L,¢R) of types (0,1) and (1,0) such that L1¢L = EI¢R'
Then the 1-form ¢L(z)dz + Yp(z)dz is closed, and its integral replaces

the right-hand side of (9.13).

In the literature it is assumed that any infinitesimal
automorphism of a field theory is given by a primary field in the way
described. This may well follow from our axioms; if it does not then
another axiom should probably be added to ensure it. The idea of such
an axiom would be to express the fact that the space H associated to a
circle is, in some sense which I do not know how to make precise, a
continuous tensor product of spaces associated to the infinitesimal

elements of the circle.
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For the rest of the discussion of infinitesimal automorphisms I
shall confine myself to holomorphic theories. The infinitesimal
automorphisms evidently form a Lie algebra, and there is an induced Lie
algebra structure on the finite dimensional space of primary fields of

type (1,0), for if ¢y and ¢, are such fields then

Proposition (9.14). Let g be the Lie algebra of real primary fields

of type (1,0) in a unitary holomorphic theory. Then the loop algebra L9
acts projectively on H, intertwining with the action of Diff+(S').
Conversely, if Lo acts in this way then 0) is contained in the Lie

algebra of primary fields of type (1,0).

Remark. Because we are assuming the hermitian form on H is positive-

definite g will be the Lie algebra of a compact group.

One consequence of Proposition (9.14) is that the field theories
we shall construct in §ll from the loop groups of compact groups are
genuinely different from one another. The proposition also gives a
convenient criterion for deciding when the group of automorphisms of a
theory is finite: there must be no primary fields of type (1,0). But
the most important positive application of the proposition is the
"vertex-operator" construction of the basic representation of the loop

group LG when G is simply laced: we shall return to this in §l12.
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Proposition (9.14) is deduced by one of the very characteristic
arguments of conformal field theory from the following "operator-

product expansion”.

Proposition (9.15). 1If ¢1 and ¢2 are primary fields of type (1,0) in a

unitary holomorphic field theory then on any Riemann surface X we have

dzd¢ 1 das
(¢1¢2)X(21 §-) = <¢1’¢2>UX.(Z—:_§-)-2 + _fw—f[¢l’¢2]x_z_-—f + W(zf §‘) )

where ¢ is holomorphic everywhere on X X X, for some invariant inner

product < , > on the primary fields.

Proof of (9.14) using (9.15). Let ¥,s---,¥, be a basis for e}. We

shall restrict ourselves to real analytic elements & = X Ei¢i of the
loop algebra Loy. Then ¢ is the boundary value of a holomorphic
function ¢ defined in an annulus X, and we can define the action 55 of

¢ on H by the formula

o —
6E Uy = I x €i¢i,X(z)dz ,
Y
analogous to (9.13). Using the basic functoriality property (9.2) we

can write the commutator [65’6ﬂ] o Uy in the form

{] dz [ as - [ dz [ dr}@ £, (D U ¥y(2,0)
1 RY) 73 Y9

where v, ,v,,y, are three non-intersecting simple closed curves going

once round the annulus, with 7, outside vy, and vy, outside Y,;- Let us
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first perform the integral over z, holding { fixed. Because the
integrand is holomorphic for z # { and y, - v, is homologous to a small
circle around { the result is the residue of the integrand at z = ¢,

which by (9.15) is
E OO Wa,¥3lx(D) + <y >t n5(DVx
Integrating this around vy, gives
[8g,0,0 = 8z 4 + c&ml,
where
ek, m = [ <k (5),n(0r>at
is a cocycle defining a central extension of Ldj.

Proof of (9.15). First observe that the terms on the right-hand side

of (9.16) make invariant sense, e.g. that the 2-form dzd{/(z-¢)? on
X X X is independent of the local parameter modulo holomorphic forms.
Because of this we can assume that X is the standard disc D, and that
{ = 0. The element (¢1¢2)D(z,0) of H can be expanded

(¥1¥,) (2,0) = S Akzk (9.17)
D

keZ

with A e H. Let R, denote the automorphism of D which rotates it

through «. 1Its action on (¢1¢2)D(z,0) is given by
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Ra{ (¢1¢2)D(z:0)} = ezla(¢1¢2)D(e_laZ,o)
Applying this to (9.17) we find that RaAk = e(z'k)iaAk, i.e. that Ak is

an element of H of degree 2-k. In a unitary theory there are no fields

of negative degree, and only the vacuum vector has degree 0. So
Y,¥,)p(z,0) = Nz"? + A1z'1 + (holomorphic) |,

for some N\ ¢ C. But by definition we have

[ @0 - oy ¥
S1
= [¥,.¥,]
so 27iA, = [y, ,¥,]. The proof is completed by observing that

’ » N\ 1s necessarily an invariant inner product on .
1°¥, y P

Infinitesimal deformations

When one has a continuously varying family of conformal field
theories one may as well assume that the hermitian vector space H is
fixed and that all the variation takes place in the operators Ux
associated to surfaces X. It is simplest to think in terms of
Definition (4.4). Then an infinitesimal deformation will be a rule

which associates to each surface X a vector GX € HBX such that

(1) Sxyy = 65 ® Oy + Iy @ 6y ,

and

(ii) Oy +» 6y for each sewing map X - i.
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In analogy with (9.12) we have

Proposition (9.18). 1In any theory a primary field 6 of type (1,1)

defines an infinitesimal deformation by the formula

SX = IX BX(z)dzAdz .

As with automorphisms it is usually assumed that any infinitesimal
deformation arises from a primary field in this way, but I do not know
a proof. Thus a chiral theory should be automatically rigid. The
space of deformations of the o-model of a torus will be considered in

§10.

Examples

We shall consider some fields in the holomorphic fermionic

theories F(0%).
(i) The most obvious primary fields are the vectors

g ey A b AV g, A e € H L

Evidently ¢(°) is the vacuum vector (), with degree 0. In general ¢(m)
has degree im(m-20+1), which is negative if m is between 0 and 2¢-1.
These are exactly the fields ¢(m) which were described in a different
way in (8.20). That is obvious in the case of ¢(1) = y from the
characterization of ¢X by means of (9.4) and (9.5); we shall not pursue

the general case here.
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(ii) We saw in 88 that the theory ?3(95) is Z-graded‘. This means
that the circle group ' acts on it as a group of automorphisms. The

infinitesimal generator is the primary field

in ?}(Q%(SA)), which is called the current. (In the second expression
for J we write ¢% for the operator of multiplication by ¢% on Q}(gf)&.énd
%i for the antiderivation corresponding to the dual basis elemengt) o
The field J provides us with an action of the whole loop group INW' on
‘B(Q%) extending the action of T . (In physical language the grading or
T -action is the charge, and the action of the "current group" LT
expresses the fact that charge is local.) To prove that the vector J

really does generate the T -action on.'3(Q%) one can write the field

J(z)dz on an annulus in the form (9.3).

Proposition (9.19). For J as above we have on the annulus

X ={z : a< |z| ¢ 1) the relation
= k-1 o
J(z)dz = (X Jyz dz) Uy
where

J = 5 ¥ v* when k # 0 ,
k reZ+} kt+r "r

'For simplicity I shall ignore the spin structure Sﬁ for the moment,
though actually the discussion applies to it just as well.
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and

Jo = S ¥k = 5 Uk
0T % T G T

One must check that the expressions for the Jy given here are
well-defined operators on vectors of finite energy in H. Granting
that, the proposition is easily proved by checking the conditions (9.4)
and (9.5), using [Ln,¢m] = -i(m + %n)¢m+n. The operator J, is by
definition the infinitesimal automorphism é; of H corresponding to J,

and it obviously multiplies each basis vector of H by its Fock space

degree.

(iii) In B O* for any value of o there is a vector J = ¢1-a¢%a
of degree 1 analogous to the current in ?}(Q%). When o # 3 it is not

a primary field, for
L. ,J=1i(1-2)Q .

This means that under the action of a holomorphic map £ : D -» D such

that £(0) = O the vector J transforms by
Ug.J = £'(0)T - $(1-20)£"(0)£' (0) " 'Q
(cf. (9.6)), or equivalently that we have an operator-valued 1l-form

J(z)dz in each coordinate patch on any surface X, but when one changes

coordinates by z = z({) the form changes to
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J(z())z' (Hd¥ —  3(1-2a) Ug(z"($)/z' (§))af .

We can still write J(z)dz in the form (9.19), and the operator JU in H
defines the Fock space degree, which is still called "charge". But the
fact that J(z)dz is not a l-form corresponds to the failure of the
operators Uy to preserve charge which was pointed out in (8.13). From
the present viewpoint the charge anomaly can be calculated as follows.
Let us suppose that all the boundary circles of X are outgoing. We can
choose a holomorphic connection in the holomorphic tangent bundle to X.
It is given by a l-form 9(z)dz in each coordinate patch, but a change

of coordinates z = z({) replaces y(z)dz by
y(z(E))z'(5HdS + (z"($)/z'(F))ds .
Then
J(z) + 3(1-2009(2)Vyg)dz

is a global holomorphic 1l-form on X with values in H(3X). Applying the

operator J_ to Uy, € H(dX) gives, b definition,
P 0 X g y

By Cauchy's theorem this equals

1
(= (20-1) [ Y(2)dz)Uy .
SX
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We can suppose the connection 7y arose from a trivialization of TX.
Then I v(z)dz is the angle by which the tangent vector d/dz to X
rotatezxrelative to the trivialization when one travels around 3X.
This angle is 4w(g + m - 1), where g is the genus of X and m the number

of boundary circles. So the charge anomaly is (2a-1)(g + m - 1), in

agreement with (8.12).

BRST cohomology

For a holomorphic theory H with central charge 26 we define the
BRST cohomology in the following way. First tensor the theory H with
the "ghost" theory 4(Q%). The Fock space grading of 3(Q?), which was
called the "charge" in the preceding example, induces a grading of
H=H@® I which is now called the "ghost number". We shall show
that H contains a primary field Q of degree 1 whose associated
infinitesimal automorphism 6Q raises the ghost number by 1 and
satisfies 66 = 0. The cohomology of H with respect to the differential
6Q is the BRST cohomology Hppgp. Now the Fock space F(0%(S")) is a
renormalized version of the exterior algebra on Q2(s'), which is the
dual of the Lie algebra of vector fields Vect(S') = Q '(S'). The
differential 6Q is similarly, as we shall see, a renormalization of the
standard differential of Lie algebra cohomology, and so HBRST(S1) is a
renormalized version of the cohomology of Vect(S') with coefficients in
the module H(S'). 1In fact one can say more: for F(0%(s')) is a module
over the exterior algebra on Q2(s'"), and this makes HBRST(S') a module
over the ordinary cohomology of Vect(S') with coefficients in C.

At the moment, however, I want just to point out the field-
theoretic aspects of Hppgp. Because 6Q is an infinitesimal

automorphism the operator Uy associated to a surface X in the theory H
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commutes with 6Q, i.e. it is a homomorphism of cochain complexes. It
induces a map of the cohomology Hppgp which changes the degree by the
ghost number anomaly. This is still not quite what we need. The
surfaces X of a particular topological type o with m incoming and n
outgoing circles form the moduli space %ga of 84 whose tangent space at
X is Vectc(bX)/Vect(X). The operator Uy is really an element of

ﬁ(bX) = H(3X) @ 3K(V(BX)), which is a module over the exterior algebra
on Vectc(bX), the dual space of Q2(5X). The vector Ux is annihilated
by the subspace Vect(X) of Vectc(bX). We can therefore define for each

p a holomorphic differential form W of degree p on 8 with values in

o’

A
H(3X), by

Gp(XsE,, o080 = EE, ... E Uy

where Ei € Vect(§BX). The fact that bQUX = 0 - because 6Q is an

infinitesimal automorphism - has the following generalization.

Proposition (9.20). We have

dOJP_1 =“‘6pr ,
where d denotes the exterior derivative of forms on ‘@a‘

Alternatively expressed, if the boundary circles of X are regarded as
incoming rather than outgoing, the forms {wp} define a map of cochain

complexes

HOX) > 0,8 (9.21)
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Proof: An element { e Vecta(bX) acts on H in two ways: by the exterior
multiplication used above, and also by its action as an element of the
Lie algebra of Diff(dX). I shall write LE for the latter action, and
(for this proof) ié for the former. The two are related by the usual

Cartan and naturality formulae

Ly = [oq-1g] o ipg gy = [Lg. 1yl

where [ , ] is the graded commutator.

I shall give the proof of (9.20) when p = 2. We have

do, (X3E,m) = Lyo, (X58) = Ly, Xim) + o, (X;[&,7])

= (Lpig = Leip + ipp 4100

(Lnis - 1,7LE)UX
= BlnlEUX
= =dw, (X;&,m)

The first line of this calculation is the definition of the exterior

derivative, regarding ¢ and 7 as vector fields on"ga. One can identify
A

the Lie derivative LE for forms on‘@cywith the operator LE on H

because X+ Uy is equivariant with respect to the action of Vectc(bX).

Let us now suppose that X is a surface with m boundary circles,
all incoming. We readily check that the cochain map (9.21) raises
degree by 3g-3, where g is the genus of X. It is also compatible with

the action of Vectcbe) - by both kinds of operators LE and iE' The
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action of Vectc(bX) is the infinitesimal version of the natural action
of the semigroup A™. Inside & there is the subsemigroup %E of
holomorphic embeddings £ : D - B. The quotient space of \ga by iim is
the moduli space 7ng of closed surfaces of genus g, and has complex
dimension 3g-3. Now the vacuum vector in H(3X) is basic for éﬁl(i.e.
annihilated by LE and iE for £ € Vect(D)). Its image under (9.21) is
therefore a form on ‘@a/ &m = '772 which is holomorphic, and of the top

&

dimension 3g-3. It is natural to call this the partition form of the

chiral theory H. A more physical theory in which both chiralities were
present would have a partition form of bidegree (3g-3,3g-3), and this
could be integrated over %Qg' That is the situation in string theory.
Besides the vacuum vector we can consider other classes in
HBRST(bX) = HBRST(S1)®m' For the theories which arise in practice all
elements of HBRST(S1) are represented by elements of ﬁ(S’) which are

basic for the action of the semigroup
€,-(f ¢ € : £(0) = 0)

(This is true whenever H(S') is a free module over the enveloping
algebra U(t) of the Lie algebra ot of Em, which is spanned by the
Virasoro generators {Lk)k>1' Cf. [FGZ].) The quotient space ‘ga/élg
is the moduli space %”g,m of surfaces with m marked points. It has
complex dimension 3g-3+m. If we choose an element y; of ghost number 1

in HBRST(S1) for each boundary circle then the image

YW, o Yy
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of Yy, ® ... ® yp under the map (9.21) is a top dimensional holomorphic
form on mg o vell defined up to the addition of an exact form. For

this reason the elements of ghost number 1 in Hppgr are regarded as

(chiral) "physical states".

We now return to the definition of the primary field Q and the

verification of its properties. We can write it explicitly

Q = J@Y..0 + 08 Wy ¥, - 3¢)0 (9.22)

A
inH=H@® 3% . As the energies in F(Q?) are bounded below by -1
we need only check that L_,Q = L_,Q = 0 to see that Q is primary, and

that is easily done by using the relation

(Lo, Y] = =1(m+2k)y

of (8.14), together with the formula L_ ,T = 13Q in H which expresses
that H has central charge ¢ = 26. To understand where (9.22) comes
from, however, it is best to recall the formula for the differential §
in the cochain complex M @® Aca* of a Lie algebra ¢} with coefficients
in a 9-module M. Let {Sk} be a basis for 9 , and {ak} the dual

basis of 9* Then
where ep is the operation of multiplication by o on Ag*, and Ek

denotes the action of {; on either M or Ag*. The analogous operator

A 2
on H=H® '3'((2 ), in the usual notation, is
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by = @V *+ 3 3 Loyl +3% & 16Lydy,
° k%Z LR ky-1 Kk T & Kk
(9.23)

where we have renormalized by "adding the infinite term"

3 Y 1o [Lg.¥l = (4 ¥ K.y,
k<-1 k<-1
to ensure that 6Q(Q ® ) = 0. In the light of (9.23) one finds, after

a little experiment, that the sequence of operators

Qp = 2 L@V + 3 ¥ 1@l yyy
kel k-1

k<-1
satisfies the relations [Lp,Qm] = -im Qm+p of (9.4) as well as Q0 = 6Q.

Finally, we obtain the expression (9.22) by setting

Q = Qe

To conclude we need to know that 5Q raises the ghost number by 1,
and also that 66 = 0. The first is obvious from (9.23). The second
is equivalent to 6QQ = 0, for 66 is the graded commutator [6Q,6Q].

One knows a priori that 56 is an infinitesimal automorphism of the

theory, but I do not know a non-computational proof that it wvanishes.
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§10. The o-model for a torus

The Hilbert space

We shall now construct the field theory corresponding to strings
moving in a torus T. As was explained in the introduction, the
essential point is to choose a vector space to play the role of the
space of square-summable functions on LT. If A is a locally compact
abelian group there is a simple group-theoretic characterization of the
Hilbert space H = L?(A), and our strategy is to adopt this characteri-
zation as a definition in the case of LT.

In the finite dimensional case LZ(A) possesses a unitary action of
A by translations and a unitary action of the Pontrjagin dual group &
by multiplication operators. These actions fit together to define an
irreducible unitary representation of the Heisenberg group (A X A)~,
which is the central extension of A X ; by T associated with the

A
pairing A X A > T, i.e. the extension whose cocycle c is given by

c((a1,a1),(a2,a2)) = <o, ,a,> . (10.1)
The space L?(A) is characterized - up to a scalar multiplication - as
the unique faithful irreducible representation of the Heisenberg group.
To generalize this, let us begin with a Riemannian torus T = §/A,
where § is a finite dimensional real vector space with a positive inner

product, and A is a lattice in ¥. The dual lattice
A = (¢ et : <t,p> e Z for all 7 e A}

gives rise to the dual torus T* = $/A*.
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The loop groups LT and LT* are in duality under the bilinear
pairing << , >>: LT X LT* > T defined by
1
<f,g>> =1} I (<f,dg> - <df,g>) + %(<f(0),Ag> - <Af,g(0)>), (10.2)
0
where T is regarded as R/Z, and an element f of LT is regarded as a map

f: R -5 ¢ satisfying
£(t + 1) = £(£) + 4f

for some A ¢ A. (Thus f is defined only modulo the addition of a
constant element of A.) The pairing << , >> is nondegenerate, and is
invariant under Diff’(s'). The groups LT and LT* are thus essentially
Pontrjagin duals of each other.

We can now define a Hilbert space H which is a faithful
irreducible representation of the Heisenberg group I formed from
I = LT X LT* by using the pairing << , >>. Because Il is infinite
dimensional it has many faithful irreducible representations. To

single one out one must choose a positive polarization of II.

Definition (10.3). (i) A polarization of a real vector space E with a

skew form S is an equivalence class of operators J : E -» E such that
(a) 8(J&,Jn) = S(¢,7n), and
(b) J? = -1 modulo trace class operators.
Two such operators J are equivalent if their difference is of trace
class.
(ii) A polarization J is positive if the quadratic form

¢ v> S(£,J¢) is positive-definite on a subspace of E of finite

codimension.
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(iii) If Il is an abelian Lie group with a skew pairing
c : IxMOD - T, and WO(H) and w1(H) are finitely generated, then a

polarization of Il is a polarization of its Lie algebra Lie(Il).

In our case I = LT X LT*, and

LT TXAXV

I

LT*

T* X A* XV |

where V is the real vector space (L¥)/$. A polarization of II is the
same as a polarization of V @ V, and this space has a canonical
polarization given by the decomposition Vg =‘V$ ® Vi into positive and
negative frequency. This gives us a definite irreducible unitary

~S
representation of Il on the Hilbert space

H = LT X A) @ S(V§ ® Vp)

Remark. A positive polarization of V @ V is the same thing as a
quadratic form q : V 5 C such that Im q is positive definite. 1In the

present case q(f) =i ¥ n<a_,,a > if £ =% a eI one can identify

n’ n

S(V$ @ VE) with a completion of the space of all functions on V of the
form f > p(f)eiq(f), where p : V o> C is a polynomial, so it is a

very natural candidate for LZ(V).

~S
Because Diff+(S’) acts on Il by automorphisms, and preserves the
polarization class, it acts on the irreducible representation H. (In
principle the action could be projective, but in fact is not.)

Orientation-reversing diffeomorphisms of S' reverse the polarization of
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I, so they give antiunitary maps H - H. We have therefore the data
to assign a Hilbert space Hyy to the boundary of any Riemann surface X.
To complete the construction of a conformal field theory we must
associate to X a ray QX in Hyx, and check the conditions (4.4) - but in
fact {ly will be defined in a way which makes the conditions manifest.
Before turning to these rays it is worth describing the action of
the conformal group Conf(S' X R) on H. We recall from §3 that this
group is a covering group of Diff+(S1) X Diff+(S1), and that the
natural geometric action of Difft(s') is diagonal with respect to this
description. Let D denote the simply connected covering group of
Difft(s'), i.e. the diffeomorphisms ¢ : R > R such that
0(8 + 27) = @(68) + 27. The group Conf(S' X R) is a quotient of

Y x ¥, and the latter acts on II by

(p,.0,) T (£,8) = 4(ps(F+g) + ps(E-g), ¢ (F+g) — pi(E-g))

The representation H of Il is induced from the representation of its

identity component Ho on H = S(VE @ VE). Under HO it breaks up

0,0
H = 635 Hx,y ’

where (\,pu) runs through the group of components A X A¥, and

H = H as a representation of V X V < [ but is acted on by T X T*

AN, U 0,0

via the character (\,p). The summands Hy u are acted on separately by

% x B: the action on Hy u is obtained by twisting the action on H  _ by

b

the crossed homomorphism e, pt Pxdo T, associated to (A,pu) € II. To

see the action of ¥ x ¥ on H0 o Ve rewrite S(VE €] VE) as

’
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S(WL) ® S(WR), where WL and Wp are the diagonal and antidiagonal
subspaces of VE ® VE. Then the left- and right-hand copies of U act
purely on the left- and right-hand factors S(W;) and S(Wp). On each
the representation is the standard metaplectic representation of T

described, for example, in [82]. We thus obtain

Proposition (10.4). (i) The representation of Conf(S' X R) on H has

central charge (d,d), where d is the dimension of T.
(ii) The partition function of the theory, i.e. the trace of the

action on H of the standard annulus Aq’ is

)

2 1 _ 2
I‘p(q)IZd n q%ll)\"‘#ll qzll)\ Kl
A, p

where o(q) = M(1-q™".

The ray associated to a surface

The general method of prescribing a ray in the Heisenberg
representation of Il is to give a maximal isotropic subgroup P of [y and
a suitable character ¢ : P - CX which splits the central
extension of P induced by ﬁk. The ray is then the eigenvector of P
corresponding to the character 6: it exists and is unique providing P
is positive and compatible with the polarization of II in the following

sense.

Definition (10.5). (i) P is an isotropic subgroup of Hm if the induced

extension P is abelian.
(ii) P is positive if Im c(p,p) » O for all p e¢ P, and

Im c(p,p) > O except on a compact subgroup of P.
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(iii) P is compatible with the polarization of II if the
endomorphism JP of Lie (Hm) which is +i (resp. —i) on Lie(P) (resp.

Lie(P)) belongs to the polarization class of II.

Remarks. (a) We write Im c(p,p) » O rather than |c(§,p)| ¢ 1 because we
are writing CX additively, i.e. as C/Z.
(b) A character 6 : P - X - C/Z is the same thing as a map

6 : P > C/Z satisfying

6(p, +p,) = 0(p,) + 0(p,) + c(p,,p,) . (10.6)

We require it to satisfy 26(p) = c(p,p).

We apply Definition (10.5) to the group Ilyy = Map(dX;T) X Map(oX;T*).

We associate to the surface X the group

* .
PX = {(f,g) ¢ Map(X;Tm) X Map(X;Tm) : dg = *idf)

Elements of Py are determined by their restrictions to dX, so Py is a
subgroup of HBX,E' In studying the cocycle on Ilyy it is convenient to
construct X from a plane polygon Y with 4g + 3k sides, where g is the
genus of X and k is the number of boundary circles. We shall label the

sides of Y cyclically

Of1 161 a71 ;5, 1a2162:72’62, L] sag7Bga'Yg: 6g:)\1 )01 ,0“’1 I LY ’)‘kyo—k)#k, (]—O~7)

. . . -1 . -1 . -1 .
and identify y; with o', é; with B8;°, and p; with X\;"'. Thus the sides

0; become the boundary of X.



126

1f (£f,,g,) and (f,,8,) belong to Py then we find
e((£),8)), (£,,8)) = -1 [ <af *af> .
X

This is symmetric in (fl,fz), so PX is isotropic. We also see that
there is a canonical choice for the character 6 satisfying (10.6),

namely

0,(f,8) = - Ly [ <df,*df> .

2
X
Similarly, if (f,g) e PX then
c((F,8),(£F,g)) = 1 [ <df ,*dF> |
X

which shows that Py is positive. In fact we have

Proposition (10.8). Py is a positive maximal isotropic subgroup of

lIyx ¢» and is compatible with the polarization.

Proof: (a) To show that Py is maximal isotropic we consider an element
(f,g) ¢ HBX,G which is in the commutant of Py, i.e. such that

<<f1,g>> = <<g1,f>> for all (f1,g1) € PX. In particular we can take

f, = ¢, 8, = -ip, where ¢ is an arbitrary holomorphic function X » {.

We find

[ < ¢ ,dg - idf> = 0
X
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This shows that dg - idf is the boundary value of a holomorphic
differential on X. Similarly, taking £ = ¢, g, = ip we find that

dg + idf is the boundary value of an antiholomorphic differential.
Putting the two facts together, there is a harmonic 1l-form w on X such
that df = w|3X, dg = *iw|bX. Let F and G be indefinite integrals of w
and *iw defined on Y, and such that F agrees with f and G with g at one
vertex of dY. To complete the proof we must show that ai(F),Bi(F), and
Uf(F) belong to A, and ai(G),Bi(G), and Uf(G) belong to A%, where

ai(F) denotes [ dF, etc., and U?(F) denotes the constant difference

o,
1

between F and f along gy But if (f1,g1) € Py we calculate
<<f,,g>> - <<g1,f>> =X {<ai(f1),ﬂi(G)> - <Bi(f1),ai(G)> + <ai(f1),af(c)>}
- L (<ey(g,).Bi(F)> - <B;(g,),o; (F)> + <0;(g,),04(F)>)

Now {ai(f1),Bi(f1),Ui(f1)} describe the class of f1 : X 5 T in
H'(X;A). The proof is therefore completed by the observation that the
group of components of Py is H'(X;A) @ H'(X;A*), a fact which follows
easily from the theorem that any element of H'(X;¢) can be represented
by *dyp for some harmonic map ¢ : X ~» §¥.

(b) The operator J_ in Map(dX;E) ® Map(dX;¥) which corresponds to

Px

PX is (f,g) —> (ng,ij), where ij is defined by d(ij) = *dF, where
F: X > ¥ is the unique harmonic extension of f. (Thus jX is
well-defined only up to the addition of a finite rank operator.) For
the standard polarization jy is replaced by the Hilbert transform. But
it is easy to check that jy differs from the Hilbert transform by a

smoothing operator on dX, which is certainly of trace class.
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Generalized toral theories and their parameter space

The theory we have just constructed is manifestly symmetric with
respect to the tori T and T*, i.e. dual tori give rise to the same
string theory. But we can say considerably more. The Hilbert space
was constructed as a projective representation of the loop group II of
the torus U =T X T*. To define the cocycle (10.2) we did not need to
identify the Lie algebra Y with its dual: we used only the vector
space 4 = { @® {* with its natural indefinite inner product, and also
the self-dual integral lattice L = A @ A* in it'. To define the
polarization and the rays (I, however, we did use the identification

I - 't*: essentially we need an orthogonal transformation J of 44 such
that (i) J2 = 1 and (ii) <¢,J&> » 0, for the definition of the subgroup

PX can be written
Py = {p ¢ Map(X;UE) 1 dp = *iJdyp)

We do not even need the inner product on 44 to have signature 0: it can
be positive definite, in which case we must have J = 1, so that Py is
simply the group of holomorphic maps X » Up. The fact that Py is
maximal isotropic is equivalent to the unimodularity of the lattice Y,
but to have a canonical splitting of its central extension we need ¥ to
be even (i.e. <\,\> ¢ 2Z) in addition. A lattice of the form A @ A* is
automatically even. Let Ef recall, however, that an even unimodular
Signaliire

lattice can exist only if; p-q is divisible by 8. ([S7] Chapter 5,

§2.2.)

1Strictly it is the commutator pairing (and hence the isomorphism class
of the extension) and not the cocycle which is defined by (44 ,X). The
cocycle involves choosing an integral bilinear form B on %4 such that
<¢,m> = B(f,n) + B(n,£). This exists only gf the lattice is even. The
general case is discussed in §l2. L
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We now have a class of generalized toral theories parametrized by
triples (4 ,X,J), where ¥ is an even unimodular lattice in the real
inner-product space # . If the inner product is indefinite the pair
(4 ,X) is determined ([S7] Chapter 5, Th. 6) up to isomorphism by the
dimension and signature of ¥4 , say p + q and p - q. The automorphism
group of (#4,X) is the discrete orthogonal group rp,q = 0(X). The
possible choices of J form the homogeneous space Op,q/op X Oq’ so the

parameter space of the theories is

My q=Tp,q\ % ,q/ % X9

If Y4 is positive definite, however, the parameter space is the
discrete set of classes of even unimodular lattices.

The Hilbert space of the general toral theory breaks up H =® Hy,
where ¢ runs through the lattice L. As before we have
H = S(W;) ® S(WR) under b x D, where now the left- and right-moving
parts are associated to the splitting #4 = Mt @ 14~ into +1 and -1
eigenspaces of J. (Thus WL (resp. WR) is the positive- (resp.
negative-) frequency part of Ltbt / “kﬂ .) In particular the theory
has central charge (p,q), and is holomorphic if #4 is positive-
definite. We shall discuss the positive-definite case in more detail
in 812, without assuming that the lattice is unimodular. In general
the splitting 4 = ¥ @ M4~ is irrational with respect to the lattice
Y, and this prevents us factorizing the theory as a whole into left-
and right-moving parts. When the splitting is rational the theory can
be factorized as the product of a pair of weakly holomorphic theories

based on a modular functor: this will be explained in §13.
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It is interesting to consider the family of toral theories in the
light of their infinitesimal automorphisms and deformations. From the
formula (cf. (10.4))

— <0,,Jo,> <o _,Jo >
p(DPp()T = g+ g

gex
for the partition function we see that for a generic lattice (i.e. when
<o¢ ,J0 > is never integral) the fields of types (1,0),(0,1), and (1,1)
are contained in H  and isomorphic to %E, Uy and “‘?E- ® "7
respectively, and are all primary. Now M-E ® uf& = ﬂ'm is the
complexified Lie algebra of the torus U, which is the obvious group of
automorphisms of the theory. Similarly 4 a:' ® M is the complexified
tangent space of the parameter space Mp,q’ which suggests that the
toral theories form a complete component of the moduli space of all

theories.

Finally we should mention that when p = q = n the parameter space
M, , has as a covering space the moduli space of n-dimensional
Riemannian tori T equipped with a translation-invariant 2-form w. For

if we write U =T X T*, as is always possible, and write

J t@j\*» t@t*asaZXZmatrix

a b
c d
then c¢ : t > I* is a Riemannian metric on T and w = ca : t > t* is

a skew 2-form. One can easily check that ¢ and w can be prescribed
arbitrarily, and determine b and d. In fact the moduli space of pairs
(T,w) is GL(ZH)\ O, , / 0, X 0,, where GL (Z) is the subgroup of | QR

which preserves the chosen decomposition X = A @ A*.
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From the point of view of string theory the theory corresponding
to (T,w) is that of strings moving in a constant background field w: it
is obtained by replacing the usual action functional for a map

f : X > T from a surface to T by
S(£) = 3 [<df,*df> + [ Fre .
X X

The term involving w depends only on the homotopy class of f, and so
does not affect the classical equations of motion. From this
standpoint, however, there are surprising equivalences between the
theories for different (T,w) coming from the fact that the true

parameter space is a quotient by I

n,n rather than GLn(Z).
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§12. The loop group of a torus

The circle

For the loop group of a torus one can describe the representations
and the associated modular functors very explicitly. Let us begin with
the loops in CX - in fact, to keep the functoriality as clear as
possible, let us begin with the group Eg of smooth maps from an
arbitrary compact oriented l-manifold to cx.

We have already pointed out in 88 that Eé acts by pointwise
multiplication on the polarized space Q%(SG) of i-forms on S. Here ¢
is a spin structure on S, i.e. a choice of a square-root of T*S, and
Q%(SG) denotes the sections of the complexification of o. This action
gives us a central extension E?,U of E§ by C*: an element of the
extended group is a pair (vy,€) with vy e Eg and ¢ an element of
Det(W;yW) for some subspace W of Q%(SG) belonging to the restricted
Grassmannian. The extensions corresponding to different spin
structures are isomorphic, but not canonically.

The Heisenberg group Eé,a has a canonical irreducible representa-
tion HS,U' This can be realized (cf. [PS ]€h.9) on the space of
holomorphic C-valued functions on Eé/P, where P is any suitable maximal
isotropic subgroup of Cg. (The realization depends on the choice of a
splitting of the induced extension P of P: for Hg o is the representa-
tion of ﬁ?,a holomorphically induced from the character P - c* given by
the splitting.)

If X is a Riemann surface such that X = S then - as we shall
prove - the group E§ of holomorphic maps X > C* is a suitable maximal
isotropic subgroup of Eg. The natural way to define a splitting of the

extension over E§ is to choose an spin structure oy on X compatible
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with ¢. Then the space W of holomorphic sections of oy belongs to the
restricted Grassmannian of Q%(SG) and satisfies 4W = W for all vy ¢ EX;
so y+>» (v,idy) is a splitting.

At this point we have essentially defined a conformal field theory
based on the category \6spin' For the realization of HS,G as
Hol(Eé/E?) gives us a canonical ray in HS,U - consisting of the
constant functions - for each surface X with X = S. And HS,G has a
hermitian form, characterized by the property that the action of E§ is

_ “sewing”
unitary (in the sense that U(y)* = U(y)). The property of
the theory is obvious from this point of view.

This bosonic construction of the theory described by means of Fock
spaces in 88 seems at first to have few advantages, for it entails
proving that E§ is a suitable maximal isotropic subgroup of C§X; and in
any case the theory of Heisenberg representations is not so elementary
as that of Fock spaces. But the bosonic theory can be used in
situations where there is no fermionic version, and it gives more

information, as we shall see.

A central extension A of an abelian group A by CX is determined up

to non-canonical isomorphism by its commutator pairing
<< , > : AXA s CX

, Where aj

I
w1
w1
W1
o

defined by <<a ,a >> ¢ A is a lift of a;. The

commutator pairing of the extension of LCX that we are interested in is

1

<«<f,g>> = % I (fdg - gdf) + 3(F(O)A - Agg(0)) . (12.1)
0
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Here CX is regarded as C/Z, and elements of LCX as maps £ : R » C such
that f(x + 1) = £(x) + Ag, where Ap € Z is the winding number. The
pairing << , >> is invariant under Diff+(S').

We can obtain a definite central extension of LC* by giving a

cocycle ¢, which must satisfy
c(f,g) - c(g,f) = <f,>> .

Unfortunately there is no choice of ¢ which is invariant under

Difft(s'), but the formula

1
c(f,g) = 5[ fdg - 4 Ag(0) (12.2)

0
defines an extension A of the group A of maps f : R » C such that
f(x +1) = £(x) + Af which is invariant under the universal covering
group of Difff(s'), i.e. the diffeomorphisms ¢ of R satisfying
p(x + 1) = p(x) + 1. Of course X = A/Z, so we get an extension of
LCX by lifting the inclusion Z » A to A. Because c vanishes on Z X Z
the possible lifts simply correspond to homomorphisms Z - Cx, i.e. to
elements o ¢ CX. It is easy to check that the double covering of
Diff+(S1) acts on the extension corresponding to o = 1, while Diff+(S1)
itself acts when ¢ = -1. These are the two extensions which correspond
to the two spin structures on the circle. Using them we can associate
an extension E§’0 of E§ to every oriented l-manifold with a spin
structure. In doing so it is important to notice the following point.

From (12.1) we find that
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<«<f,g>> = § Agh,

if £ and g have disjoint supports in S', in other words loops of
winding number 1 anticommute if they have disjoint supports. For a
disconnected 1-manifold it is therefore appropriate to look for

extensions of Eé whose commutator is given by

<f,g>> = ) <<f.,g;>> + 1} S AL A
i i#j i

where f;,g; are the restrictions of f,g to the i th component S; of S.
. =X . . =X
We therefore define ES s S° that it contains each ES o, 35 2 subgroup,
’ i%i

and satisfies

AA
f.g = (-1) " & g.f

when f e ES , g e¢C 0.’ and i # j. The natural way to achieve

171 53193
this is to use the cocycle

c(f,g) = 2 c;(f,) + 3 ¥ A A (12.3)
i>j i 8&j
where c; is the cocycle defining E: . Notice that this cocycle is
i

defined only on a covering group Ag of Eg, and does not depend on the
spin structure ¢. The group E§ is obtained as the quotient group of ES
by the image of a lift of the inclusion H°(S;Z2) > Ag, and the 1lift does

depend on the spin structure.
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Proposition (12.4).

(i) For any Riemann surface X the subgroup E§ is a positive maximal
isotropic subgroup of ng, compatible with its polarization.

(ii) When restricted to E§ c E§X the cocycle (12.3) takes its values in
{0,%}, so defines a canonical extension E§’6 of E§ by Z2/2.

(iii) The extension C§,0 splits, and its splittings correspond

canonically to the spin structures on X which restrict to ¢ on dX.

Proof: This is similar to Proposition (10.7), and we shall use the
same notation. Suppose that two elements f,g of E?X are represented by
smooth maps f,g : Y » C, where Y is the plane polygon with sides

Oy Py After some manipulation we find

1

c(f,g) =~ £Ug + 3| df A dg , (12.5)

g —

where

fug

) {ai(f)Bi(g) - 6i(f)ai(g)}

If £ and g are holomorphic then the integral over Y vanishes, and if f
and g are well-defined on X then c(f,g) € 3Z and c(f,g) - c(g,f) € 2.

So E§ is isotropic. It is positive because if f is holomorphic then

The proof that E§ is maximal isotropic and compatible with the
polarization is sufficiently like that of (10.7) to need no further

comment.
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Appendix B Determinant lines

This appendix preserves the conventions of Appendix A, and all
topological vector spaces are assumed to be allowable. An operator of

determinant class means one of the form 1 + T where T is of trace

class, and det(l + T) is defined by (A.12).

Definition (B.1). An operator T : E > F between complete locally

convex vector spaces is Fredholm if it is invertible modulo compact

operators, or, equivalently, modulo operators of finite rank.

If T is Fredholm then it has closed range and finite dimensional
kernel and cokernel. If E and F are Fréchet the converse is also true.
(C£. [S1]) The index of a Fredholm operator T is the integer

dim(ker T) - dim(coker T).

Definition (B.2).

(i) IfT : E > F is Fredholm of index O then DetT is the line whose
points are pairs [6,N], where N ¢ C and ¢ : E > F differs from T by a

trace-class operator, subject to the equivalence relation generated by

[6p,N] ~ [0,(detyp).\]

when ¢ : E > E is of determinant class.
(ii) If T : E > F is Fredholm of index n then Dety = Detqy, where

T-T@®0 :E>F@Cifn>0, andT=T@®O0 : EQC > F ifn<o.
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Remarks. If T has index O one can always choose an invertible 6 such
that 0-T is of trace class. Then X +> [#,\] defines an isomorphism

C > Detp. If 6 is not invertible then [6,\] = 0 for all \.

Definition (B.4). If T : E » F is Fredholm of index O then det(T) is

the element [T,l] of the line Dety. If index(T) # 0 then

det(T) = 0 € Detq.

Corollary (B.5). T is invertible if and only if det(T) # O.

Proposition (B.6). If dim(ker T) = p and dim(coker T) = q there is a

canonical isomorphism

Detp & AP (ker T)* ® A9(coker T)

Proof: It is enough to prove this when p = q. Let OO be a
basis for (ker T)* and Myse sty be a basis for coker T. Let
&i : E > C be an extension of o - Then

[ T+ X Ny ® oy 1] e a, Ao A ap @M, A ... A o

defines the isomorphism.

We shall now show that the lines Dety depend holomorphically on T,

Proposition (B.7). 1If {Ty : E, » F_}

x)xex 18 a holomorphic family of

Fredholm operators then the lines DetT form a holomorphic line bundle

X
on X.
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Here the meaning of 'holomorphic family' must be understood in the
sense of [S1], i.e. (Eg} and (F,} are holomorphic vector bundles on X
in the weakest sense, but we assume that there exists a continuous
parametrix {PX : FX > EX} such that the families {TXPX - 1} and
{P T, -1} are compact, i.e. are compact operators which depend

continuously on x in the uniform topology.

Proof of (B.7). We can assume the bundles {EX} and {FX} are trivial,

and that the T, have index 0. Then for each finite rank operator

t : E » F the set

Ut = {x € X : Tx + t 1is invertible }

is open in X. We trivialize the lines DetT for x e Ut by
X

X hw?[Tx + t, 1], and in the intersection Ut n Ut the transition

0 1
function is

X > det((Ty + t ) (T, + to)“)

= det(l + (t, - t)(Ty + £ )71,

which is holomorphic.

The main general fact about determinant lines is

Proposition (B.8). Let

1T IT iT"



[§FRY)

be a commutative diagram of topological vector spaces with exact rows

and Fredholm columns. Then there is a canonical isomorphism

DetT = DetT. ® DetTn

which depends holomorphically on T',T,T".

"Exact rows" means of course that E' and F' are topological

subspaces of E and F, and that E" and F" have the quotient topology.
Proof: 1If t',t" are finite rank operators such that T' + t' and
T" + t" are invertible then one can find t of finite rank such that
T + t forms a commutative diagram with T' + t' and T" + t". The

desired isomorphism is

[T+ t, 1] > [T +t', 1] ® [T" + t", 1]

The determinant line, the restricted Grassmannian, and the central

extension of GLres

A polarized topological vector space E (in the sense of Definition
(8-8)) has a restricted Grassmannian Gr(E) which consists of the
(+1) -eigenspaces of the preferred involutions J which define the
polarization. If WO and W1 are two points of Gr(E) there is a
preferred class of Fredholm operators T : W - W,, namely those which

differ from the inclusion W, >H by trace class operators.
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Definition (B.9). For WO,W1 in Gr(E) we write Det(WO;W1) for Detr,

where T : W, - W, is such a Fredholm operator.

From (B.3) we know that Det(WO;WI) does not depend on the choice
of T. 1If W0 is held fixed then \J Det(Wo;W) is a holomorphic line
bundle on Gr(E). This is the de:érminant line bundle of [PS](Chap.
10): there the chosen W0 was called H, .

For three spaces W ,W, ,W, we clearly have
Det(wo;wz) = Det(Wo;W1) ® Det(W1;W2)
Now suppose that g : E > E belongs to the restricted general
linear group of E, i.e. that gJg'' - J is of trace class for a

preferred involution J.

Definition (B.10). For g e GL (E) we define

res

Detg = Det(W;gW) ,

where W is an element of Gr(E).

The line Detg is independent of W, for if W, and W are two
choices then g defines an isomorphism between Det(WO;Wl) and

Det(gwo;gwl), and hence between Det(Wo;gWO) and

Det(WD;gWU) ® Det(WO;W1)* ® Det(gWO;gW1) = Det(W1;gW1)



Evidently Det = Det ® Det , and so we can define a central
8189 &1 &y
extension of GL,. . (E) which consists of all pairs (g.\) with N € Det_.

By its construction this group acts holomorphically on the line bundle

\J Det(W, ,W) for any choice of W, .
w

Riemann surfaces

We conclude this appendix with a result on the determinant line of

a Riemann surface.

Proposition (B.1ll). If a closed Riemann surface Z is the union of two

surfaces X and Y which intersect in a l-manifold S then Detz is

canonically isomorphic to the determinant line of the map
Hol(X) @ Hol(Y) - Q%)

( £, g )r> (£]9)-(g|s)

Proof: First consider the diagram

0%z - Q°x) @ Q°%Y) N J%(8)
13 1 ]

Q°'(z) - QX)) @ Q°'(Y) @ Q°%S) - J°'(S) @ Q%) ,

where J°(S) (resp. J°'(S)) is the space of infinite jets of functions

(resp. (0,1)-forms) on Z along S,
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the middle vertical map is (f,g) +—> (§f,§g,(f|S)-(g|S)) ,

and the right-hand vertical map is f v+> (3f,f]S)

The horizontal maps are defined in the obvious way to give short exact
sequences. Notice that an element f of J%(S) can be identified with
the sequence {fy) of smooth functions on S such that f = X fkyk, where
y is a coordinate on Z transverse to S. The right-hand vertical map is
then

(£ ¥ (£, £+ £, £+ £, ,...)
and is therefore an isomorphism. Thus by (B.8) we can identify Det,
with the determinant of the middle map. Proposition (8.11) is then

obtained from the diagram

Hol(X) @ Hol(Y) -~ QX)) @ Q%Y > 2V7X) @ Q°'(Y)
] ] l id
Q°(s) > QX)) @ Q°N(Y) @ Q%) - 2°7(X) @ Q°'(Y)

just as in the proof of (6.3).

Corollary (B.12). 1In the situation of (B.1ll) we have

DetZ = DetX ® DetY .



Y

Proof: The right-hand side is the determinant of the map

Hol(X) @ Hol(Y) - Q%)

This differs from the map of (B.9) by a trace-class operator (cf. the

proof of (6.4)).

Notice that (B.12) provides the proof of Proposition (6.5), which

was omitted earlier.



