Consensus, Blockchain and Proof Assistants

Matthew Salazar

December 2018

1 Introduction

For decades, distributed consensus protocols (DCPs) have been of interest to
computer scientists, and with the uptrend of blockchain and its applications,
DCPs have earned the spotlight of both private, governmental and academic
parties. DCPs are notoriously tortuous to reason about, especially when trying
to prove that various properties of these protocols hold. Fortunately, proof
assistants such as Coq, NuPRL and Isabelle, and SMT provers such as 73
and Yices have proven to be useful tools for proving these properties because
they are correct-by-construction. Some academics have also proposed different
frameworks and logics for reasoning about DCPs to increase the efficacy of proof
assistants in proving properties about DCPs.

The purpose of this paper is to give a general overview of DCPs and the
efforts of using proof assistants for verifying blockchain DCPs. Additionally,
this paper will briefly discuss the uses of proof assistants on smart contracts,
a blockchain technology. Although the previous efforts noted in this paper are
not exhaustive, they effectively highlight the foundations, recent discoveries and
intended future work in both the commercial and academic spaces for the use
of proof assistants for verifying classical and blockchain DCPs, and verifying
smart contracts.

2 DCP Overview

Fundamentally, DCPs have two types of properties that determine their correct-
ness: liveness and safety. Informally, liveness guarantees that “good things”,
such as the termination of code or agreement of correct processes, will eventu-
ally happen. Safety guarantees that “bad things”, such as crash or Byzantine
faults, do not happen [13].

DCPs such as Paxos, Raft and Two-Phase Commit are assumed to execute
in a permissioned setting, where it is necessary to know how many people there
are in the protocol execution, and all communication between members in the
protocol execution is authenticated.

Permissionless DCPs such as blockchain DCPs use data structures called
block forests and relinquish the need to know how many members are in the



protocol execution and the need to authenticate communication between mem-
bers. Because permissionless DCPs relax the strong assumptions of permis-
sioned DCPs, permissionless DCPs are more flexible and scalable. However, per-
missionless DCPs typically have a larger energy consumption, and have longer
expected liveness properties. It is worth noting that these two categories are
not the only settings for DCPs. One such project working at a middle grounds
of the permissioned and permissionless setting is Avalanche from Team Rocket
[19].

3 Foundations of DCP Verification

Verification of DCPs is critical for many reasons. The main reasons are the
reliance of major technology companies on many of these protocols, and the
presumed scale of blockchain projects around the world serving as banking or
government substitutes. Many of these protocols do not have a central entity to
amend these protocols, which typically control precious assets such as personal
information or money. Ensuring the correctness of these protocols becomes
central to the survival of these protocols in a real-world distributed setting.

Efforts to formally verify DCPs are typically done by proof assistants or SMT
solvers. However, SMT solvers usually require bounds on the environment to
be used in order to verify correctness. Furthermore, there are projects that
integrate SMT solvers into proof assistants, making proof assistants a stronger
tool for reasoning about DCPs [4].

Proof assistants like NuPRL and Coq are logical environments based on Con-
structive Type Theory. The advantage of working with these proof assistants
over strategies such as model-checking is that when trying to prove a proto-
col property, should that property not hold, the environment constructively
provides a counterexample, and, should the property hold, the environment
provides a formal mapping from the program specification to running code [18].
These constructive features of proof assistants help with reasoning about and
managing theorems in complex systems such as DCPs.

Although verification of DCPs has proven nontrivial, there has been much
progress in specifying and verifying different DCPs. Notable foundational work
on the verification of DCPs includes TLA+, a formal specification language de-
veloped by Leslie Lamport that uses set theory to prove safety and temporal
logic to prove liveness [14]. Another notable work is the verification of Paxos
using EventML in the NuPRL proof assistant. The NuPRL team developed a
Logic of Events (LoE) which they implemented as EventML. Using EventML,
they proved the correctness of many DCPs including the Paxos protocol [18].
Many other projects have produced results that have significantly progressed
verification for DCPs including new specification languages, logics and frame-
works. These notable projects are cited in the references [12, 15, 24, 10, 21, 23,
2, 3.



4 Verifying Blockchain DCPs

Because blockchain DCPs relax the permissioned DCP conditions of variable
member participation cardinality in protocol execution and free communication
between members, there is a disparity between permissioned and permissionless
DCPs from a mathematical modelling perspective [16]. However, from a con-
structive perspective, proving properties such as liveness and safety seem to be
quite similar, only requiring reasoning about block forests and some formalized
mechanization of blockchain consensus [17].

Further research toward blockchain DCP verification includes developing a
model of the network to prove global system safety and eventual consistency in
Coq [17], and using probabilistic formal methods in PRISM to verify probabilis-
tic properties of the blockchain DCP [5].

Furthermore, there are a number of commercial projects that address the
importance of blockchain DCP verification. Such projects include Hedera Hash-
graph, FEthereum Foundation and Tezos. Hedera is the first distributed ledger
technology company to prove its asynchronous Byzantine fault tolerance using
Coq [9]. Also, the Ethereum Foundation has used Coq to verify properties about
its finality system, Casper [6]. Lastly, the Tezos Foundation plans on using Coq
to verify its OCaml code for key portions of the Tezos DCP [8].

5 Smart Contracts

A smart contract is a computerized transaction protocol that executes the terms
of a contract. In the context of blockchain, these contracts are stored on a
distributed ledger and run as scripts on top of a distributed virtual machine
that can send or receive assets based on the execution of that contract [22].

Smart contracts are typically short due to the throughput limitations of
the current blockchain DCPs, but as these protocols become more scalable,
smart contracts have potential to become increasingly large, which complicates
the verification of the smart contract for the people entering into this smart
contract. Proof assistants emerge as an ideal solution for proving the correctness
of smart contracts so that individuals engaging in a smart contract know what
the contract does what it is formally specified to do.

There are many different academic and commercial projects for verifying
smart contracts by developing their own smart contract programming languages,
or by providing methods for verifying existing smart contract programming lan-
guages using proof assistants. One such project is Firmo which developed Fir-
moLang, a non-Turing complete domain specific language that has been formally
verified using Coq [7]. A company named Secbit formalizes smart contracts for
semi-automated verification and full formal verification on their platform [20].
Another project called Scilla developed an intermediate level smart contract lan-
guage that embeds into the Coq proof assistant [11]. Lastly, a company named
Certik is a formal verification platform that mathematically verifies smart con-
tracts, although the details on how they achieve this are not specified to the



public yet [1].

6

Conclusion

Multiple projects have contributed to the use of proof assistants for DCP veri-
fication, especially recently with regard to blockchain consensus. Additionally,
smart contracts are another use in the blockchain space where proof assistants
are directly applicable. As the prevalence of distributed systems increases in our
daily lives, proof assistants will become progressively more necessary to provide
correct-by-construction proofs of the intended properties of these protocols.

References

1]
2]

Certik. Formal verification platform. https://certik.org/, 2017.

Bernadette Charron-Bost and Stephan Merz. Formal verification of a con-
sensus algorithm in the heard-of model. Int. J. Software and Informatics,
3:273-303, 2009.

Cezara DrazGoi, Thomas A. Henzinger, Helmut Veith, Josef Widder, and
Damien Zufferey. A logic-based framework for verifying consensus algo-
rithms. In Proceedings of the 15th International Conference on Verifica-
tion, Model Checking, and Abstract Interpretation - Volume 8318, VMCALI
2014, pages 161-181, Berlin, Heidelberg, 2014. Springer-Verlag.

Burak et al. Ekici. Smtcoq: A plug-in for integrating smt solvers into coq.
Lecture Notes in Computer Science, 10427, 2017.

C. Mirto et al. Probabilistic formal methods applied to blockchain’s con-
sensus protocol. BCRB ’18 DSN Workshop on Byzantine Consensus and
Reszilient Blockchains, 2018.

K. Palmskog et al. Verification of casper in the coq proof assistant. Project
Report, November 15, 2018, Runtime Verification, Inc., 2018.

FIRMO. Firmo: Secure execution of financial contracts. 2018.

L. M. Goodman. Tezos: A self-amending crypto-ledger position paper.
2014.

Hedera Hashgraph. Hedera hashgraph platform.
https://www.hedera.com/platform, 2018.

Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R. Lorch, Bryan
Parno, Michael L. Roberts, Srinath Setty, and Brian Zill. Ironfleet: Proving
practical distributed systems correct. In Proceedings of the 25th Symposium
on Operating Systems Principles, SOSP ’15, pages 1-17, New York, NY,
USA, 2015. ACM.



[11]

[12]

A. Kumar I. Sergey and A. Hobor. Sscilla: a smart contract intermediate-
level language. CoRR, abs/1801.00687, 2018.

Marta Kwiatkowska, Gethin Norman, and Roberto Segala. Automated
verification of a randomized distributed consensus protocol using cadence
smv and prism? In Gérard Berry, Hubert Comon, and Alain Finkel, edi-
tors, Computer Aided Verification, pages 194-206, Berlin, Heidelberg, 2001.
Springer Berlin Heidelberg.

Leslie Lamport. Proving the correctness of multiprocess programs. IEEFE
TRANSACTIONS ON SOFTWARE ENGINEERING, SE-3(2), 1977.

Leslie Lamport. Specifying concurrent systems with tla+. Calculational
System Design, pages 183-247, April 1999.

Oded Padon, Kenneth L. McMillan, Aurojit Panda, Mooly Sagiv, and
Sharon Shoham. Ivy: Safety verification by interactive generalization. SIG-
PLAN Not., 51(6):614-630, June 2016.

R. Pass and E. Shi. Rethinking large-scale consensus. In 2017 IEEFE 30th
Computer Security Foundations Symposium (CSF), pages 115-129, Aug
2017.

George Pirlea and Ilya Sergey. Mechanising blockchain consensus. In Pro-
ceedings of the Tth ACM SIGPLAN International Conference on Certified
Programs and Proofs, CPP 2018, pages 78-90, New York, NY, USA, 2018.
ACM.

Vincent et al. Rahli. Formal specification, verification, and implementation
of fault-tolerant systems using eventml. FElectronic Communications of the
EASST, 72, 2015.

Team Rocket. Snowflake to avalanche: A novel metastable consensus pro-
tocol family for cryptocurrencies. 2018.

SECBIT. Formalizing a secure bit world starting from formalizing smart
contracts. https://secbit.io/, 2018.

Ilya Sergey, James R. Wilcox, and Zachary Tatlock. Programming
and proving with distributed protocols. Proc. ACM Program. Lang.,
2(POPL):28:1-28:30, December 2017.

Don et al. Tapscott. The Blockchain Revolution. 2016.

Tatsuhiro Tsuchiya and André Schiper. Verification of consensus algo-
rithms using satisfiability solving. Distributed Computing, 23(5):341-358,
Apr 2011.

James R. Wilcox, Doug Woos, Pavel Panchekha, Zachary Tatlock,
Xi Wang, Michael D. Ernst, and Thomas Anderson. Verdi: A framework
for implementing and formally verifying distributed systems. SIGPLAN
Not., 50(6):357-368, June 2015.



