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1. GALOIS EXTENSIONS

Let S be the sphere spectrum. An S-algebra A is a monoid (A, u: AN A —
A,n: S — A) in a good symmetric monoidal category of spectra, such as the S-
modules of Elmendorf, Kriz, Mandell and May [EKMM], the symmetric spectra
of Jeff Smith [HSS], or the simplicial functors of Manos Lydakis [Ly|. When A is
commutative there is also the notion of an A-algebra (B,u: BAs B — B,n: A —
B).

La A — B be a map of commutative S-algebras. (Make the necessary cofibrancy
and fibrancy assumptions.) Let G be a grouplike topological monoid acting on B
through A-algebra maps.

Definition. A — B is a G-Galois extension if

(1) G ~ mo(Q) is finite,

(2) A~ B"Y = F(EG,,B)¢Y, and

(3) BAa B~ F(G4,B).

A — B is a G-pro-Galois extension if G is a filtered limit G = lim, G, B is
a filtered colimit B = colim, B, and A — B, is a GG,-Galois extension for each
«. Then A ~ B"® and B Ay B ~ F(G,, B) where the homotopy fixed points and
function spectra are formed in a continuous sense.

Examples.

(1) The trivial G-Galois extension A — B = F(G4,A) takes A to constant
maps from G.

(2) When R — T is a G-Galois extension of commutative rings, the map of
Eilenberg—Mac Lane ring spectra HR — HT is a G-Galois extension (of
commutative S-algebras).

(3) Complexification KO — KU is a Co-Galois extension, and inclusion of the
p-local Adams summand L — KU, is a (Z/p)*-Galois extension.

(4) More generally EO,, — E,, is a G-Galois extension when EO,, = E"¢ for
G a maximal finite subgroup of G,, = S, x C,,. Here C,, = Gal(F,~ /F,) is
cyclic of order n and S,, is the nth Morava stabilizer group of automorphisms
of a height n formal group law defined over IF,». The Lubin-Tate spectrum
E,, has homotopy FEy. = WFpn|[[u1,...,uy_1]][u,u""], where each u; has
degree 0 and u has degree 2, and G,, acts on FE,, through S-algebra maps,
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cf. the works of Morava, Hopkins—Miller and Goerss—Hopkins [Mo], [Re],
[GH].

(5) The inclusion J, — KU, is a Zy-pro-Galois extension, with k € Zj acting
as the Adams operation *.

(6) More generally Lg,)S — E, is (most likely) a G,-pro-Galois extension.
The assertion L (,)S =~ E&n s a version of the Morava change of rings
theorem, and the equivalence Ey, AL, s En =~ F(Gny, Ey) is a variation
on a result of Devinatz—Hopkins. (Needs some further checking.)

E, KU,
MU FE, KU, = E;
\ \
Gy EO, r L,=FEO;
/ /
Lgm)S Jp = Lr@)S HQ
G@T
S L,S LS HQ = LyS

(When the maximal finite subgroup of G, used to form FQO,, is not normal, £FO,,
will not be Galois over Ly ,)S.)

Proposition. Let A — B be G-Galois, M an A-module, N a B-module.

(1) B is strongly dualizable as an A-module. So Fa(B,A) ANa M ~ Fa(B,M).
We write Ds(B) = Fa(B, A) for the A-dual of B.

(2) B is self-dual as an A-module. So B ~ D 4(B).

(3) A is B-complete, i.e., the map A — C(A — B) to the totalization of the
cosimplicial spectrum [q] — B Aa -+- Aa B with (¢ + 1) copies of B is a
homotopy equivalence.

(4) BAa4 N ~F(G4,N).

(5) NANGy ~ Fa(B,N). In particular B\ G4 ~ Fa(B, B).

Question. What can be said when B = A A X for a spectrum X 7 Is X suitably
self-dual ?

Question. Is B faithfully flat as an A-module ? That is, does B Ay M ~ % imply
that M ~ % 7

This holds in many cases, including the trivial Galois extension, Galois extensions
of commutative rings, KO — KU, L — KU,), EO2 — E3 and J, — KU,.

For example, if M is a KO-module with KU Ago M =~ x then from the cofiber
sequence KO — KO — KU we get that n: XM — M is a homotopy equivalence.
But 7 is nilpotent, so M ~ x. A similar argument works for FOs; — FEy ~ EQOs A
DA(1).
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Definition. A commutative S-algebra A is connected if we can only factor A as
A~ A" x A" as commutative S-algebras when A" or A” is contractible.

Definition. A connected commutative S-algebra A is separably closed if it admits
no connected G-Galois extension A — B with mo(G) nontrivial. We write A for a
separable closure of A.

2. ETALE MAPS

Example. Let FF — FE be a G-Galois extension of number fields. Then the map
of number rings O — Of is G-Galois if and only if F' — FE is unramified, i.e., if
and only if Op — Op is an étale map.

Definition. A map A — B of S-algebras is formally étale if the topological André—-
Quillen homology TAQ(B/A) ~ x is contractible.

One definition of TAQ(B/A) is as the B-module spectrum with nth space S™"® B
with the tensor product formed in the category of commutative A-algebras.
The lifts in the diagram

A—=CVM
B

C

where M is a C-module and M — C'V M — C a square-zero extension, are
the A-linear derivations Ders (B, M) of B with values in M, and Dery(B, M) ~
Fp(TAQ(B/A),M). Dually to the unique lifting property of covering spaces this
space is always contractible precisely when A — B is formally étale.

The following criterion is useful.

Proposition. TAQ(B/A) ~ x if and only if B ~ HH*(B).

Here HH*(B) is the realization of the simplicial spectrum [g] +— B A4 -+ Aa
B with (¢ + 1) copies of B and Hochschild-type face maps. The special case
THH(B) = HH®(B) is the topological Hochschild homology of B.

Proof. There is a spectral sequence from the symmetric B-algebra of TAQ(B/A)
to HHA(B), which when TAQ(B/A) ~ * collapses to B ~ HH*(B).

Conversely the identity TAQ(HH*(B)/B) ~ YTAQ(B/A) shows that B ~
HHA(B) implies TAQ(B/A) ~ x. O

Proposition. A G-Galois extension A — B is formally étale.

Proof. B Ay B ~ F(G4,B) is a product of copies of B, so contains B as a re-
tract as a B A4 B-module. The composite B — HH*(B) ~ Tor?"? (B, B) —
TorB/aB (B Aq B,B) ~ B is an equivalence, and the right hand map is a split
injection. Hence all the maps are homotopy equivalences. [

The transitivity sequence for T'AQ) can be applied to show that A — B is formally
étale (if and?) only if BAg THH(A) ~ THH(B). Compare Geller and Weibel
[GW].

This much indicates that we have the beginnings of a good theory.
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3. (GALOIS DESCENT IN ALGEBRAIC K-THEORY

Let E be an S-algebra. Two important invariants of the category of E-module
spectra is the algebraic K-theory K(FE) and the topological Hochschild homology
THH(FE). When F is commutative, these are also commutative S-algebras.

What are the global structural properties of these invariants ?

Galois descent problem. La A — B be a G-Galois extension of commutative S-
algebras. Does K(A) — K(B)"“ induce an equivalence (with suitable coefficients,
in sufficiently high degrees) ?

This is known to hold for A — B a Galois extension of finite fields by Quillen [Q1],
for p-complete algebraic K-theory of p-local number fields (p odd) by Hesselholt
and Madsen [HM2], and for 2-local algebraic K-theory of number fields or 2-local
number fields by Voevodsky [V] and Rognes—Weibel [RW].

The separably closed case. Is K(A) simple to describe when A is separably
closed 7

Theorem (Quillen, Suslin).

(1) K(Fp)p ~ HZy.
(2) K(Q), =~ ku,.

Note that p‘lHZp may deserve the name FEj, and vl_lk;up = KU, = F.

Questions. What is a separable closure E,, of E,, or equivalently of L K(n)S 7
What does the “fundamental theorem of algebra” say in such an S-algebra ?

What is S ? If S = S this is the S-algebra version of Minkowski’s theorem
7. = 7., saying that every number ring other than Z is ramified somewhere.

I stated something like the following conjecture at Schloff Ringberg in January
1999.

Optimistic Conjecture. The k-connected covers of K(E,), and E, 1 are ho-
motopy equivalent for k sufficiently large.

This would allow the recursive definition Ey, 1 = L (n41)K (E,), in the category
of commutative S-algebras.
When Galois descent holds, we get a spectral sequence

EZ, = H*(G; K(B)) = K4(A)

converging with suitable coefficients and in sufficiently high degrees. Then the
complexity of K (A) gets split between the group cohomology of G and the algebraic
K-theory of B. When B = A is separably closed, and if K(A) has a simple form,
then the complexity is all in the cohomology of the absolute Galois group G4 =
Gal(A/A).

Conversely, if we can somehow compute K(A) we may estimate H*(G4; —) and
K(A). (Differentials in the descent spectral sequence tend to make this harder.)
We shall elaborate on this in two examples later.

In the Hopkins—Miller example we are looking at spectral sequences

Egt = H*(Gn; Ki(En)) = Kst(Lr@n)S) -
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The relation between L, S and Lk ,)S is illuminated by Hopkins’ chromatic split-
ting conjecture. Letting n grow, we can hope to compare K(S) = A(x) with
lim,, K (L,S), but it is not clear how algebraic K-theory interacts with the limit in
the chromatic tower.

4. LOCALIZATION SEQUENCES

Here is one strategy for how to compute algebraic K-theory. The maps F, =
Zy/p < Zp — p~7Z, = Q, induce a cofiber sequence of spectra K (F,) — K(Z,) —
K(Qp) due to Quillen [Q2].

Let ku, be the connective p-complete topological K-theory spectrum, and ¢, its
Adams summand. So kuy. = Z,[u| with |u| = 2, and £, = Z,[v1] with |v1| = 2p—2.

There are analogous maps HZ, = ku,/u + ku, — v ‘ku, = KU, and HZ, =
lp/v1 + €, = vi ', = L, inducing diagrams K(Z,) — K(ku,) — K(KU,) and
K(Z,) — K(£,) - K(Lp).

Question. Are these cofiber sequences of spectra ? This requires identifying the
algebraic K-theory of u-torsion ku,-modules or v;-torsion ¢,-modules with K(Z,).

Note that K(Z,) is known, by calculations of Békstedt and Madsen for p odd
[BM] and by Rognes for p = 2 [R]. Thus if these diagrams are cofiber sequences
then it suffices to compute K (ku,) or K(¢,), and the transfer map from K(Z,),
in order to compute K(KU,) or K(Lp). This would in turn give an estimate on
Gku, or G, and thus a hint about the structure of K_Up.

The spectra ku, and £, are connective. This makes it significantly easier to com-
pute their algebraic K-theory, due to the possibility of comparing with topological
cyclic homology.

5. TOPOLOGICAL CYCLIC HOMOLOGY

We briefly recall the topological cyclic homology of an S-algebra F, first con-
structed in [BHM]| by Bokstedt, Hsiang and Madsen.

THH(E) = HH®(E) is the geometric realization of the simplicial spectrum
l[q) = EANEN---A\E with (¢+ 1) copies of E and Hochschild-type face maps. This
is a cyclic object in the sense of Connes, and THH(E) admits an S-action. Let
Cpn C S! be the cyclic group of order p". Then TC(E;p) is formed as a homotopy
limit:

TC(E;p) =

R R
holim ( .-~ —=THH(E)®" —=THH(E)®n THH(E) )
F F

F

The maps R and F' are called restriction and Frobenius maps, respectively, by
analogy with similar maps among Witt rings of finite length.

The cyclotomic trace map is a natural transformation trc: K(E) — TC(E;p),
and the composite with the canonical map 5: TC(E;p) — THH(E) is the Dennis—
Bokstedt trace map tr = fotre: K(E) - THH(E).

Theorem (Hesselholt—Madsen, Dundas, McCarthy). Let E be a connective
S-algebra with mo(E) a finite module over the Witt vectors of a perfect field of
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characteristic p, e.g. a finite Z,-module, then trc: K(E) — TC(E;p) identifies
K (E), with the connective cover of TC(E;p),.

In general TC(E;p), is (—2)-connected, so the homotopy cofiber of ¢rc has the
form X~ H A for a known group A.
H.(IT'HH(E);F,) is generally quite accessible through the Bokstedt spectral
sequence
E2, = HH' (H.(E;F,)) = H.(THH(E);F,).

Supposing E is commutative, this is a spectral sequence of H,(E;F,)-algebras and
A,-comodules, where A, is the dual Steenrod algebra.

We will eventually want to pass over the (inverse) limit defining TC'(E;p). One
cannot expect to do this in homology, since the correspondence

H,(TC(E;p);F,) — Rlim (H.(THH(E)"";F,))

n,R,F

rarely is an equivalence.

But limits interact well with homotopy, even with finite coefficients, i.e., with
coefficients in a finite CW-spectrum V. Let V,(X) = m.(V AX) be the V-homotopy
of X.

Examples.

(1) V=8 =V(-1) gives ordinary homotopy.

(2) V.=5/p=V(0) (the mod p Moore spectrum) gives mod p homotopy.

(3) For p odd the Smith-Toda complex V(1) is the homotopy cofiber of the
Adams map v;: *72V(0) — V(0) inducing multiplication by vy in BP-
homology and an isomorphism in topological K-theory. Then V(1)-homo-
topy may be thought of as mod p and v; homotopy.

So we should choose V' to match E so as to make V.(TTHH(FE)) computable
from H.(THH(E);F,). Presumably we can then also determine V,(THH (E)®»")
for all n > 1, and by forming the algebraic limit we obtain V. (T'C(E;p)). This is
essentially V. (K(FE),) by the cited theorem.

In turn, knowing the V-homotopy of T'C(FE;p) suffices to detect, if not to con-
struct, a completed version of TC(E;p). If X — Y induces V,(X) = V.(Y) then
X ~Y if H,(V) is infinite, and X, >~ Y}, if H,(V') contains nontrivial p-torsion.

Example. Bokstedt and Madsen considered the case £ = HZ,, p odd, using
V =8/p=V(0). Using the mod p homotopy of TH H(Z,) they computed the mod
p homotopy of TC(Z,;p), and thus of K(Z,) and K(Qp). Then they (essentially)
produced a map

Jp V Ejp V Bku, — K(Qp),

inducing an isomorphism between the computed mod p homotopy groups, and could
conclude that the map is a homotopy equivalence.
Variants of this argument go through for p = 2, cf. [R].

6. FINITELY PRESENTED SPECTRA

The extraction of V-homotopy Vi(T'HH(E)) from homology H,.(THH(E);F,)
is most plausible when H,(V A THH (FE);F,) has tiny projective dimension as an
A,-comodule, e.g. when it is free, i.e., when VAT HH (F) is a wedge of suspensions
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of HF,. For E commutative and V a ring spectrum, V' A THH(E) is a module
spectrum over V' A FE, so this happens when V' A F is a wedge of suspensions of
HF,,.

A related notion was considered by Mahowald and Rezk [MR]:

Definition. A bounded below, p-complete spectrum F is finitely presented (an
fp-spectrum) if H*(E;F,) is finitely presented as an A-module. Equivalently there
is a nontrivial finite CW spectrum F' such that 7m.(F A E) = F,(E) is finite. Then
there is a unique integer n, called the fp-type of E, such that F,(F) is infinite if
F has chromatic type < n (K(n).(F) # 0), and F,(F) is finite if F' has chromatic
type > n (K(n).(F) =0).

We may also define a more refined notion:

Definition. FE has pure fp-type n if furthermore F,(F) is a free finitely generated
P(v)-module for some finite CW spectrum F' of chromatic type n, with v,-map
v: X4F — F. (Then the mapping cone V = C, has chromatic type (n + 1) and
V. (F) is finite.)

These definitions are well behaved by thick subcategory considerations.

When F is a finitely presented ring spectrum of fp-type n we choose a finite CW
ring spectrum V' (of chromatic type n + 1) making V. (E) as simple as possible.
Then V,.(THH(E)) can be (relatively) easily read off from H.(V ANTHH (E);F,) =
H,.(V;F,) ® H(THH(E);F,), which is now a H,(V A E;F,)-module. Then pro-
ceed as before to determine V,(THH(E)®»") and pass to the limit to obtain
Vi(TC(E;p)).

Examples.

(1) For E = HF), of fp-type —1 use V. = S. Hesselholt and Madsen [HM1]
computed TC(Fp; p) ~ HZ,VYX~ ' HZ, recovering Quillen’s result K (F,), ~
HZ,. The answer has pure fp-type 0, i.e., has no p-torsion.

(2) For E = HZ, of fp-type 0 use V- = S/p = V(0), at least for p odd. Bokstedt
and Madsen [BM1], [BM2] computed the mod p homotopy of TC(Z,; p) and
deduce K(Zp)p ~ jp V Xjp V 3ku,. Then answer has pure fp-type 1, i.e.,
its mod p homotopy has no v;-torsion. Similar results hold for p = 2 by [R].

(3) For E = ¢, = BP(1), of fp-type 1 use V.= V(1) for p > 5. Ausoni
and Rognes [AR]| computed the mod p and v; homotopy of TC(¢,;p), and
similarly for K(¢,),. The result has pure fp-type 2, i.e., its V(1)-homotopy
is a free finitely generated P(v3)-module on 4p + 4 generators.

(4) Other fp-spectra of fp-type 1 include ku,, ko, and j,.

(5) The connective topological modular forms spectrum eos with H*(eoq;Fy) =
A//A(2) has fp-type 2.

(6) The spectrum E = BP(n), has fp-type n, but is not known to be a com-
mutative S-algebra for n > 2. The nth Smith-Toda complex V(n) with
BP.(V(n)) = BP./(p,...,vn—1) makes V(n) A BP(n), ~ HIFF,, but is not
known to exist for n > 4. (But other chromatic type (n + 1) ring spectra
certainly exist.)

7. ALGEBRAIC K-THEORY OF TOPOLOGICAL K-THEORY

Theorem (Ausoni—-Rognes). Forp > 5 let ¢, = BP(1), be the Adams summand
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of connective p-complete topological K-theory and let V(1) be the Smith—Toda com-
plex. Let vy = [To] € mop2 oV (1). Then

V(1) (TC(ly;p)) = E(A1, A2,0) @ P(v2)
@E()\g){te>q ’ D<e< p} & P(Ug)
©® E()\l){tep)\g ‘ O<e< p} ® P(Ug)

is a free P(vg)-module on 4p + 4 generators. Here |0| = —1, |A| =2p—1, |A2] =
2p? — 1 and |t| = —2.
There is an exact sequence

0— $23F, 5 V(1),.K(6,) L5 V(1).TC(l;p) > S'F, — 0

determining the V(1)-homotopy of K(£p).
Corollary. TC({y;p)p is a finitely presented spectrum of pure fp-type 2.

In this sense T'C(¢p; p) is like eoq, or BP(2), if the latter exists.
Recall that K (Q)), has mod p homotopy a free P(v;)-module on p+3 generators,

where
p—1 oo

p+3= Z Z dimp, H"(Gal(Q,/Qy); Fy (7)),

i=1 n=0

and K(Qp), is constructed from p + 3 copies of BP(1), = {, up to extensions
involving Adams operations. A more precise statement can be obtained by taking
the degrees of the P(vq)-module generators into account.

Likewise we get that the cofiber of the transfer map K(Z,) — K(¢,), which
most likely is K (L, ), has V(1)-homotopy a free P(v3)-module on 4p+4 generators,
where we estimate

p’—1 oo

dp+4=">"> dimg, H*(Gal(L,/Ly;Fy(i)),

=1 n=0

and K (L,) is constructed from 4p + 4 copies of BP(2),, up to extensions involving
BP(2),-operations. Again a more precise statement can be obtained by taking the
degrees of the P(v3)-module generators into account.

Moral. Algebraic K-theory of topological K-theory is a form of elliptic cohomology.

These calculations generalize to determine V(n),K(BP(n),) if BP(n), exists
as a commutative S-algebra and V' (n) exists as a ring spectrum, in which case the
result is of pure fp-type n + 1. Hence we are led to the following:

Chromatic red-shift problem. Let E be an S-algebra of pure fp-type n. Does
TC(E;p) have pure fp-type n+1 7

So far this is known to be correct for &' = Hk with £ a finite extension of I, for
E = HA with A the valuation ring of a finite extension of Q,,, and for £ = ¢,. One
might also consider £ = S as a limiting case, of infinite fp-type. Then T'C(S;p)
contains S ~ THH(S) as a retract, so in this case the fp-type of the result is
o0+ 1 = oo.
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