ON THE co-TOPOS SEMANTICS OF HOMOTOPY TYPE THEORY

EMILY RIEHL

AsstrACT. Many introductions to homotopy type theory and the univalence axiom neglect to explain what any of
it means, glossing over the semantics of this new formal system in traditional set-based foundations. This series
of talks will attempt to survey the state of the art, first presenting Voevodsky’s simplicial model of univalent
foundations and then touring Shulman’s vast generalization, which provides an interpretation of homotopy type
theory with strict univalent universes in any co-topos. As we will explain, this achievement was the product of a
community effort to abstract and streamline the original arguments as well as develop new lines of reasoning.
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Lecture I: A categorical semantics of dependent type theory
1. INTRODUCTION

1.1. Why simplicial sets might model homotopy type theory. For any Kan complex A, there is a natural
path space factorization of the diagonal map defined by exponentiation with the simplicial interval

(0,84

AP+ A° s s AT >y A° s ALy AN AxA

In particular, the left map, the inclusion of constant paths, is a trivial cofibration in Quillen’s model struc-
ture, and as such has the right lifting property with respect to an arbitrary Kan fibration:
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In particular, by pulling back along the codomain b it suffices to consider right lifting problems against
Kan fibrations over the path space AN, as displayed in the left-hand square of the rectangle above-right.
This is the semantic interpretation of the homotopy type theoretic principle of path induction: given a
type family x : A,y : A,p : x =4 v + P(x,y,p) and a family of terms a : A + d(a) : P(a,a,r,) over the constant
paths, there exists a section

XAy Apix=429F]i(xv,p): P(x,9,p)

such thata: A+ J;(a,a,1,) =d(a): P(a,a,r,).

The homotopy type theoretic principle of path induction is stronger than this, because A might be a
dependent type I' - A in an arbitrary context I'. But we can perform an analogous construction starting from
an arbitrary Kan fibration p: I'A - I between Kan complexes. First form the path space factorizations for
bothT.Aand T

\ N . R
L ot (A —» TAXT.A

(1.1.1) a #

r _ ~ y TA $ TxT

and then pull back the top factorization so that it lies in the slice over I'. This constructs a factorization
of the fibered diagonal, in the slice over I', using the cotensor with the simplicial interval in the slice over
I'. Once more the inclusion of constant paths is a trivial fibration so we have a lifting property exactly as
above. Moreover, since pullback is a simplicially enriched right adjoint, this construction is stable under
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pullback along any f: A — I' between Kan complexes.

1.2. Martin-L6f’s Dependent Type Theory. Here we use “homotopy type theory” and “univalent founda-
tions” as synonyms for Martin-L6f’s dependent type theory, with intensional identity types, together with
Voevodsky’s univalence axiom.

This type theory has four basic judgment forms:

T'rA F'ta:A I'+A=B T'ra=b:A

asserting that A is a type, a is a term of type A, and that A and B or a and b are judgmentally equal types
or terms, all in context I'. Here I' is shorthand for an arbitrary context, given by a sequence of variables of
previously-defined types. Some types will be defined in the empty-context

‘KN
Such types then form contexts of length one [#: N]. A type that is defined in a context of length one
n:NrR"

can then be used to extend the context to a context of length two [#n: N,v : R"]. Types definable using any
subset of the previously-defined variables

n:N,v:R"+ T,R"
may then extend the context further [n: N,v: R",¢: T,R"]. Fully elaborated, the first two judgments take
the form
Xt ALK, P AL(Xy), Xy Ay (X, X mg ) F B(Xy,. 0, Xy)
Xt ALK, AL (X)X A (X Xy ) F O(X g, ) B(Xg,. .0, X5)
We may think of such judgments as functions that take as input a sequence of typed variables and produce
either a type or a term as output.

The structural rules of dependent type theory govern the variables and the judgmental equality rela-
tions. For instance, the substitution rule takes the form

T'ta:A OLx: A AT
I,Ala/x]v Jla/x]

where J can be the conclusion of any of the four judgment forms. This says that given any term a : A
defined in context I' and any judgment whose context involves a variable x : A, there is a corresponding
judgment that no longer involves a variable x : A but instead substitutes the term a for x whenever that
variable occurred.

The variable rule asserts the existence of projection functions

Ix:A Arx: A

that take any variable occurring in a context and providing it as a term of the corresponding type.
This base type theory then inherits a richer structure on account of various additional logical rules that
can be used to form new types. These are called “logical rules” because the types themselves are used to
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encode mathematical statements, which are “grammatically correct” but are not necessarily provable or
true. Such statements are then proven by constructing a term of the corresponding type.

For instance, given a context I',x : A + B(x) there is a dependent pair type and a dependent function
type which in this case have the same formation rules:

[,x: A+ B(x) [,x:Ar B(x)
['+X,.4B(x) I'+T1,.4B(x)
These types are distinguished by their introduction rules, which provide terms:
I,x:AFr B(x) I[,x:Ar B(x) [,x:Arb(x): B(x)
[,x:Ab(x):B(x)F (x,b(x)): £,.4B(x) 'k Ax.b(x): T1,.4B(x)

The elimination rules explain how generic terms z : ¥,.4B(x) and f : I1,.4B(x) can be used, while the
computation rules describe the composites of the functions encoded by the introduction and elimination
rules.

1.3. Identity types. Of the various logical rules that animate dependent type theory, Martin-L6f’s rules for
identity types are of paramount importance.
The formation rule

Ix:Ay:Arx=47
says that it is meaningful to inquire whether two terms belonging to a common type may be identifiable.
The introduction rule

Fa:Avrefl,:a=4a
guarantees that any term is automatically identifiable with itself, via “reflexivity.”

The elimination rule provides a version of Leibniz’ indiscernability of identicals:
Ix:Ay:Ap:x=49FP(x,,p) I,a:Avrd(a): P(a,a,refl,)
Ix:Av:Ap:x=4vF]Js(x,v,p): P(x,v,p)

Here P can be be thought of as a predicate involving two terms of the same type and an identification
between them, though the power of this rule derives from its applicability to arbitrary type families, not

only the mere propositions. See [Ho, Ri] for a survey of its myriad consequences.
Finally, the computation rule

Ix:Av:Ap:x=4vFP(x,9,p) I,a:Avrd(a): P(a,a,refl,)
[,a:Av ] (a,arefl)=d(a): P(a,a,refl,)

is analogous to the computation rule for a recursively defined function.

Digression 1.3.1 (extensionality vs intensionality). By the structural rules for judgmental equality, if
[x:Ay:Arx=y:A
then
[x:Ayp:Arrefl,:x=479
Thus judgmentally equal terms are always identifiable.
The extensional form of Martin-Lo6f’s identity types adds a converse implication:
[x:Ay:Ap:ix=49Fx=y:A

while the intensional form of Martin-L6f’s identity types does not add this implication.

While the identity types in homotopy type theory are intensional, the early models of Martin-Lof’s iden-
tity types were extensional. The first intensional model was given by Hofmann and Streicher in the category
of groupoids [HS2], a breakthrough that marked a key step on the way to the development of homotopy
type theory.

We now explain what it means for a category to model type theory.
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2. A CATEGORICAL SEMANTICS OF DEPENDENT TYPE THEORY

2.1. The category of contexts. To interpret syntactic expressions in type theory as data in a category we
must first build a category out of type theoretic syntax. A standard way to do this involves Cartmell’s
contextual categories [Ca].

Definition 2.1.1. Let T be a type theory with the standard structural rules: variable, substitution, weaken-
ing, and the usual rules concerning judgmental equality of types and terms. Then the category of contexts
C(T) is a category in which:

e objects are contexts [x; : A;,...,x, : A, ] of arbitrary finite length up to definitional equality and renaming
of free variables;

e maps of C(T) are context morphisms or substitutions, considered up to definitional equality and re-
naming of variables: a map

(2.1.2) f=U-ofuli VBV Byl =[xt Ay xy 0 Ay

is an equivalence class of term judgments
VB,V By it AL

: F :

VB v Bk i Au(free fue)
e composition is given by substitution and the identity is defined by using variables as terms.
The category of contexts has the following additional structures:

e C(T) has a terminal object corresponding to the empty context.
e The objects are partitioned according to the length of the context

ob(C(T) = Ll ob,C(T)
n:N
with the empty context being the only object of length o.
e Each object of positive length has a display map
[, Xp]: [X i Are s Xpgr A | 2 [0 AL X 0 AL
namely the canonical projection away from the final type in the context. Writing I' for the codomain
context, we abbreviate this display map as
PA,.. ¢ LAy, »T

and refer the domain of any display map over I' as a context extension of I'. We refer to composites

rAB PsraA Py or rA —Psr

of display maps as dependent projections.
e For each substitution (2.1.2) and any context extension of its codomain, there is a canonical pullback
defined by the context

[})1 By Y B Vet P A (fl(}j))l1,fn(}7)))]

together with a canonical pullback square

Afa -y

pf*Al/ - lPA
A f) r

Moreover, these canonical pullbacks are strictly stable under substitution. Given any context morphism
§:0>A0¢fA=0.(f -g)'Aand g7 -q = qf.¢; similarly I.1"A =T.A.

Remark 2.1.3. AtermI' Fa:Ainatype A in context I is given by a section to the display map p4: LA = T.
Thus, the phrase “section” is typically reserved to mean section of a display map.
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2.2. Homotopy theoretic models of identity types. The title of this section alludes to a famous paper of
[AW] that described the homotopical semantics of identity types, but we instead focus on a result of Gam-
bino and Garner inspired by it, constructing what they call the identity type weak factorization system
on the category of contexts.

Theorem 2.2.1 ([GG]). Let T be a dependent type theory with intensional identity types. Then the category of
contexts C(T) admits a weak factorization system whose left class is comprised of those maps that lift against the
display maps.

In the proof, Gambino and Garner construct the factorization of an arbitrary context morphism, but the
main idea is illustrated effectively by the simplest non-trivial case: factoring the identity map on a context
[x:A]of length 1 as

[a:A] [a:A]
(x:Ay:Ap:x=47]
The right factor is isomorphic in the category of contexts to a composite of display maps and hence belongs
to the right class. To see that the left factor is in the left class, we must show it has the left lifting property
with respect to an arbitrary display map pg: ®.E — E. By pulling back along the codomain of the lifting
problem, we may assume that the codomain of this display map is the context [x : A,y : A,p : x =4 V]
presenting us with a lifting problem of the form below:

[x,9,p.d(a)]
[a:A] L SN [x:A,y;A,p:x:A v,2:P(x,p,p)]
a,arefl, ’/,,—”/
farel] e g dae ) Iz
[x:Ay:Apix=4y] —=———= [x: A V:Ap:x=47]

By the elimination rule for identity types, we can use the data provided by the lifting problem to define the
term

XAV Apix=429F]i(xv,p): P(x,9,p)
required to define a section of the display map associated to the type family
x:AY:Ap:x=avFP(x,vp).
The top triangle commutes by the computation rule.

Remark 2.2.2. Unusually, this factorization is not functorial. Given a commutative rectangle involving the
identity functions between three contexts of length one:

[a:A] = [b:B] — [c: C]

[a:A] =5 [b:B] — [c: C]

functoriality would demand that the induced substitutions between identity types commute. But as the
maps induced by f, g, and f - g are defined by path induction (i.e., by the elimination rule of identity types)
they only commute up to pointwise identification, not up to judgmental equality.

However, as these structures on the category of contexts are defined using the rules of type theory,
they are strictly stable under substitution. The central components of the identity type weak factorization
system equip the contextual category C(T) with what is called an “identity-type structure.”

Definition 2.2.3. An identity type structure on a contextual category consists of:
e for each object I'.A, an object I'A.A.Id 4 extending the context defined by the canonical pullback:

r.AA —>T.A
-
rA——T
6



e for eachI''A, a morphism
I.A.AlId,

refly 1 \LpIdA

-
-

T.A ﬁ T.AA

lifting the fibered diagonal; and
e for eachI'A.A.Id4.P and solid-arrow commutative diagram

TA—% S T.AAId,P

-
reﬂAl Prag lPP
7]

l'A.Aldy =—=—=T.A.Aldy

a section J of pp so that ] -refl, =d
so that all this structure is strictly stable under pullback along any substitution f: A —T.

2.3. Initiality. A contextual functor is a functor between contextual categories preserving all of the struc-
ture on the nose. In particular, if the contextual categories have additional logical structure, such as the
identity type structure just defined, or the corresponding structures for X- or I'l-types, then the contextual
functor must preserve this as well, up to equality.

The category of contexts is intended to be the universal contextual category built from a type theory in
the sense made precise by the following conjecture:

Conjecture 2.3.1 (initiality conjecture). Let T be a type theory given by the standard structural rules together
with some collection of the logical rules alluded to above. Then the category of contexts C(T) is the initial contextual
category with the corresponding extra structure.

Then further models of T in a category £ can be defined by turning £ into a contextual category with
the appropriate logical structure: by initiality, this would induce a unique functor C(T) — £ providing an
interpretation of the syntax of type theory in the category £.

The difficulties with the initiality conjecture are multifaceted. On the one hand:

The trouble with syntax is that it is very tricky to handle rigorously. Any full presentation

must account for (among other complications) variable binding, capture-free substitution,

and the possibility of multiple derivations of a judgment; and so any careful construction

of an interpretation must deal with all of these, at the same time as tackling the details of

the particular model in question. Contextual categories, by contrast, are a purely algebraic

notion, with no such subtleties. [KL, 2075].
Another challenge is that there are many versions of type theory, determined by various collections of
rules. Moreover, it’s difficult to give a precise definition of what constitutes a type theory that is sufficiently
general to cover all of the desired examples. An early version of initiality was proven for a type theory called
the calculus of constructions by Streicher [Str1]. This has often been cited as evidence that initiality should
be true for a much broader class of type theories, but at the time the simplicial “model” of homotopy type
theory was being developed, Voevodsky argued that it was unacceptably un-rigorous to assume initiality
without proof.

Since [KL] was written, there was have been efforts to at least prove initiality for the “Book-HoTT”
version of homotopy type theory appearing in [Ho|. This was achieved in a 2020 PhD thesis of Menno
de Boer [dB] based on parallel formalization efforts undertaken by Brunerie and de Boer in Agda and
Lumsdaine and Mortberg in Coq.

Alternatively, the question of what constitutes a type theory can be answered in such a way as to render
initiality automatic. Many practitioners equate type theories with their corresponding suitably structured
categories, whether these be contextual categories, or comprehension categories, or categories with families,
or natural models or something else. Each of these notions defines an essentially algebraic theory and thus
the category of all such admits an initial object. From that point of view, the only question is whether a
particular syntax presents the initial object, and this may be viewed as a practical consideration more so
than a theoretic one as the utility of a particular syntactic presentation derives from its use in proofs.
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2.4. Contextual categories from universes. Even assuming initiality, it seems daunting to construct a
model of type theory in a category &, for one must still define a contextual category with suitable structures
for all the type forming operations. By analyzing the type-forming operations, one can predict what sort of
category might be suitable. For instance, a I1-type structure on a contextual category requires an operation
that takes a composable pair of display maps as below-left to a display map as below-right:
PriyB
TAB —2srA -7 o II,B —5T

This, together with the fact that contextual categories must admit pullbacks of display maps, suggests that
it would be reasonable to restrict to categories £ that are locally cartesian closed, meaning that for any
f: A —T the composition functor has two right adjoints

Ly
P
(2.4.1) En —F— &
~_L
Iy

defined by pullback along f and pushforward along f, respectively. Note when £ has a terminal object
1—as is required to model the empty context—this implies that £ = £,; and indeed any slice &1 is cartesian
closed and has all finite limits.

Note, however, that the definition of a contextual category, implicitly given in Definition 2.1.1, requires
strict stability of the canonical pullback squares. In addition, each logical structure, such as the identity
type structure of Definition 2.2.3, requires the pullbacks to preserve everything on the nose, up to equality
of objects. Thus, the more categorically-natural requirement, that pullbacks preserve the various logical
structures up to isomorphism, is not enough.

This leads to a massive coherence problem. It’s not generally possible to choose strictly functorial pull-
backs in a category with pullbacks, though it is possible to replace a category with pullbacks by an equiv-
alent category with strictly functorial pullbacks." But even after this is achieved, there remains the task of
ensuring strict stability of all the logical structures.

Voevodsky’s approach to the coherence problem makes use of a “universe” in a category, defined as
follows:

Definition 2.4.2. A universe in a category & consists of an object U, together with a morphism 7w: U — U,
and, for each map A: I' - U, a choice of pullback square

([;A) —25 T

J
PA\L T

——U

Given a sequence of maps A: I' - U, B: (I;A) — U, we write (I'; A, B) for ((I'; A); B).

Construction 2.4.3 ([V1]). Given a category £ with a universe U and a terminal object 1, define a contextual
category &y as follows:
e The objects of £y are finite lists of morphisms as follows:
ob, &y ={(A,...,A,) € (moré)" | A;: (1;A,,...,A;_,) > U, Vil
e The morphisms between a pair of objects are defined by

Eu((Byy s Bo) (Ayyee s Ay)) = E((1;Bre.. By, (1A, ..., A)).

e The terminal object is the empty sequence of morphisms.

IThis can be achieved by applying the general techniques for replacing a fibration by a split fibration to the codomain-projection
fibration cod: £2 — &; see mathoverflow.net/questions/144619/can-we-always-make-a-strictly-functorial-choice-of-pullbacks-re-
indexing for a discussion.
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e For any object (A,,...,A, ) of positive length, its display map is provided by the universe structure:

(1;AL,...,A,,) — U

(2.4.4) pA,ml - lﬂ

(1;A1,...,An) A—) U

n+1

e Finally the canonical pullback associated to a morphism f: (B,,...,B,;) = (A,...,A,) and a display map
(2.4.4) is defined by factoring the chosen pullback square for the composite A, - f through the pullback
that defines the context extension (A,,..., A, ;)

(GBy, o By Ay - f) —— (GA, LA Ayyy) —

- .
Pf*AnHl pAnﬂl

(1;B1,...,Bm) f} (1;A1,...,An) T)

Q<T:l

Indeed every small contextual category arises this way:

Proposition 2.4.5 ([V1]). Let C be a small contextual category. Consider the universe U in the presheaf category
[C°P, Set] given by

UT) = {l.A} U(T) = {sections s : T — I'.A}
with the evident projection map and any choice of pullbacks. Then [C°P,Set]y is isomorphic, as a contextual
category, to C.

When the original category £ is locally cartesian closed, it is possible to specify additional structure on
the universe U that would equip the contextual category £y with the corresponding logical structure. The
idea is that this introduces the desired structure in the universal case. To describe an identity structure on
a universe, we require the following notion.

Digression 2.4.6. Recall that for mapsi: A— Band f: X — Y in &, a lifting operation witnessing a lifting
property as below-left is a section to the map below-right:

4—X (=i.f=)
’ i f
ll A lf E(B,X) —— E(A,X)xgay)E(B,Y)
B——Y
If £ is cartesian closed, an internal lifting operation is a section to the map
xB ) XAy v

We may obtain an analogous structure on the contextual category Cyy built from a universe t: U — U
as follows. Firstly, note that since all display maps are pullbacks of 7 it suffices to consider orthogonality
against 7t in the slice over U.

Definition 2.4.7. An identity structure on a universe 7t: U — U consists of a map
d: Uxy U—>U
together with a specified lift r: U — Id*U of the relative diagonal:

together with an internal lifting operation ] for r against = x U in &,y;.

Theorem 2.4.8 ([V2]). An identity structure on a universe U in & induces an identity type structure on the
contextual category Ey.



Proof. An identity structure on U defines a factorization of the fibered diagonal : U — U, which pulls
back to define the factorization required by an identity type structure on £y:

Internal homs in a locally cartesian closed category are stable under pullback: given f: A — I' and

A XEe€ g/r,
fmapr(A, X) =mapy (f*A, fX).

Consequently, an internal lifting operation in a slice pulls back to an define internal lifting operation be-
tween the pullbacks of the original maps. For any morphism A: I' — U in &, the map refly: (I;A) —
(I;A,A,1dy) is defined to be the pullback of r € €5 along A: I’ — U, while mx U € &,y pulls back to the
map 7 xI' € &, which is the “generic display map” in the slice over I'. The internal lifting operation be-
tween r and © x U in &,y then defines an internal lifting operation between refl4 and 7w xI' in &1, which in
particular specifies a solution to any lifting problem in £ of the form below-left and hence also below-center
and below-right:

(T;A) —§ UxT (T[;A) —— UxT ﬁ 0 (T; A) — (T;A,A,1dy,P) — U
reﬂAl /,// lnxl" rEﬂAl nxrl e reﬂA ’//,>r lpp B e
A'PA" Id

When interpreted in the contextual category &£y, this right—hand lift provides specified solutions to the
lifting problems in Definition 2.2.3. The construction of this lift, as the pullback of a universal specified
lift to a map between objects defined as strict pullbacks in the contextual category £y, this data is strictly
stable under substitution as required. O

Of course, it remains to construct a suitable universe in our locally cartesian closed category. In part II,
we’ll explain how this is done in the category of simplicial sets, leading to the simplicial model of univalent
foundations.

Lecture II: The simplicial model of univalent foundations
3. A UNIVERSAL FIBRATION

Recall that Voevodsky defined a universe in a category € to be a morphism 7: U — U together with a
chosen pullback along any A: I' — U. In the resulting contextual category, such a map encodes an extension
of the context I' by A with the chosen pullback of 7 defining the corresponding display map.

When € is the category of simplicial sets, the intuitions developed in §1.1 suggest that we would like the
display maps to be Kan fibrations, which we refer to simply as “fibrations” whenever there is no competing
notion in sight. Thus, we would like the universe to be a simplicial set U that classifies fibrations. By the
Yoneda lemma, this suggests that U, should be defined to be the set of fibrations over A", but there are two
problems with this naive construction:

(i) Size: We must restrict to “small” fibrations—whose fibers are k-presentable for some regular cardinal
x—and then ensure that we are taking large sets of all such, rather than proper classes.

(ii) Coherence: The action of the simplicial operators a: A™ — A" by pullback is only functorial up to
isomorphism, not on the nose.



We largely sweep the size issues under the rug—referring to a “set of small fibrations” without delving too
deeply into its construction®—to reserve our attention for the coherence issues, which are quite interesting.

3.1. What do fibrations form? The coherence issues derive from the fact that chosen pullbacks are not
typically strictly functorial but rather pseudofunctorial. Put more precisely, in a category £ with pullbacks,
there is a groupoid-valued pseudofunctor

£P —E GPD
B +— ((‘f/]g)E
T b
A+— (E/A)g

that sends an object B to the groupoid of morphisms with codomain B and acts on arrows by pullback.
The pseudofunctor E is called the core of self-indexing of &, the “self-indexing” being the corresponding
pseudofunctor B+ &5 : E°P — CAT. When & has a pullback stable class of fibrations .#, they similarly
assemble into a pseudofunctor

£ —F— GPD

I

B —— (Fp)
/T s

Ar——— (g/A)

I

defined by restricting to the full subgroupoid (.%,5)~ C (€)= of fibrations over B. For any regular cardinal
«, there are analogous pseudofunctors F* < E* defined by restricting to small fibrations or small maps as
appropriate.

By the bicategorical Yoneda lemma, a small fibration p: E - B defines a pseudonatural transformation

£(~,B) —L F*.
We might imagine that the universal fibration 7: U — U is a representing element, defining a pseudonatural
isomorphism £(B, U) = F*(B). But this can’t be, at least not if £ is very interesting:
e Since £ is a 1-category £(B, U) is a set, while F*(B) := (%)™ is the groupoid of small fibrations over B.

e Even ignoring this, we can see that the same fibration might be classified by multiple maps to U and the
same map might classify multiple fibrations:

E—=5E—1U EE—=3E—1U
L0l L TR
Bi>37>U B=——=B—>U

In a contextual category built from a universe, the display maps arose as specified pullbacks of the
universe: a type in context I' was encoded by the data of a morphism A: I' — U. The corresponding display
map was then the pullback axiomatized by the universe structure

([;A) —25 O

A
FT)U

This guarantees that each display map may be realized as some pullback of 7: U — U but does not imply
that such pullbacks are unique. Thus, we ask the universe to weakly classify the small fibrations, demanding
that the pseudonatural transformation 7t: £(—, U) — F* associated to 7t: U — U is surjective. Actually, we
demand a bit more.

2The original sources [KL] and [S] provide a precise accounting.
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Definition 3.1.1. In a model category £ with all objects cofibrant, a small fibration 7c: U — U is a universal
small fibration if the pseudonatural transformation

: E(-,U) > F*

is a trivial fibration, meaning that for all cofibrations i: A > B in £ any strictly commutative square of
pseudonatural transformations admits a lift:

E(-B) —5— F*

The condition amounts to the following property: given any pair of pullback squares between small
fibrations as below

tm
2

(3.1.2)

there exists an extension k of h along i factoring the back pullback square as a composite of pullbacks.
This has been referred to as strong gluing by Sterling and Angiuli [SA], the stratification property by [Ste,
2.3.3], and acyclicity by Shulman [S1, S].

Remark 3.1.3. As our terminology suggests, a universal fibration weakly classifies fibrations, at least when
all objects are cofibrant. Taking A =0, (3.1.2) implies that any p: E - B is classified by a pullback square
intort: U > U.

We'll explain the further relevance of this property below but first note that we’ve entirely sidestepped
the question of how a fibration classifier might be constructed. It is to that subject that we now turn.

3.2. Hofmann-Streicher universes. There is a general method, due to Hofmann and Streicher [HS1], that
defines a weak classifier for small maps in any presheaf category, which is universal in a sense analogous
to Definition 3.1.1. Rather than introduce general notation for presheaf categories, we work in the category
£ =" of simplicial sets.

Let x be an infinite regular cardinal,3 and write Set, C Set for a full subcategory containing at least
one set of each cardinality A < x and at most x many sets of each cardinality. Write sSet* C sSet for the
category of x-small simplicial sets. By regularity, a map f: A — B of simplicial sets lies in sSet" just when
its base and fibers are x-small.

The goal is to define t: V — V € £ := sSet so that any small map p: E — B arises as a pullback of
7t along some classifying map "p™: B — V. As noted above, it’s insufficient to define V;, to be the set
of x-small maps over A" because the action of a simplicial operators a: A" — A", by pullback, is only

3As the title of their article suggests, Hofmann and Streicher prefer to work with an inaccessible cardinal [HS1], but for the
purposes of obtaining a k-small map classifier it suffices to use a regular cardinal x larger than the cardinality of the morphisms in
the indexing category.



pseudofunctorial. However, under the equivalence of categories*

op

sSet),n = Set, /"
—ay
a*l l,
op
sSetjm = S et/

the pullback action is replaced by precomposition with the composition functor ay: ;) = /[u), which is
strictly functorial. Thus
op
V,, = ob(Set, ")
defines a large simplicial set V € sSet. An element A: A" — V defines a small map 7 : fA — A" whose
fiber over a € (A"),, is the set A, defined by the functor A: ;)[P;] — Set,. This functor also provides
specified pullback squares

JAa — [A

-
TA-a TA

Am = } An

that are strictly functorial in °P.
The simplicial set V is defined by
op

V,, := ob(Set, ")

where the presheaves now take values in small pointed sets. Since the indexing category [, has a terminal
object id[,), an element (A,a): A" — V is equally given by the data of A: A" — V together with a global
section a € Ajg,, or equivalently by a section as below-left.

[A [A "5V
7 4 l
a, [TaA HA\L s

\

An An T) V

Writing 7t: V — V for the evident forgetful functor, we see that any small A: A" — V with fits into a
pullback as above-right where the top map is determined by an arbitrary choice of global section.

Note that even though V is large, the evident forgetful map m: V — V is x-small since this means
that the pullback to any x-small object is x-small. We prove that w: V — V weakly classifies small maps
in £ = " with arbitrary codomain by proving that it has the acyclicity property (3.1.2) with respect to
monomorphisms i: A >> B and small maps over A and B.

Lemma 3.2.1 ([Ci, 3.9],[OP, 8.4]). The Hofmann Streicher universe : V. — V defines a small map classifier:

E(—A) 2= £(-, V)

L A7
10 /// k

E(-,B) —— E¥

4More generally, the slice category over any presheaf X is equivalent to the category of presheaves on the category of elements of
X. In particular, “ ?[}:1]” should be read as an abbreviation for ( /[n])OP, the slice category /[,; being the category of elements of the
simplicial set A”.
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over the x-small maps E* C E in the core of self-indexing. That is, given any pair of pullback squares between

maps with k-small fibers as below
D
a
qh
A h—;

A\ // k

B

where i: A > B is a monomorphism, there exists an extension k of h along i factoring the back pullback square as
a composite of pullbacks.

|

P

/

|
7
e
e
e
E b
4
p

<

Proof. Since presheaf categories are locally cartesian closed, colimits in £ are universal, preserved by pull-
back along any map such as 7c*: £y — &,y. Since any simplicial set, such as B, is expressed canonically as
a colimit of its simplices, this allows us to reduce to the case

D—F7F— V

- 2

J\ ////
. i
a
h

— V

X

q E
p

C
J\l //k
An
where the monomorphism is given by a subcomplex of a simplex. Since E is a small map over A", we know
that there is a classifying map k’: ;)[F;] — Set, , with the property that for each a: [m] — [n] in C, the
restriction k" - a: ?[Pm] — Set, , is naturally isomorphic to h-a: 7[21] — Set, ... Using excluded middle, we

define k: ?[I:l] — Set, ;. by

(h-a)g a:[m]—[n]€Ss
k(a)=1"" (]
k,, a:[m]—>[n]eS
transporting the functorial action in k” along the isomorphism to k. This defines an extension of the classi-
fying square for g to a classifying square for p, as desired. O

4. THE SIMPLICIAL MODEL OF UNIVALENT FOUNDATIONS

The technique of Hofmann-Streicher universes can be used to define a universal Kan fibration, which
is the key ingredient in the simplicial model of univalent foundations. This is not the approach taken to
defining the universe in [KL] but was quickly noted as alternative possible route; see [Ci] or [Str2].

4.1. A universal Kan fibration. The Hofmann-Streicher universe
op

Vv, := ob(Set, ") V, = ob(Set, /™)
may be restricted to define the universal Kan fibration by specifying
[A

op
U, := {A c ob(SetK/[n]) nAl is a Kan ﬁbration},

An

14



and by defining 7: U — U to be the pullback

—

.

v
(4.1.1) ;
1%

co

—

Crucially, the Kan fibrations of simplicial sets are local: a map p: E - B is a Kan fibration if and only
if for all n and all b: A" — B, the pullback defines a Kan fibration. This follows from the fact that the
fibrations are characterized by a right lifting property against maps with representable codomains:

Al — o ——E

//\( -
[ L)
I

A”—A”—h>B

Consequently:
Corollary 4.1.2. 7w: U - U is a Kan fibration.

Proof. By construction, each pullback

t

> =
=
L
]

& e

is a Kan fibration. O

Another reflection of this locality is the following:

Lemma 4.1.3. Let p: E — B be a small map and consider any classifying square

t

4

S

Then p is a Kan fibration if and only if the classifying square factors through (4.1.1).

Proof. If p is a pullback of 7t: U —» U it is clearly a Kan fibration. Conversely, if p is a Kan fibration then so
is its restriction along any b: A" — B. Recall U is defined as a simplicial subset of V,so "p™: B— V factors
through U <> V just when each for each b: A" — B the corresponding map "p™-b: A" — V so factors.
But since a Kan fibration pulls back to Kan fibrations, this means the corresponding elements are in the
simplicial subset. O

Put more abstractly, locality provides a pullback square

E(-U) —— &(-V)
| I
Ffe—— E"
in the category of groupoid-valued pseudofunctors and pseudonatural transformations between them.

Thus the acyclicity condition of Definition 3.1.1 follows from the corresponding result for Hofmann-
Streicher universes

Corollary 4.1.4. The Kan fibration 7t: U — U is a universal x-small Kan fibration.
15



Proof. For any lifting problem as presented by the left-hand square, the dashed lift exists by Lemma 3.2.1.

E(—A) —) E(- ‘—> E(-V)
io l /\L TC
E(- B) L FF > EX
On account of the pullback established by Lemma 4.1.3, this induces the required dotted lift. O

Since the cofibrations in the category of simplicial sets are the monomorphisms, all simplicial sets are
cofibrant. Thus taking A = () we see that:

Corollary 4.1.5. Any Kan fibration p: E - B with small fibers is classified by a pullback square

T

4

O

=

R

4.2. Fibrancy of the universe. In the simplicial model of univalent foundations, types are meant to corre-
spond to Kan complexes. One use of the acyclicity property is in proving that U is a Kan complex. Recall
that Kan complexes of simplicial sets are characterized by right lifting against the acyclic cofibrations,
monomorphisms that also define weak homotopy equivalences

A—lsuy
.I /X
il -

B
If the universe U strictly classified small fibrations, this would unravel to the following:

Definition 4.2.1. A model category £ satisfy the fibration extension property if for all small fibrations
q: D - A and all trivial cofibrations j: A>> B, there exists a small fibration p: E - B that pulls back along

jtog.

D--—-3E

o :p
f ¥
A= B

Note that Definition 4.2.1 makes no reference to a particular universe U. Nevertheless, when 7: U—>»U
is a universal fibration, satisfying the acyclicity property (3.1.2), the fibration extension property encodes
the fibrancy of U.

Lemma 4.2.2. Suppose 7t: U — U is a universal fibration in a model category E. Then U is fibrant if and only if
€ satisfies the fibration extension property.

Proof. Suppose € satisfies the fibration extension property and consider a lifting problem:

Ay
.I /X

2 -
]/,k
B

Define a small fibration q: D - A by pulling back 7t along h. Then use the fibration extension property
to extend this to a small fibration p: E —- B that pulls back along j to q. By acyclicity property, it follows
that the classifying map h extends along j to a classifying map k for p so that k- j = h, solving the lifting
problem. This proves that the fibration extension property implies fibrancy of the universe.

16



Conversely, if U is fibrant and we are given a small fibration q: D - A, we may use Corollary 4.1.5 to
choose a classifying pullback square. In particular, this choice defines a classifying map and thus a lifting
problem

A—1sy

. /b(
]Iz ////'_p_l
B

which admits a solution. The pullback of 7 along this map, displayed below-right, defines a small fibration
over B. The pullback square for g factors through the one for p defining the desired extension square:

Thus, to show that U is a Kan complex, we need only verify the fibration extension property in the
category of simplicial sets. Since the Kan complexes are detected by right lifting against the simplicial
horn inclusions A} >> A", it suffices to consider extensions of fibrations along such maps, as the proof just
given reveals.

Theorem 4.2.3. The category of simplicial sets satisfies the fibration extension property.

Proof. By Lemma 4.2.2, it suffices to extend a Kan fibration over a horn A} to a Kan fibration over the
simplex A” in such a way that the latter pulls back to the former. To do so, we use a result of Quillen [Q2]
to factor g: E - A} as a trivial fibration followed by a minimal fibration. Since the base of the minimal
fibration is contractible, it is isomorphic to a projection map F x A} — Ay} for some Kan complex F and thus
extends as displayed:

E»--3--5 E
L
FxA) ~—=— FxA"
L
A} s A

Thus it remains only to extend the trivial fibration, but this can be achieved defining E’ =» F x A" to be the
pushforward of E =» F x A/ along the monomorphism F x A} >» F x A". Since monomorphisms are stable
under pullback, the trivial fibrations are stable under pushforward. Finally, if a map is post-composed
with a monomorphism and then pulled back along that monomorphism, the result is isomorphic to the
map we started with; thus, taking right adjoints, the pushforward along a monomorphism pulls back along
that monomorphism to a map isomorphic to the one we started with, which identifies E as the pullback of
E. O

4.3. Internal universes. By Construction 2.4.3 a universe U in £ gives rise to a contextual category &,y.
An internal universe structure on U will provide a universe, in the sense of Definition 2.4.2, inside the
category &/yy.

Definition 4.3.1. An internal universe in U consists of arrows u,: 1 — U and i: U, — U where U, is
defined by the canonical pullback



Note that the map u, defines an object (1;u,) € £y in the contextual category built from the universe U.
At the same time, the canonical pullback along the map i: U, — U in £ defines a square

U, — U

w0

Uy — U

via which the universe U induces a universe structure on U, as an object in £&. Thus, we say that the
internal universe U, is closed under identity types if it carries an identity structure, as in Definition 2.4.7,
commuting with i.

Theorem 2.4.8 proves that an identity structure on U induces an identity type structure on £;;. Moreover:

Theorem 4.3.2 ([V2]). Suppose € has a universe U with an identity structure and an internal universe U, in U
closed under identity types. Then E; has an identity type structure as well as a universe a la Tarski that is closed
under identity types.

In the category of simplicial sets, we constructed a universal x-small fibration 7,.: U, — U, for any
regular cardinal k. Now suppose « is an inaccessible cardinal and A < « is also inaccessible. Since A <k, U,
is itself x-small and so is representable as a pullback along some u,: 1 — U, in the category of simplicial
sets

U, — UK
]
PA\L lﬂx
1 T) UK

By construction of these universes, there is a natural inclusion i: U, — U,. In summary:

Theorem 4.3.3 ([KL, 2.3.4]). The universe U, carries an identity type structure, while U, give an internal
universe that is closed under identity types.

As discussed in [KL, 2.3.4], the universe U, also bears structure corresponding to the other logical rules
and U, is closed under the corresponding logical structure.

4.4. Univalence. We now explain the interpretation of the univalence axiom in a model category &, for
instance the model category of simplicial sets that presents the co-topos of spaces. Our exposition follows
[S1], which explains univalence as follows:

The univalence axiom, when interpreted in a model category, is a statement about a “uni-
verse object” U, which is fibrant and comes equipped with a fibration 7t: U — U that is
generic, in the sense that any fibration with “small fibers” is a pullback of 7. ...In ho-
motopy theory, it would be natural to ask for the stronger property that U is a classifying
space for small fibrations, i.e. that homotopy classes of maps A — U are in bijection with
(rather than merely surjecting onto) equivalence classes of small fibrations over A. The
univalence axiom is a further strengthening of this: it says that the path space of U is
equivalent to the “universal space of equivalences” between fibers of 7t ...In particular,
therefore, if two pullbacks of 7 are equivalent, then their classifying maps are homotopic.
[S1, 84]
The univalence axiom concerns the object Eq(U) -» U x U of equivalences defined for the universal
fibration 7t: U — U. The idea is that a generalized element

Eq(D)

1
Tel .
7
7
e
7

B—— UxU
("p:N"p27)

should represent a fibered equivalence €: E; ~ E, between the fibrations over B classified by these maps.
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We explain how to construct the simplicial set Eq(U) via a construction that makes sense in any simpli-
cially locally cartesian closed, simplicial model category £ that is right proper and whose cofibrations are
the monomorphisms. Recall from (2.4.1), that any morphism f in a locally cartesian closed category gives
rise to an adjoint triple ¢ + f* + Il; defined respectively by composition, pullback, and pushforward.
Since the cofibrations are the monomorphisms, pushforward along any map preserves trivial fibrations.
Since the model category is right proper, pushforward along a fibration also preserves fibrations. Since
the model category is simplicial, we may form the fibered path space factorization (1.1.1) of any fibration
p: E - B between fibrant objects through the fibered path space PzE defined by the pullback:

E» ~ s EA" 3 ExE

(4.4.1) p

ol ~ s B\ — BxB

As noted above, this construction has the following properties:

Proposition 4.4.2. For any fibration between fibrant objects p: E — B, the natural maps

E sty PgE Y ExyE

give a factorization of the fibered diagonal map (1,1): E — E xg E over B as a trivial cofibration followed by a
fibration, and this is construction is weakly stable over B, meaning that the pullback along any f: A — B is again
such a factorization.

Proof. Since € is a simplicial model category and p: E - B is a fibration between fibrant objects, the maps
depicted as fibrations in (4.4.1) are all fibrations. The map r is a monomorphism, since it is the left factor of
a monomorphism, and is a weak equivalence by the 2-of-3 property and right properness. For the pullback
stability of this construction, it’s helpful to note that PgzE = A" (g E is the simplicial cotensor of p: E -» B
by A" in the slice £3. Simplicial cartesian closure demands that the adjunctions (2.4.1) are simplicially
enriched, and in particular that the right adjoint f*: £, — £,4 preserves these simplicial cotensors. g

Digression 4.4.3. In homotopy type theory, the object of equivalences between types in the universe I/ is

Eq(d) := XA Buxu> f:.4—-pisSEquiv(f)

where

isEquiv(f) := Xy.gisContr(P f,)
where

isContr(C) := X.cIl.cc=c x
and

Pfy=Xgafa=pb
is the homotopy fiber of f over b.

A fibration p: E - Bis a weak equivalence if and only if it is a trivial fibration. Between cofibrant objects
this is the case if and only if it admits a section s: B — E together with a homotopy y: sp ~ 1 over B. Such
data in particular chooses a center of contraction s(b) € E, in the fiber over each b: 1 — B and also provides
a contracting homotopy, proving the contractibility of the fibers of p.
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The data of such a homotopy is encoded by a dashed lift

Since the map (sp,1g) is a pullback of s along 7, this lift is equally encoded by a lift of s: B — E along
T, PgE - E. And thus a section of the composite ¥,I1; PsE — B provides the data of both the section s
and the homotopy y. Thus we define

isContrg(E) := X,I1, PRE € &p,

which is the B-indexed object internalizing the assertion that for each b € B, the fiber E, is contractible. By
construction:

Lemma 4.4.4. A fibration p: E - B between fibrant objects is a trivial fibration if and only if isContrg(E) - B
has a section. O

Now amap f: E, — E, over Bis a weak equivalence if and only if its replacement by a weakly equivalent
fibration over E, is a trivial fibration. This replacement is the map p: P, f - E, defined by the pullback of
the fibered path space of E, over B in the following diagram.

Note by construction, the map q: Pgf = E, is a trivial fibration, and thus its section e: E; > Pgf is a
trivial cofibration.

By Lemma 4.4.4, the map p: Pgf — E, is a trivial fibration if and only if isContrg (Pgf) - E, has a
section, or equivalently if and only if the pushforward along p,: E, - B has a section over B. Thus we
define

isEquivp(f) =11, isContrg, (Pf) € &3
By construction:

Lemma 4.4.5. A map f: E, — E, between fibrations over a fibrant object B is a weak equivalence if and only if
isEquivg(f) - B has a section. O

Finally the slice category £, has an internal hom mapg(E,,E,). The counit €: mapg(E,,E,) xg E;, = E,
pulls back to define a map

u: mapp(E,, E;) xg E; — mapg(E,, E,) Xg E,
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over mapg(E,, E,). The map p is the “universal map from E, to E, over B” in the sense that the fiber of p
over an element f: X — mapg(E,,E,) over b: X — Bisamap f;: b"E;, — b"E, between the fibers over b.

B'Ey oo > mapg(E,, E,) X

v’
! (

A —

b
Thus we define
Equivg(E;, E,) = EmapB(El,Ez)iSEquiVmapB(El,Ez)(I’l) € &p

so that a section provides a map E; — E, over B that is an equivalence. More generally:

Lemma 4.4.6. Given fibrations p,: E; - Band p,: E, > B between fibrant objects over B, any lift of b: X — B
to Equivg(E,, E,) provides a map b*E, — b*E, over X that is an equivalence. ]

Finally, given a universe 7: U — U define

Eq(U) = Equivyyy (U, 15 U) € Euxu-
By construction:

Lemma 4.4.7. Given a fibrant object B and a map ("E,","E,"): B — U x U classifying fibrations p,: E;, > B
and p,: E, > B over B, a lift to Eq(U) provides an equzvalence E, ~E, over B.

Eq(0)

1
Tel
7
7
e
7

—— UxU

(I'p '\l‘ 'I

Proof. By Lemma 4.4.6, a lift of ("p,™,"p,7): B — U x U to Eq(U) provides map from ("p, 7, p, )’} U

Tp, U =E, to("p,","p, "), U ="p,™U = E, over B that is an equivalence. O

In particular, there is a lift

Eq(D)

id T i

U——UxU
(1,1)

classifying the identity equivalence U = U over U. We may now state the model categorical version of
Voevodksy’s univalence axiom.

Definition 4.4.8. The fibration w: U — U is univalent if the comparison map defined by any solution to
the lifting problem

U —9 5 Eq(D)

P
refl [t id-to-equiv l

U s UxU

from the path object to the object of equivalences is an equivalence.
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By the 2-of-3 property, id-to-equiv: UA - Eq(0) is a weak equivalence if and only if id: U — Eq(U) is
a weak equivalence, which is the case if and only if either projection Eq(U) — U is a trivial fibration:
v Eq(
P>

/\(
—)U

m<—<:>

As with the fibrancy of the universe, this can be expressed as a property of the model category £ that does
not refer explicitly to the universal Kan fibration 7t: U —» U.

Definition 4.4.9. The equivalence extension property states that given a cofibraton i: A »» B, an equiva-
lence w: E; = E, of small fibrations over A and a fibration D, over B that pulls back along i to E,, there
exists a small fibration D, over B and an equivalence v: D, — D, over B that pulls back along i to the
equivalence w.

N \\\\N\\‘U\)L
\
%4 ¥ ¥

As with Lemma 4.2.2, there is a slightly delicate argument necessary to prove that the equivalence ex-
tension property implies univalence of the fibration 7: U — U as stated in Definition 4.4.8. Suppose the
equivalence extension property holds and consider a commutative square

ls

Eq(U
P1

/\(

m<—<:>

—)U

By the equivalence extension property, w: E, =~ E, extends to an equivalence v: D, ~ D, between fibrations
over B. By the acyclicity property, there is a classifying map for D, extending the classifying map for E,.

—F U
] /7(
_n\ It
D, 71
.
U

E,
P;l
A

This defines a new lifting problem as below-left together with the data of an equivalence v: D; =~ D, over B
extending w: E; ~ E,. Unraveling the definitions, this gives us the lifting problem below-center and then
below-right:

=
)
l%
A\
pYg

A —— Eq(U) A = Equivg(D,,D,) A —— isEquivg(v)
L | L
B—— UxU B —— mapg(D,,D,) B ———=8B
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Since v is a fibration, the map isEquivg(v) - B is a trivial fibration.> so there exists a lift in the right-hand
square which induces one in the middle square and then in the left-hand square. In particular, this final
lift solves the original lifting problem, proving univalence.

Thus, we have reduced the verification of the univalence axiom to proving the equivalence extension
property for Kan fibrations of simplicial sets. We define D, and v by the pullback

D, ---- ILE,
[

v: ll'[,-w
~

D, —— TLE,

and leave the rest of the verification to the literature [KL, S1, Sa].

Remark 4.4.10. Note that fibrancy of U was not required to prove the equivalence extension property, and
in fact follows from it by an argument due to Stenzel [Ste, 2.4.3]. We must construct a lift

Ay

that is, we must extend a fibration as indicated:
E, ----» D
.
pii
A >];>

[

W&

Factor the composite j - p, into an acyclic cofibration followed by a fibration and pull the fibration back:

By right properness, j pulls back to a weak equivalence and thus the induced map to the pullback is an
equivalence between fibrations over A. Now the equivalence extension property can be used to extend the
fibration E, as desired.

Lecture III : All co-toposes have strict univalent universes
5. MODEL CATEGORICAL PRESENTATIONS OF 00-TOPOI

We've sketched, at least in one example, how homotopy type theory can be interpreted in at least one
category: namely the category of simplicial sets. This interpretation takes the form of a functor whose
domain is the category of contexts and whose codomain is a contextual category built from the category
of simplicial sets using a universe. Note, in particular, that this interpretation is a functor between one
categories that preserves various categorical structures, corresponding to the logical rules of homotopy
type theory, on the nose.

As we’ll now explain, Voevodsky’s result can be understood as giving an interpretation of homotopy type
theory in the co-topos of spaces. More precisely, the 1-category of simplicial sets is equipped with various
structures—that make it a simplicial model category—and via these structures it can be understood to
present an co-category, namely the co-category of spaces. Once we’'ve adapted to this perspective on the

5We proved a bit less; see [S1, §4] for more.
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category of simplicial sets, we’ll define general co-topoi via a definition that highlights their presentations
by simplicial model categories.

The notion of co-topos we consider, developed by Lurie [Lu] and Rezk [Re] is analogous to Grothendieck
1-toposes. In fact, every Grothendieck 1-topos arises as the full subcategory of o-truncated objects in an
oo-topos. But the world of co-topoi is considerably richer than their 1-dimensional analogues: there are
inequivalent co-topoi whose o-truncations agree.

Caveat 5.0.1. This is not at all how I ordinarily think about co-categories; for that see [RV]. So if you
want to object that model categorical presentations of co-categories are somewhat beside the point—like
(gasp!) choosing a basis for your vector space—I agree. However, these presentations are essential to the
construction of the interpretation of the syntax of homotopy type theory, which is why they will be the
focus here.

5.1. Simplicial model categories as co-categories. Here, following Lurie, we use “co-categories” as a nick-
name for (oo, 1)-categories, which are meant to be categories weakly enriched in co-groupoids aka “spaces.”
It turns out that every co-category can be presented by a category that is strictly enriched in spaces, where
by “spaces” we mean simplicial sets since the category of simplicial sets is so much better behaved. Though
not all simplicially sets are equally “space-like,” so it would be more precise to say that an co-category is a
category enriched in Kan complexes.

An abundant source of categories enriched in Kan complexes is given by simplicial model category.

Definition 5.1.1. A model structure® on a complete and cocomplete category £ is given by three classes of
maps (%, % ,.%) — the cofibrations “>>”, the weak equivalences “=”, and fibrations “—” — so that
(i) (€, #NW)and (€ NW,F) define a pair of weak factorizations systems, and
(ii) the weak equivalences satisfy the 2-of-3 property: if any two of three of g, f, and g- f are weak
equivalences, so is the third.
A simplicial model structure is a model structure on a simplicially enriched, tensored, and cotensored
category so that the Leibniz mapping space defines a right Quillen bifunctor:

£P x € e » sSet
A X Map(B, X)
Map(i.f)
i f - o ET— Map(A, X)
B Y Map(B,Y) —— Map(A4,Y)

As a simplicially enriched category, £ is of course simplicially enriched, but as a simplicial model cat-
egory the full subcategory of fibrant and cofibrant objects’ is enriched over Kan complexes. This gives the
first sense in a simplicial model category presents an co-category.

It might seem as if we’re throwing away the non-fibrant and non-cofibrant objects when we pass to
the co-category associated to a simplicial model category and there is a sense in which we are, but also
a sense in which we are not. To explain, first note that any model category £ has a homotopy category
E[# '] defined by formally inverting the weak equivalences; the model category axioms guarantee that
this process is well-behaved. The homotopy category is equivalent to the category obtained by taking the
path components of each space in the Kan complex enriched category of fibrant-cofibrant objects. Via this
equivalence the missing objects can be understood to be isomorphic, at the level of the co-category, to the
fibrant-cofibrant objects that are still present.

6This is not Quillen’s original definition [Q1], but rather a simplification observed by Joyal and Tierney [JT].
7An object in a model category is fibrant just when the unique map to the terminal object is a fibration and cofibrant just when
the unique map from the initial object is a cofibration
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The oco-categories that are presented by simplicial model categories are special in one respect: they are
complete and cocomplete as co-categories. Limits and colimits in the co-category are presented by homotopy
limits and homotopy colimits definable in the simplicial model category. These are constructed via a two-
step procedure. Given a diagram in a model category, it first needs to be “fattened-up,” by replacing
certain maps by cofibrations if the aim is to form a homotopy colimit or by fibrations if the aim is to form
a homotopy limit. Then the ordinary colimit or limit of the fattened-up diagram models the homotopy
colimit or homotopy limit.

Example 5.1.2. The category of simplicial sets defines a simplicial model category:

e The cofibrations are the monomorphisms, the weak equivalences are the weak homotopy equivalences,
and the fibrations are the Kan fibrations. All objects are cofibrant, while the fibrant objects are the Kan
complexes.

e Asa complete and cocomplete cartesian closed category, simplicial sets is enriched, tensored, and coten-
sored over itself. Moreover, the simplicial enrichment is compatible with the model structure just men-
tioned in the sense required by Definition 5.1.1.

The associated co-category is the co-category of spaces, typically denoted by S.

The co-category of spaces plays a role for co-category theory that is analogous to the role played by
the category of sets in 1-category theory. There is an important sense, though, in which the category of
simplicial sets is better behaved than the category of sets that is clarified by the following definition:

Definition 5.1.3 ([Re]). A simplicial model category £ satisfies descent if:

(i) Homotopy colimits are stable under homotopy pullback: for any X = hocolim;X; and f: Y — X,
the map hocolim;(YXxX;) — Y from the homotopy colimit of the homotopy pullbacks is a weak
equivalence.

(ii) For a natural transformation whose squares are homotopy pullbacks, the squares of the cone to the
homotopy colimits are also homotopy pullbacks.®

Remark 5.1.4. Any co-category &£ with pullbacks has a core of self-indexing functor
P —E5 gpPD

B+— (tS/B)E
" s

Ar— (t‘:/A)g

The oco-category satisfies descent if this functor carries colimits in £ to limits in the co-category of co-
groupoids.

While the category of sets satisfies a limited form of descent—for certain, but not all, colimit diagrams—
the co-category of spaces satisfies descent for colimit diagrams of all shapes.

5.2. Simplicial model categories of simplicial presheaves. The descent property is very convenient, so it
is natural to wonder what other co-categories might satisfy descent. A natural idea is to consider diagram
co-categories SP™ valued in the oo-category of spaces. Since limits and colimits in diagram co-categories
are defined pointwise in terms of limits and colimits in the base co-category, the properties of Definition
5.1.3 are inherited by ST,

This argument would work just fine had we developed the theory of limits and colimits natively at the
level of co-categories, which is certainly possible to do. However, we’'ve defined limits and colimits in an
oco-category by using a presentation by a simplicial model category. Thus, in order to describe limits and
colimits in a diagram co-category we need to find a suitable simplicial model category presentation.

Let £ be any simplicial model category and let D be a small simplicially enriched category.® We can
certainly define a simplicial model category structure on £°°? =[], » € by defining everything “pointwise.”

8This can be understood to mean that the canonical comparison map from the initial vertex in the square to the homotopy pullback
is a weak equivalence.
9Since we’ll be mapping out of D and into £ it’s not important whether the hom-spaces in D are Kan complexes.
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It’s natural to hope that the simplicial category EP™ of simplicially enriched functors inherits a similar
pointwise-defined simplicial model structure, but there are two (related) problems:

(i) The pointwise-defined cofibrations fail to lift against the pointwise-defined trivial fibrations, and
similarly the pointwise-defined trivial cofibrations fail to lift against the pointwise-defined fibra-
tions.*°©

(ii) The simplicial hom-space

Map por (X, Y) := Map.(Xd,Yd)
deD

between pointwise fibrant-cofibrant diagrams may fail to be a Kan complex.
It turns out that a solution to the first problem will solve the second as well. In fact, we present two
solutions, which are in some sense equivalent. To describe them note firstly that the forgetful functor

L

e ig: £obD
~_ Ll -
R
admits left and right adjoints, defined by simplicially enriched left and right Kan extensions.

Definition 5.2.1. For any functor U: M — N where N is a model category define a morphism in M to be:

e a U-weak equivalence, U-cofibration, or U-fibration just when its image under U belongs to those re-
spective classes

e a projective cofibration/projective trivial cofibration when it has the left lifting property for U-trivial
fibrations/ U-fibrations

e ainjective fibration/injective trivial fibration when it has the right lifting property for U-trivial cofib-
rations/U-cofibrations

The projective model structure or injective model structure is given by these classes together with the

U-weak equivalences.

Proposition 5.2.2. Given a model category N', U: M — N with both adjoints L 4 U 4 R so that UL 4 UR is

Quillen, then if N is combinatorial'' and M is locally presentable, both model structures exist and are combina-

torial. Moreover:

e Projective cofibrations are U-cofibrations and projective fibrations are U-fibrations.

e The projective and injective models structures are left or right proper if N is.

e If N is a simplicial model category and the adjunctions are simplicial adjunctions then M is a simplicial model
category.

In particular, Proposition 5.2.2 can be applied to deduce the existence of both the projective and injective
model structures on sSet?” for any small simplicial category D; see [Lu, A.3.3.9] or [M]. And it turns out
that both of these present the co-category SP* of presheaves: the identity adjunction

~—
1 sSet
< _~—

DOP

DOP
proj i

inj

sSet

defines a Quillen adjunction between the projective and injective model structures, meaning that the left
adjoint preserves the left classes and the right adjoint preserves the right classes. This Quillen adjunction
descends to an adjoint equivalence between the homotopy categories of the model categories and hence is
a Quillen equivalence. It follows that both model structures present the co-topos s,

To conclude that these simplicial model categories satisfy descent, it is helpful to observe that the for-
getful functor U: sSet?” — sSet*®?
equivalences.

preserves homotopy limits and homotopy colimits and creates weak

LOThis failure will be explained in more detail in §6.5.
!IThis is a technical set theoretical condition that demands that the underlying category is locally presentable and the model
structure is cofibrantly generated.
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5.3. Rezk model toposes. The simplicial model category sSet?”, with either the projective or injective
model structure is a prototypical example of a model topos as defined by [Re] inspired by previous work of
Simpson [Si] and Toén and Vezzosi [TV]. He proves a Giraud-style theorem characterizing model toposes
that we take as the definition.

Definition 5.3.1 ([Re, 6.9]). A model category £ is a model topos if and only if

(i) £ admits a small presentation.
(ii) & has descent.

The meaning of small presentation for a model category is developed in work of Dugger [D1, D2] where
it is characterized more precisely than we require here. The essential point'> is a model category £ admits
a small presentation just when it is Quillen equivalent to a model category of the form sS etSDOP, that is, to
a localization of the injective model structure on simplicial presheaves on a small simplicial category D by
a set of maps S. The category D can be thought of as providing “generators” for £ with the set S gives the
“relations.”

Here “localization” refers to left Bousfield localization, a process which “formally inverts” the maps in
S by turning them into weak equivalences while restricting the class of fibrations; this process does not
change the underlying category or the class of cofibrations.

The descent condition in (ii) puts a further restriction on the model categories that satisfy (i). Rezk
proves that a localized model category of the form sSet?OP satisfies descent just when the left adjoint of the
canonical Quillen adjunction

=
0] O
sSet? 1 sSet?”

is left exact, meaning that it preserves homotopy pullbacks, and hence all finite homotopy limits.

Definition 5.3.2. The identity functors then define a Quillen adjunction whose left adjoint points from M
to M &. The saturation . can be recovered as the class of morphisms sent to weak equivalences by the left
adjoint. The localization is left exact just when the saturation of . is closed under homotopy pullback, or
equivalently if the left adjoint M — M o preserves finite homotopy limits.

Thus:

Theorem 5.3.3 ([Re, 6.1]). A model category £ is a model topos if and only if it is Quillen equivalent to a left
exact localization of an injective model category of simplicial presheaves indexed by some small simplicial category,

that is, if it is of the form sSet?Op for a small simplicial category D and a set of maps S.

Dugger proves that all combinatorial model categories have a presentation [D2], so model toposes can be
thought of as combinatorial simplicial model categories of simplicial sheaves, where the data (D, S) together
define the model site. Model toposes are simplicial model categories that present co-toposes, which Lurie
defines to be accessible left exact reflective sub-co-categories of an co-category SP” of presheaves and then
characterizes in many different ways [Lu, 6.1].

Example 5.3.4. The simplicial model category of simplicial sets described in Example 5.1.2 a model topos.

Example 5.3.5. Simplicial presheaves on any small simplicial category D defines a model topos with either
the projective or injective model structure.

Example 5.3.6. Whenever C has finite colimits and a terminal object, Goodwillie’s n-excisive approximation
defines a left exact localization of sSet®, yielding a model topos of n-excisive functors.

12Dugger’s small presentations involve localizations of the projective model structure rather than the injective model structure.
Since the projective and injective model structures are Quillen equivalence and the process of localization preserves this Quillen
equivalence, up to Quillen equivalence it makes no difference which model structure is used. The cost of using the injective model
structure rather than the projective one is that there is no longer a direct Quillen equivalence to the model category £ being presented
but rather a zig-zag of Quillen equivalences pointing in opposite directions. For our purposes here, however, this is immaterial, and
we prefer the injective model structure because its cofibrations are exactly the monomorphisms.
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The analogue of the truncation levels in homotopy type theory is defined as follows:

Definition 5.3.7. A space X is k-truncated (k > —1) if 7,(X,x) = o for all g4 > k and for all choices of
basepoint. We extend to say —2-truncated for spaces that are contractible.

This definition then extends to an object X in a simplicial model category by applying it the mapping
spaces Map(Y, X) for all X. For any simplicial model category £ write ;£ for the full subcategory of k-
truncated objects.

Proposition 5.3.8. If £ is a model topos then t,& is a Grothendieck 1-topos.

In fact every Grothendieck 1-topos is a o-truncation of a model topos, much like every locale arises as
the —1-truncated objects in a Grothendieck 1-topos.

Example 5.3.9. Let (C,7) be a Grothendieck site, a small 1-category with a Grothendieck topology 7, defin-
ing a collection of sieves S »> X, € Set’”, which we may regard as a collection of maps in sSet®” by
regarding sets as discrete spaces. Then the model category defined by localization simplicial presheaves at
the set of covering sieves 7 is a model topos whose o-truncation is the 1-category of sieves on the 1-site.

The reason that the indexing category in a model topos is allowed to be simplicially enriched, and not
just a 1-category, is so as to allow model topoi whose k-truncations differ even though their o-truncations
are the same. See [Re, §11] for more discussion and many more examples.

6. THE co-TOPOS SEMANTICS OF HOMOTOPY TYPE THEORY
We now turn to Shulman’s paper [S].

6.1. Type-theoretic model toposes. Shulman introduces the following axiomatization to capture the es-
sential hypotheses he requires.

Definition 6.1.1. A type-theoretic model topos is a model category such that:

(i) The underlying category is a Grothendieck 1-toposes.
(ii) The model category is a right proper simplicial Cisinski model category: the cofibrations are the
monomorphisms and the model structure is proper, simplicial, and combinatorial.
(iii) The underlying category is simplicially locally cartesian closed, which amounts to the additional
requirement that pullbacks preserve simplicial tensors.
(iv) There is a locally representable and relatively acyclic notion of fibered structure F so that |F| is the
class of all fibrations.

The final axiom, which we’ll say more about below, ensures that £ has a fibrant univalent universes of
relatively x-presentable fibrations for any x> A."3

Theorem 6.1.2. For any type-theoretic model topos £, there is a regular cardinal A so that £ interprets Martin-Lof
type theory with the following structure:
(i) X-types, a unit type, I1-types with function extensionality, identity types, and binary sum types,
(ii) the empty type, the natural numbers type, the circle type, the sphere types, and other specific “cell complexes”
(iii) as many universe types as there are inaccessible cardinals larger than A all closed under the type formers (i)
and containing the types (ii), and satisfying the univalence axiom
(iv) W-types, pushout types, truncations, localizations, James constructions, and many other recursive higher
inductive types.

It isn’t yet known whether the universe is closed under the higher inductive types listed in (iv).

Digression 6.1.3. One needs a coherence theorem to strictify £ into an actual model of type theory. This is
done by the “local universes” technique of Lumsdaine-Warren [LW]. Lumsdaine and Warren observe that
universes are used for two distinct purposes in the simplicial model: “firstly to obtain coherence of the

13Again, we'll largely sweep size issues on the rug, but here are the definitions: an object is x-presentable if its covariant rep-
resentable preserves «-filtered colimits. A morphism is relatively x-presentable if its pullback over any x-presentable object is k-
presentable. Here x> A means that x > A is so that any A-presentable category is x-presentable.
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model; and secondly to become type- theoretic universes within the model.” They observe “It turned out
that not only may the two aspects be entirely disentangled, but moreover, the coherence construction may
be modified to work without a universe.”

They work with comprehension categories as a categorical model of type theory, which is a suitably struc-
tured fibration of categories—in which the base category has objects the contexts and morphisms the sub-
stitutions and the fibers encode dependent types in that context—together with further algebraic structure
implementing the logical rules. Direct models of syntax are given by split comprehension categories with
strictly stable logical structure. They replace a comprehension category by a split comprehension category
using “delayed substitution.” The split comprehension category has the same category of contexts as the
original one but the types in context I' are formally defined to be maps "A™": I' — Uy valued in a “local
universe,” which is just another context, together with a type E, in that context. The triple (TA™, Uy, E4)
may be regarded as a surrogate for the pullback [A] := E4[TA7]. The advantage of using local universes
is that they are allowed to vary when constructing the logical operations. For instance, for sums one can
take Vy,p = Vy x Vg with Ey,p = Egq[m,] +v,,, Eg[n,], with "TA+B™": T — V,,p the evident map. Since
substitution corresponds to precomposition “on the left” but this logical stuff happens “on the right,” such
constructions are strictly stable.

The main theorem is that a full comprehension category whose underlying category has certain prod-
ucts and pushforwards there is an equivalent full split comprehension category, and if the comprehension
category has weakly stable categorical operations corresponding to the various type theoretic operations,
then the equivalent split comprehension category has strictly stable versions of the same. In an appendix
[S, §A], shulman adapts this coherence theorem to Awodey’s natural models [A] and extends the coherence
theorem to universes of types.

Moreover:
Theorem 6.1.4. A type-theoretic model topos has descent.

It’s straightforward to argue from the model category axioms that homotopy colimits in a type-theoretic
model topos are stable under homotopy pullback. A more delicate argument is required for the second
condition of Definition 5.1.3, involving both the local representability and the relative acyclicity of the
notion of fibered structure.

With this result in hand, it follows easily that:

Corollary 6.1.5. Every type-theoretic model topos is a model topos.

Proof. Since it is combinatorial, it has a small presentation by [D2] and Theorem 6.1.4 demonstrates that it
has descent. O

To prove that homotopy type theory admits a model in any co-topos it remains to show that any model
topos is Quillen equivalent to a type-theoretic one. Before we can approach this problem, we first explain
the final axiom (iv) of Definition 6.1.1.

6.2. Notions of fibered structure. We’ve seen one example of a notion of fibered structure, which we recall
before giving the general definitions.
In a model category &, the core of self-indexing defines a groupoid-valued pseudofunctor as below-left:

cr _E y gpp gr —F 5 gpp
B — (£5)7 B —— (Fp)~
I r T i
A+— (E/A)g A+— (eg./A)g

Since the class of fibrations .# in a model category are always pullback stable, they similarly assemble into
a pseudofunctor as above right.
The inclusion i: F < E defines a 1-cell in the 2-category PSH(E) of groupoid-valued pseudofunctors,
pseudonatural transformations, and modifications with the following properties:
(i) ¢ is a strict natural transformation, and
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(ii) each component of ¢ is a discrete fibration of groupoids.'*

In what follows, we continue to write E for the core of self indexing but allow F to be any notion of fibered
structure, satisfying the following definition:

Definition 6.2.1. A notion of fibered structure on £ is a strict discrete fibration ¢: F — E in PSH(E) that
has small fibers.

Recall the fibers of a discrete fibration are sets. Thus ¢: F — E equips each f: X — Y in E(Y) with a
set of F-structures on f so that pullbacks induce functions on F-structures. We refer to a morphism with
a chosen F-structure as an F-algebra, while an F-morphism carries an F-algebra structure to the induced
F-algebra structure on its pullback.

Shulman gives a long list of examples in [S, §3], but we will only need a few.

Example 6.2.2. If F < E is the inclusion of a subfunctor, then F is just a pullback stable class of morphisms
in £. We call this a full notion of fibered structure.

In particular, if £ is a model category, the fibrations define a notion of fibered structure in this way.

Example 6.2.3. A functorial factorization is a functor E: €2 — €2 that defines a section of the composi-
tion functor o: £3 — £2. On morphisms it carries a commutative square as below-left to a commutative
rectangle as below-right:

X XX
X 25X Lf’l lLf
, - , E(x)
7| I gf 2% gy
Y T} Y Rf’l lRf
Y/ T> Y

In particular, a functorial factorization gives rise to a pair of endofunctors L, R: £2 - €2, whichsend a map
to its left and right factors, respectively. We define an Rg-structure on f to be a lift

X X
ul 27
Ef — ¥

in the canonical commutative square against its left factor. As the choice of such a lift for f induces one for
any pullback, this defines a notion of fibered structure.

Example 6.2.4. If F, —» E and F, — E are notions of fibered structure, then so is the pullback F, xg F, = E,
where an (F, xg F,)-structure on a morphism is just a pair given by an F,-structure and an F,-structure.

Example 6.2.5. When £ is locally presentable and locally cartesian closed, there is a A so that for any x> A,
the relatively x-presentable morphisms define a full notion of fibered structure E¥ < E.

6.3. Universes in model categories. A suitable notion of fibered structure on a suitable model category
will have a universe in the sense of the following definition.

Definition 6.3.1. Let £ be a model category and F a notion of fibered structure. A universe for F is a
cofibrant object U, together with an F-algebra 7t: U —» U so that the map n: £(—,U) =» F is an acyclic
fibration, meaning that this map has the right lifting property against all cofibrations i: A > Bin &

E(-A) —s g(-,U)

14Any componentwise discrete fibration in PSH(E) is automatically an internal discrete fibration in the 2-category PSH(E),
meaning any 2-cell with codomain E whose codomain 1-cell factors through : has a unique lift with specified codomain 1-cell.
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Explicitly, this means that given any F-algebra p and pair of squares that are both F-morphisms, there
exist arrows defining a third square that is a pullback and an F-morphism and makes the diagram commute:

=
g

Definition 6.3.2. A notion of fibered structure F is locally representable if the strict discrete fibration
¢: F — Eis representable, meaning that for any Z € £ and pullback

P——F
-
L=l
E(-2Z) — E
the object P is isomorphic to a representable.

Theorem 6.3.3. In a Grothendieck 1-topos with a combinatorial model structure in which all cofibrations are
monomorphisms, any small-groupoid-valued*> locally representable notion of fibered structure has a universe.

The proof is by an adaptation of Quillen’s small object argument that uses the hypotheses on the notion
of fibered structure F to ensure that it defines a stack for cell complexes, meaning F: £°P — GPD preserves
coproducts, pushouts of cofibrations, and transfinite composites of cofibrations in the weak bicategorical
sense.

It remains to connect a notion of fibered structure on a model category £ to the fibrations in that model
category. For any notion of fibered structure F let |F| be the image of the map ¢: F — E. Thus |[F|<> Eisa
full notion of fibered structure (though not generally locally representable, even if F is), and the |F|-algebras
are the morphisms that admit some F-structure.

Definition 6.3.4. A notion of fibered structure F is relatively acyclic F — |F|is an acyclic fibration, meaning
for any cofibration i: A >> B there is a lift

E(~A) —— F

-
i._l /// ¢
-
-

That is, for any pullback

with g, p both F-algebras and i a cofibration there exists a new F-algebra structure on p making the square
an F-morphism.

15Any ¢: F — E must have small fibers: at most a sets worth of F-structures on a given f: X — Y. This condition means that there
is at most a set’s worth of isomorphism classes of F-algebras with codomain Y. This might be achieved by replacing F by F* for some
regular cardinal «.
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In practice, F will be locally representable, and thus will admit a universe U, while |F|, which will be the
full notion of fibered structure defined by the fibrations, may not be. When F is relatively acyclic, we can
compose the acyclic fibrations

E(-U) —E» F —» IF|
and regard U as a universe for the fibrations.

Theorem 6.3.5. Let € be a right proper simplicial Cisinski model category, and F a locally representable, relatively
acyclic notion of fibered structure for which |F| is the class of fibrations. Then there is a regular cardinal A so that
for any regular cardinal x> A, there exists a relatively k-presentable fibration 7t: U — U so that

(i) Every relatively x-presentable fibration is a pullback of 1.
(ii) U is fibrant.
(iii) 7 satisfies the univalence axiom.

Proof. The results proven above are applied to F* := F xg E*, which remains locally representable and
relatively acyclic. As with the simplicial model, the condition of Definition 6.3.1 is used to reduce the veri-
fication of fibrancy of U and univalence of 7t to the fibration extension property and equivalence extension
property of £, which can be proven by applying previously-developed techniques. O

6.4. First examples of type-theoretic model topoi. Now that we’ve developed some understanding of
notions of fibered structure, we belatedly present some examples of type-theoretic model topoi.

Example 6.4.1. The category of simplicial sets with its Kan-Quillen model structure is a type theoretic
model topos with F the full notion of fibered structure defined by the Kan fibrations.

Proposition 6.4.2. If £ is a type theoretic model topos so is .

Proof. All of the required structure is created by the forgetful functor U: £/x — £. O

Proposition 6.4.3. Product of type-theoretic model toposes are also type-theoretic model toposes.

Proof. All of the required structure is defined pointwise. g

To demonstrate that all model toposes are type-theoretic model toposes, it remains to prove two more
general closure theorems. We will show:

e That if £ is a type theoretic model topos, then so is the injective model structure on EP™ for any small
simplicial category D.

e For any set . of morphisms in a type-theoretic model topos £ so that .#-localization is left exact, the
localized model structure &g is again a type-theoretic model topos.

The key technical challenges are that there were no explicit description of fibrations in the injective
model structure, much less in localizations thereof. Shulman characterizes the injective fibrations as point-
wise fibrations that are algebras for a certain pointed endofunctor called the cobar construction introduced
in the next section. The corresponding problem for localizations is solved by showing that any left ex-
act localization of an co-topos yields an internal left exact localization, using results of [ABFJ], and then
constructing an internal universe of local objects. This is the subject of §6.6.

6.5. Injective model structures and the cobar construction. Recall that the projective and injective model

structures on a diagram category EP™ are lifted from a model structure on £°° inherited pointwise from a

model structure on £. One might first attempt to define the cofibrations, weak equivalences, and fibrations

in 7% as those simplicial natural transformations whose components lie in those classes in £. For a point-

wise acyclic cofibration and a pointwise fibration it is possible to choose pointwise diagonal lifts for each

object d € D, but these do not assemble into a genuine natural transformation (since solutions to lifting

problems are not unique). However, they do always form a homotopy coherent natural transformation, due to
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the homotopical uniqueness of solutions to lifting problem:

Ay 2y, A2y
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Thus, a strict lift could be obtained by somehow rectifying a homotopy coherent natural transformation to
a strict one. And indeed, there is a natural bijections between homotopy coherent transformations X ~»
Y and strict natural transformations B(L, UL,UX) — Y whose domain is given by the bar construction
defined below. A dual natural bijection classifies homotopy coherent natural transformations by strict
natural transformations X — C(R, UR, UY) mapping into the cobar construction.

There are canonical maps ex: B(L,UL,UX) —» Xand vy: Y — C(R,UR, UY) that form a pair of simplicial
homotopy equivalences. If we have a strict transformation s: X — B(L,UL,UX)or r: C(R,UR UY) -» Y
that respectively define a strict section and strict retraction of these natural maps then every homotopy
coherent natural transformation with domain X can be rectified to a strict one, and dually for homotopy
coherent natural transformations with codomain Y. This gives a new characterization of the projective
cofibrant objects X and injective fibrant objects Y. The relative version of this construction will characterize
the injective fibrations in an induced type-theoretic model topos structure on a diagram category.

Digression 6.5.1. This is inspired by an analogous result in 2-category theory described in the dual case.
In [La], Lack characterizes the cofibrant objects in the projective model structure as those who admit a
coalgebra structure for the dual pseudomorphism classifier. The 2-categorical cofibrant objects are called
“flexible” so fibrant objects in the injective model structure might be called “coflexible.”

There is a slick definition of the bar and cobar constructions via the free adjunction of Schanuel and
Street [SS].

Definition 6.5.2 (the free adjunction). Let Adj denote the 2-category with two objects + and — and the four
hom-categories

Adi(+,4) = 4, Adi(—-)= ¥, Adi(—+)= 1, Adj(+-):= |

displayed in the following cartoon:

Here |, | € <C . are the subcategories of order-preserving maps that preserve the top or bottom ele-
ments. Their intersection

op
+

11

ANE

is the subcategory of order-preserving maps that preserve both the top and bottom elements in each ordinal.
This identifies ¥ with the subcategory of “intervals.”

Definition 6.5.3 (co/simplicial co/bar construction). The “freeness” of the free adjunction has to do with
the fact that an adjunction



is encoded by a unique 2-functor .Adj — Cat defined by the data:

+_>NN
Adj —— Cat 3p—>MM
- M

T NM
+ — N

L_)MN

The two-sided simplicial bar construction and two-sided cosimplicial cobar construction are the sim-
plicial and cosimplicial objects defined by rearranging the action on homs on the comonad and monad side
to define functors

(6.:5.4) M B,(F,UF,U—; M N C‘(U,FU,F—; N

while the actions of the other two homs define diagrams

B.(UF,UF,U-
s

S N

C*(FU,FU,F-
—

M M 1

The interest of the latter two diagrams is that the presence of the co/augmentations and “extra co/degen-
eracies” imply that the totalizations/geometric realizations of the underlying co/simplicial objects are given
by the co/augmentations.

Definition 6.5.5 (bar and cobar construction). Suppose M is simplicially enriched, tensored, and cocom-
plete. Then the bar construction is the functor B(F, UF,U-): M — M defined as the geometric realization
of the underlying simplicial object of (6.5.4). Dually, when A is simplicially enriched and complete with
cotensors, the cobar construction is the functor C(U,FU,F-): N' — N defined as the totalization of the
underlying cosimplicial object of (6.5.4).

The former has a natural augmentation € and the latter has a natural coaugmentation v and both are
carried to simplicial homotopy equivalences by the functors U and F respectively. Thus these are carried
to maps that are weak equivalences when A or M are simplicial model categories, respectively. This leads
to our desired characterization of the injective fibrations.

Theorem 6.5.6. Let U: M — N be a simplicial functor with both simplicial adjoints L 4 U 4 R where N
is a simplicial model category whose cofibrations are the monomorphisms. Under a technical condition*®, then
f: X — Y in M is an injective fibration if and only if it is a U-fibration and the left map Ay of the cobar
factorization f = py¢ - Ay defined below has a retraction over Y.

vx

Ef o > C(R,UR,UX)

.

of lC(R,UR,Uf)

~

Y —— C(RURUY)

In particular X is injectively fibrant if and only if it is U-fibrant and the map vy: X — C(R,UR,UX) has a
retraction.

Proof. If f is a U-fibration then p; is a pullback of an injective fibration and hence an injective fibration.
Thus if f is a retract of it, it is an injective fibration.

Conversely if f is an injective fibration, then f is a U-fibration. The second hypothesis implies that A
is a U-trivial cofibration so f lifts against, yielding the desired retraction over Y. O

16Shulman asks that the unit of the monad is Quillen-cofibrant or equivalently that the counit of the comonad is Quillen-fibrant.
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Theorem 6.5.7. Let € be a type-theoretic model topos and T a simplicially enriched Quillen unit-cofibrant monad
on & having a simplicial right adjoint S. Then the category ET of T-algebras is again a type-theoretic model topos.

Proof. There is an induced simplicial comonad structure on S so that T-algebras coincide with S-coalgebras.
In particular, U: ET — € has both simplicial adjoints. It is classical that £T has an injective model struc-
ture and is a Grothendieck topos and simplicially locally cartesian closed (these facts rely more on the
comonadicity than the monadicity).

If F is the locally representable and relatively acyclic notion of fibered structure for the fibrations on
& let FT = U™ (F) xg R where R is the notion of fibered structure for the cobar functorial factorization.
This notion of fibered structure is locally representable and relatively acyclic. Theorem 6.5.6 proves that
IFT|-algebras are exactly the injective fibrations. O

Corollary 6.5.8. If £ is a type-theoretic model topos and D is a small simplicially enriched category, then the
injective model structure on EP" isa type-theoretic model topos.

Proof. The monad in £°°P whose category of algebras is £ D is Quillen unit-cofibrant—essentially because
the hom-categories in D are cofibrant and the inclusion of the identity is a cofibration—and has a simplicial
right adjoint. O

6.6. Localizations. The final required result is:

Theorem 6.6.1. For any set S of morphisms in a type-theoretic model topos such that S-localization is left exact,
the localized model structure Es is again a type-theoretic model topos.

Proof. Since £ has the same underlying category and cofibrations, it is a simplicially locally cartesian
closed Grothendieck 1-topos with cofibrations being the monomorphisms. It is combinatorial and simpli-
cial and right proper since the localization is left exact.

We may replace S by weakly equivalent fibrations between fibrant objects without changing the local-
ization. Then we claim that there is a locally representable, relatively acyclic notion of fibered structure Lg
such that the Lg-algebras are the correct fibrations. O

The construction of Lg, which we don’t give here, relies on a characterization of left exactly localizations
from [ABFJ] that involves the following construction. Given a fibration f: A - B between fibrant objects,
the fibrant diagonal is the fibrant replacement Af: A" - A xp A of the strict diagonal. Write A" f for the
n-fold iterate with A°f = f and S for the class of iterated fibrant diagonals of morphisms in S and (S*)P®
for all pullbacks of these morphisms.

Theorem 6.6.2. For any set S of fibrations between fibrant objects:
(i) (SA)pb—localization is left exact.
(ii) If S-localization is left exact it coincides with (SA)pb-loculization.

Corollary 6.6.3. Any co-topos can be presented by a Quillen model category that interprets Martin-Lof type
theory with the structure listed above.

Proof. Every co-topos can be presented by a model topos. We have just seen that every model topos is
Quillen equivalent to a type-theoretic model topos. Therefore, any Grothendieck co-topos can be presented
by a type-theoretic model topos. O
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