
Emily Riehl

Johns Hopkins University

A categorical view of computational effects

C◦mp◦se::Conference



1. Functions, composition, and categories

2. Categories for computational effects (monads)

3. Categories of operations and equations (Lawvere theories)

4. Lawvere theories vs monads



Preview

Let T denote a notion of computation.

• A T-program is a function A
f−→ T(B) from the set of values of type

A to the set of T-computations of type B.

• T is a monad just when it has the structure needed to turn

T-programs into a category.

• The T-programs between finite types define a Lawvere theory.

• The Lawvere theory presents the operations and equations for the

computational effect T.*

*If T is not finitary, these operations and equations define a different monad.



1

Functions, composition, and
categories



The mathematician’s view of functions

A function, e.g.:

f (x) = x2 − x

always comes with specified sets of “possible input values” and “potential

output values.” One writes

I O
f

to indicate that f is a function with source I and target O.

Why bother with sources and targets? This data indicates when two

functions are composable:

A B and B C
f g

are composable just when the target of f equals the source of g.



Composable and non-composable functions

Are the functions

f (x) = x2 − x and g(y) =

(
1

2

)y

composable? It depends. If

N Z and Z Qf g

where N is the set of natural numbers, Z is the set of integers, and Q is

the set of rational numbers then yes: (g ◦ f )(x) =
(
1
2

)x2−x
. But if

Mat2×2(Z) Mat2x2(Z) and Z Qf g

where Mat2×2(Z) is the set of 2× 2-matrices with integer coefficients

then no: what is the meaning of
(
1
2

)y
if y is a matrix?



What is a category?

A category is a two-sorted structure that encodes the algebra of

composition. It has

• objects: A, B, C . . . and

• arrows: A
f−→ B, B

g−→ C, each with a specified source and target

so that

• for any pair of composable arrows:

B

A C

gf

g◦f

there exists a composite arrow

• and each object has an identity arrow A
idA−→ A

for which the composition operation is associative and unital.



What is the point of identities?

An isomorphism consists of:

A B
f

g

so that

g ◦ f = idA and f ◦ g = idB

Isomorphism invariance principle:

If A and B are isomorphic then every

category theoretic property of A is also true of B.



Examples of categories

In the category Set the

• objects are (finite) sets X, Y, . . .

• arrows are functions X
f−→ Y, . . .

In the syntactic category for some programming language the

• objects are types X, Y, . . .

• arrows are programs X
f−→ Y, . . .

Note that the same notation describes the data in any category. The

precise ontology of the objects and arrows won’t matter much.



2

Categories for computational effects
(monads)



Notions of computation

Let us introduce some large functions

Set Set
T

each encoding some notion of computation:

• list(X) := finite lists of elements of X

• partial(X) := X + {⊥}
• side-effectsS(X) := [S, S× X], the set of functions from S to

S× X

• continuationsR(X) := [[X, R], R], the set of functions from

the set [X, R] of functions from X to R to R

• non-det(X) := P+(X), the set of non-empty subsets of X

• prob-dist(X) := the set of probability functions X
p−→ [0, 1] so

that
∑

x∈X p(x) = 1



T-programs

For any notion of computation T

• list(X) := finite lists of elements of X

• partial(X) := X + {⊥}
• side-effectsS(X) := [S, S× X], the set of functions from S to

S× X

• continuationsR(X) := [[X, R], R], the set of functions from

the set [X, R] of functions from X to R to R

• non-det(X) := P(X), the set of all subsets of X

• prob-dist(X) := the set of probability functions X
p−→ [0, 1] so

that
∑

x∈X p(x) = 1

A T-program from A to B is a function A
f−→ T(B), from the set of values

of type A to the set of T-computations of type B. Write

A
f

B to mean A
f−→ T(B).



Programs should form a category

A T-program from A to B is a function A
f−→ T(B), from the set of values

of type A to the set of T-computations of type B.

The notion of monad arises from the following categorical imperative:

programs should form a category

Theorem: A notion of computation T defines a monad if* and only if the

T-programs A
f

B define the arrows in a category.

*If the category of T-programs is constructed using a Kleisli triple, as depicted on the next slide, then T defines a monad.



The category of T-programs
To define the category of T-programs we need:

• identity arrows A
idA

A; a monad has unit functions A
ηA−→ T(A)

• a composition rule for T-computations:

B

A C

gf

g◦f

Problem: A
f−→ T(B) and B

g−→ T(C)
are not composable!

With a monad, any function B
g−→ T(C) can be extended to a function

T(B)
g∗−→ T(C). Then

T(B)

A T(C)

g∗f

g∗◦f

defines the Kleisli composite of A
f

B and B
g

C in the category KlT.



The category of partial-computations
For partial(X) := X + {⊥}

• A program A
f

B is a function A
f−→ B+ {⊥}, i.e., a partial function

from A to B.

• The unit A
idA

A is the function A
incl−→ A+ {⊥}.

• Any function B
g−→ C + {⊥} extends to a function

B+ {⊥} g∗−→ C + {⊥}

by the rule g∗(⊥) = ⊥.

• The Kleisli composite

B B+ {⊥}

A C A C + {⊥}

g g∗f

g◦f

f

g∗◦f

is the largest partial function from A to C.



The category of list-computations
For list(X)

• A program A
f

B is a function A
f−→ list(B), i.e., a function from

A to lists in B.

• The unit A
idA

list(A) is the function A
singleton−−−−→ list(A).

• Any function B
g−→ list(C) extends to a function

list(B)
g∗−→ list(C)

by applying g to each term in a list of elements of B and

concatenating the result.

• The Kleisli composite

B list(B)

A C A list(C)

g g∗f

g◦f

f

g∗◦f

is defined by application of f and g followed by concatenation.



3

Categories of operations and
equations (Lawvere theories)



Kleisli arrows define operations

Let n := {x1, . . . , xn} denote the set with n elements.

An arrow 1 n in the category of list-programs Kllist is

• a function 1 → list(n) (by definition) or equivalently

• an element of list(n) (the image of the previous function).

E.g. 1
x3x5x2x5

6 x3x5x2x5 ∈ list(6)

Arrows 1 n, i.e., elements of list(n), define n-ary operations.



Kleisli composites define equations between operations

In the category of list-programs Kllist, arrows 1 n define n-ary

operations.

Compositions
n

1 m

define equations between operations.

E.g.

2

1 3

(x1,x2x3)x1x2

x1x2x3

corresponds to the equation

x1(x2x3) = x1x2x3.

Together these operations and equations define the list-theory Llist.



Models for the list-theory

A model for the list-theory Llist is:

• a set A

• together with a function An → A for each n-ary operation 1 n

• satisfying the equations determined by the compositions in the

category of programs.

E.g.

2

1 3

(x1,x2x3)x1x2

x1x2x3

are modeled by

A2

A A3

λ.(x1,x2x3)λ.x1x2

λ.x1(x2x3)

=
λ.x1x2x3

A model for the list-theory Llist is a contravariant

product-preserving functor from the category Llist of list-programs

between finite sets.



4

Lawvere theories vs monads



models for a Lawvere theory

If T is any monadic notion of computation let LT denote the category of

T-programs between finite sets. The opposite category LT
op, obtained

by formally reversing the arrows, defines a Lawvere theory.

A model is a functor L
op
T → Set defined on objects by

1 A

2 A2

...
...

n An

and carrying each arrow n m in the category LT to a function

Am → An.



algebras for a monad

If T is any monadic notion of computation an algebra for T is a set A

together with a function T(A)
α−→ A so that the composition relations

hold:

A T(A) T(T(A)) TA

A TA A

ηA

idA
α

id∗
T(A)

Tα α

α

Theorem: The category of models for the Lawvere theory LT
op and the

category of algebra for the monad T are equivalent.



monads vs Lawvere theories

A monad is

• a “notion of composition” Set
T−→ Set

• so that T-programs A
f−→ T(B) define the arrows A

f

B in a

category KlT.

The opposite of the category of T-programs between finite sets defines

a Lawvere theory LT
op. Conversely, any Lawvere theory defines a

monad on Set.

Theorem: The category of Lawvere theories is equivalent to the

category of finitary monads∗ on Set.

Finitary monads and Lawvere theories describe equivalent cate-

gorical encodings of universal algebra.



Advantages of Lawvere theories

Why bother with Lawvere theories if they are equivalent to monads?

• Each monad acts on just one category, whereas models of Lawvere

theories can be defined in any category with finite products — and

the construction of the category of models is functorial in both

arguments.

• Lawvere theory operations can be added: any two Lawvere

theories L and L′ have a sum L+ L′— indeed the category of

Lawvere theories is locally finitely presentable.

• Lawvere theory operations can be intertwined: any two Lawvere

theories L and L′ have a tensor product L⊗ L′.

• In practice, Lawvere theories are generated by computationally

natural operations satisfying computationally meaningful equations

— e.g., exceptions, side-effects, interactive input-output, …



Continuations

All of computational effects mentioned thusfar fit into this framework for

categorical universal algebra with one exception:

Even for 2 = {>,⊥}, the continuations monad

continuations2(X) := [[X, 2], 2] = P(P(X))

is not finitary. It does define a large Lawvere theory, but this is specified

with a proper class of operations.

“it appears that the continuations monad transformer should be seen as

something sui generis.”



A look towards the future

In “The Category Theoretic Understanding of Universal Algebra:

Lawvere Theories and Monads”, Martin Hyland and John Power suggest

that “computational effects might be seen as an instance and

development of universal algebra.” From this viewpoint:

• “Continuations would not be regarded as a computational effect

but rather as a distinct notion. It would still have its own body of

theory, and one would still study the relationship between it and

computational effects; but perhaps it would not be regarded as a

computational effect?”

• “Monads appear quite directly in the study of continuations. So

perhaps the notion of monad might be seen as a generalised

semantics of continuations?”



Review

Let T denote a notion of computation.

• A T-program is a function A
f−→ T(B) from the set of values of type

A to the set of T-computations of type B.

• T is a monad just when it has the structure needed to turn

T-programs into a category.

• The T-programs between finite types define a Lawvere theory.

• The Lawvere theory presents the operations and equations for the

computational effect T.*

*If T is not finitary, these operations and equations define a different monad.



References

• Eugenio Moggi, “Computational lambda-calculus and monads”

— describes monads and the category of programs

• Gordon Plotkin and John Power, “Computational Effects and

Operations: An Overview”

— describes the connection between

Moggi’s monads and Lawvere theories

• Martin Hyland and John Power, “The Category Theoretic

Understanding of Universal Algebra: Lawvere Theories and

Monads”

— inspired this talk

Thank you!


	Functions, composition, and categories
	Categories for computational effects (monads)
	Categories of operations and equations (Lawvere theories)
	Lawvere theories vs monads

