Emily Riehl

Johns Hopkins University

A categorical view of computational effects

Compose:Conference

|. Functions, composition, and categories

2. Categories for computational effects (monads)

3. Categories of operations and equations (Lawvere theories)

4. Lawvere theories vs monads

Preview

Let T denote a notion of computation.

* A T-program is a function A IR T(B) from the set of values of type
A 1o the set of T-computations of type B.

¢ T is a monad just when it has the structure needed to tum
T-programs into a category.

* The T-programs between finite types define a Lawvere theory.

* The Lawvere theory presents the operations and equations for the
computational effect T.*

*If T is not finitary, these operations and equations define a different monad.

0

Functions, composition, and
categories

The mathematician’s view of functions <4

A function, e.g:
f(x) =x* — x

always comes with specified sets of “possible input values” and “potential
output values.” One writes

l—f>O

to indicate that f is a function with source | and target O.

Why bother with sources and targets! This data indicates when two
functions are composable:

A—lyp and B £, ¢

are composable just when the target of f equals the source of g.

Composable and non-composable functions

Are the functions

composable? It depends. If

N7 and 7 250

where N is the set of natural numbers, Z is the set of integers, and Q is

2_
the set of rational numbers then yes: (gof)(x) = (%)X *. But if

Matoxa(Z) —— Mato(Z) and Z 250

where Matyx2(Z) is the set of 2 x 2-matrices with integer coefficients
then no: what is the meaning of (%)y if y is @ matrix?

What is a category!?

A category is a two-sorted structure that encodes the algebra of
composition. It has

* objects: A,B,C...and

. arrows: A L B, B £ C, each with a specified source and target
so that

* for any pair of composable arrows:

B
VN
_—

A o~ C

there exists a composite arrow

* and each object has an identity arrow A DA

for which the composition operation is associative and unital.

What is the point of identities?

An isomorphism consists of:

so that
gof =ids and fog=ids

Isomorphism invariance principle:
If A .and B are isomorphic then every
category theoretic property of A is also true of B.

Examples of categories

In the category Set the
* objects are (finite) sets X, Y, ...

* arrows are functions X L> Y, ...

In the syntactic category for some programming language the

* objects are types X, Y, ...

* arrows are programs X L) Y, ...

Note that the same notation describes the data in any category. The
precise ontology of the objects and arrows won't matter much.

@

Categories for computational effects
(monads)

Notions of computation

Let us introduce some large functions

Set —=— Set

each encoding some notion of computation:

1ist(X) := finite lists of elements of X

partial(X) =X+ {Ll}

side-effectss(X) :=1S,S x X], the set of functions from S to
Sx X

continuationsg(X) := [[X,R],R], the set of functions from
the set [X, R] of functions from X to R to R

non-det(X) := P4 (X), the set of non-empty subsets of X

prob-dist(X) := the set of probability functions X LN [0,1] so
that ZXEX [’J(X) =1

T-programs

For any notion of computation T

1ist(X) := finite lists of elements of X

partial(X) =X+ {Ll}

side-effectss(X) :=[S,S x X], the set of functions from S to
Sx X

continuationsg(X) := [[X,R],R], the set of functions from
the set [X, R] of functions from X to R to R

non-det(X) := P(X), the set of all subsets of X

prob-dist(X) := the set of probability functions X LN [0,1] so
that ZXEX P(X) =1

A T-program from A to B is a function A 1N T(B), from the set of values
of type A to the set of T-computations of type B. Write

f f
A~ B to mean A — T(B).

Programs should form a category

A T-program from A to B is a function A iR T(B), from the set of values
of type A to the set of T-computations of type B.

The notion of monad arises from the following categorical imperative:
programs should form a category

Theorem: A notion of computation T defines a monad if* and only if the

f
T-programs A ~* B define the arrows in a category.

*If the category of T-programs is constructed using a Kleisli triple, as depicted on the next slide, then T defines a monad.

The category of T-programs
To define the category of T-programs we need:
id
* identity arrows A < A; a monad has unit functions A 22 T(A)

* a composition rule for T-computations:

frfrﬂﬁ B g Problem: A 1> T(B) and B £ T(C)
A m C are not composable!
gof

With a monad, any function B 5 T(C) can be extended to a function
T(B) £ T(C). Then

f g
defines the Kleisli composite of A~ B and B ~* C in the category Klr.

The category of partial-computations ‘
Forpartial(X):=X+{Ll}

¢
* A program A ~* B is a function A LN W {L}, i.e, a partial function
from A to B.

incl

id
« The unit A~ A is the function A ™% A 4 {1},
« Any function B £ C 4+ {_L} extends to a function

B+{L}§>C+{L}

by the rule g*(L) = L.
* The Kleisli composite

}HJB% . B+{Ll} o
- Jc f — , C4 (L)

is the largest partial function from A to C.

The category of 11st-computations
For 1ist(X)

f
A program A =7 B is a function A iR 1ist(B), i.e, a function from
Ato lists in B.

singleton

id
The unit A~ 11st(A) is the function A 2552 11 5t (A).
Any function B £» 11 st (C) extends to a function

1ist(8) &5 1ist(Q)

by applying g to each term in a list of elements of B and
concatenating the result.

The Kleisli composite

}ﬂ B . 1ist(B) o
f —
A Wm C A / Tof llSt(C)

is defined by application of f and g followed by concatenation.

)

Categories of operations and
equations (Lawvere theories)

Kleisli arrows define operations

Let n := {x1,...,x,} denote the set with n elements.

An arrow 1~ n in the category of 1ist-programs Kl1;g¢ is
+ afunction1 — list(n) (by definition) or equivalently

* anelementof 1ist(n) (the image of the previous function).

X3X5X2X5)
Eg 1 o X3X5X2X5 € List(6)

Arrows 1 ~* n, i.e, elements of 1ist(n), define n-ary operations.

Kleisli composites define equations between operations ‘

In the category of 11 st-programs Kl ;s¢, arrows 1 ~7 n define n-ary
operations.

n
Compositions » ~, define equations between operations.

Eg.

2
X1X2 = (x1,x2x3)
1 ’r/ﬂﬁ \K\“N

3

= X1X2X3 =

corresponds to the equation
X1(X2X3) = X1X2X3.

Together these operations and equations define the 1ist-theory L;s¢.

Models for the 11 st-theory ‘

A model for the 1ist-theory Li;st is
* asetA
* together with a function A" — A for each n-ary operation 1~ n

* satisfying the equations determined by the compositions in the
category of programs.

Eg
2 A?
xaxe 15 (axes) e odeled by Axax A (x1,x2x3)
>/ 1X2
1 m 3 Alb@k
= X1X2X3 = 7S — A3
A A.X1X2X3

A model for the 1ist-theory L1;<¢ is a contravariant
product-preserving functor from the category |15+ of 11st-programs
between finite sets.

O

Lawvere theories vs monads

models for a Lawvere theory
If T is any monadic notion of computation let L+ denote the category of
T-programs between finite sets. The opposite category | +°F, obtained

by formally reversing the arrows, defines a Lawvere theory.

A model is a functor [~ — defined on objects by

nr—— A"

and carrying each arrow n ™ m in the category |1 to a function
AT — AT,

algebras for a monad

If T is any monadic notion of computation an algebra for T is a set A
together with a function T(A) < A so that the composition relations
hold:

id:
A —2y T(A) T(T(A)) —2 TA

N bl I\

Theorem: The category of models for the Lawvere theory [+°" and the
category of algebra for the monad T are equivalent.

monads vs Lawvere theories

A monad is

e N i 1) T
* a “notion of composition” Set — Set

f
* so that T-programs A IR T(B) define the arrows A ~* Bin a
category Klz.

The opposite of the category of T-programs between finite sets defines
a Lawvere theory [+“". Conversely, any Lawvere theory defines a
monad on Set.

Theorem: The category of Lawvere theories is equivalent to the
category of finitary monads* on Set.

Finitary monads and Lawvere theories describe equivalent cate-
gorical encodings of universal algebra.

Advantages of Lawvere theories “

Why bother with Lawvere theories if they are equivalent to monads?

¢ Each monad acts on just one category, whereas models of Lawvere
theories can be defined in any category with finite products — and
the construction of the category of models is functorial in both
arguments.

¢ Lawvere theory operations can be added: any two Lawvere
theories | and |” have a sum | 4 |'— indeed the category of
Lawvere theories is locally finitely presentable.

¢ Lawvere theory operations can be intertwined: any two Lawvere
theories | and |/ have a tensor product | & |,

In practice, Lawvere theories are generated by computationally
natural operations satisfying computationally meaningful equations
— e.g, exceptions, side-effects, interactive input-output, ...

Continuations

All of computational effects mentioned thusfar fit into this framework for
categorical universal algebra with one exception:

Even for 2 = {T, L}, the continuations monad
continuationsy(X) = [[X,2],2] = P(P(X))

is not finitary. It does define a large Lawvere theory, but this is specified
with a proper class of operations.

“it appears that the continuations monad transformer should be seen as
something sui generis.”

A look towards the future 0

In “The Category Theoretic Understanding of Universal Algebra:
Lawvere Theories and Monads"”, Martin Hyland and John Power suggest
that “computational effects might be seen as an instance and
development of universal algebra.” From this viewpoint:

+ “Continuations would not be regarded as a computational effect
but rather as a distinct notion. It would still have its own body of
theory, and one would still study the relationship between it and
computational effects; but perhaps it would not be regarded as a
computational effect?”

* “Monads appear quite directly in the study of continuations. So
perhaps the notion of monad might be seen as a generalised
semantics of continuations?”

Review

Let T denote a notion of computation.

* A T-program is a function A IR T(B) from the set of values of type
A 1o the set of T-computations of type B.

¢ T is a monad just when it has the structure needed to tum
T-programs into a category.

* The T-programs between finite types define a Lawvere theory.

* The Lawvere theory presents the operations and equations for the
computational effect T.*

*If T is not finitary, these operations and equations define a different monad.

References ‘

* Eugenio Moggi, “Computational lambda-calculus and monads”

— describes monads and the category of programs

* Gordon Plotkin and John Power, “Computational Effects and
Operations: An Overview”

— describes the connection between
Moggi's monads and Lawvere theories

¢ Martin Hyland and John Power, “The Category Theoretic
Understanding of Universal Algebra: Lawvere Theories and
Monads”

— inspired this talk

Thank you!

	Functions, composition, and categories
	Categories for computational effects (monads)
	Categories of operations and equations (Lawvere theories)
	Lawvere theories vs monads

