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Abstract. We investigate the role of cohesion in unstable global equivariant homotopy
theory.
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1. Motivations

1.1. Introduction. Global equivariant homotopy theory is a way to amalgamate equi-
variant homotopy theory for “all” groups G into a single homotopy theory. Here “all groups”
means something like “all compact Lie groups”, though we could take it to mean a smaller
class like “all compact abelian Lie groups” or “all finite groups”.

The purpose of this document is to give a brief introduction to one definition, and to
highlight the role of “cohesion” in relating ordinary equivariant homotopy theory with global
equivariant homotopy theory.

Generally, I will work at the level of (∞, 1)-categories, here also called homotopy
theories1. I will sometimes present a homotopy theory by giving a “relative category”; i.e.,
a pair (C,W ) consisting of a category with a class of weak equivalences. Usually, I have a
model category structure in mind as well, but I may not bother to mention it. At other times
I’ll present a homotopy theory by giving a category enriched over spaces. Phrases such as
“colimit” usually really mean “homotopy colimit” (i.e., “(∞, 1)-categorical colimit”), unless
otherwise indicated. I do not attempt to be especially precise about which (∞, 1)-categorical
foundations are involved.

Sometimes I need to dig in and think about an honest category. (In particular, I’ll mess
around a bit with explicit topological groupoids.) Hopefully, it is clear when this is what
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I’m doing. However, the goal is always to give homotopy-meaningful statements, so that
is the level at which I generally work, and unless otherwise stated, statements should be
interpreted in this way.

I also assume the reader is fairly familiar with the theory of ∞-toposes. In particular, I
will make much use of the property of “descent” in the homotopy theory of spaces, and in
the homotopy theory of presheaves of spaces.

This document is evolving; in fact, it has changed substantially since the first version I
posted. Some parts are unstable (both structurally and mathematically).

1.2. Classical equivariant homotopy theory. Recall that for any (compact Lie) group
G,2 we have a G-equivariant homotopy theory. We can take this to be the category
GTop of spaces equipped with a G-action, in which a G-equivariant map f : X → Y is said
to be a G-equivariant equivalence if for each closed subgroup H of G, the induced map

fH : XH → Y H

on H-fixed points is a weak equivalence of spaces. I’ll write GTop for this homotopy theory.
It is also modelled by the Top-enriched category whose objects are G-CW complexes.

The various equivariant homotopy theories can be related to each other via group homo-
morphisms. Thus, if φ : H → G is a homomorphism of compact Lie groups, we obtain an
“restriction” functor of homotopy theories

φ∗ : GTop→ HTop,

where φ∗X is the H-space obtained by restriction the action of G on X along the homomor-
phism φ. Thus, we can think of G 7→ GTop as a contravariant functor from the category of
Lie groups to homotopy theories.

Note that if φ, φ′ : H → G are homomorphisms which are conjugate via some g ∈ G, then
there is an induced natural isomorphism of functors cg : φ∗

∼−→ φ′∗. Thus we should properly
think of G 7→ GTop as a functor from the 2-category of Lie groups, homomorphisms, and
intertwiners. We will realize this 2-category as a topologically enriched category, called Glo,
the “global indexing category”.

1.3. Equivariant bundles. Fix a compact Lie group Π. For any compact Lie group G,
there is a notion of a G-equivariant Π-principal bundle. A Π-principal bundle over a
G-space X is a G× Π-space P together with a map f : P → X which is G× Π-equivariant
(using the trivial Π-action on X), and such that Π acts freely on P and P/Π → X is a
homeomorphism.

For nice G-spaces (e.g., G-CW complexes) this notion is homotopy invariant, and thus we
obtain a functor

PG
Π : h(GTop)op → Set,

which associates to a G-space X the set PG
Π (X) of equivalence classes of G-equivariant Π-

principal bundles over X. The functor PG
Π is represented by a G-space, namely the classifying

space BGΠ for G-equivariant Π-principal bundles.
The functors PG

Π are related if we let G vary. For instance, if φ : H → G is a homorphism,
there is an evident map PG

Π (X)→ PH
Π (φ∗X) defined by restriction of the group action, and

conjugate φ, φ′ given rise to isomorphic maps. We may call such a collection PΠ = {PG
Π } of

functors, together with the relevant restriction maps, a “global functor” (as in [Sch13a]).

2All groups will be compact Lie groups, except when they aren’t.
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We would like to be able to say that the global functor PΠ is represented by a “global
space”, which we will call BΠ.

Furthermore, any group homomorphism ψ : Π→ Π′ gives rise to maps ψ∗ : PG,Π → PG,Π′ ,
which send a bundle P → X to the induced bundle P ×Π Π′ → X, and hence to a map
ψ∗ : PΠ → PΠ′ of global functors. We should expect that such maps are represented by maps
of global spaces, which we would denote Bψ : BΠ→ BΠ′.

1.4. Global spaces. The above discussion suggests that there should be a homotopy theory
TopGlo of “global spaces”, together with functors

δG = “X 7→ X//G”: GTop→ TopGlo.

Then the global functor PΠ = {PG
Π } should extend to a functor PΠ : h(TopGlo)op → Set, so

that

PΠ(X//G) = PG
Π (X).

Furthermore, the functor PΠ should be represented by a global space BΠ, and natural trans-
formations PΠ → PΠ′ between such functors should correspond to maps BΠ → BΠ′ in
TopGlo.

In fact, it will turn out that BG ≈ δG(∗) = ∗//G, so that the global space corresponding
to the terminal G-space is simultaneously the classifying space for PΠ. In particular, the
functor δG : GTop → TopGlo lifts to a functor ∆G : GTop → TopGlo/BG, and it turns out
that the functor ∆G will be fully-faithful, and will preserve homotopy limits and homotopy
colimits.

The main goal of this note is to show that such a model of global homotopy theory exists,
and that it comes with “cohesion” for each group G [Sch13b]. This amounts to an adjoint
sequence ΠG a ∆G a ΓG a ∇G of functors of the form

TopGlo/BG

ΠG
��

ΓG
��

GTop

∆G

OO

∇G

OO

so that ∆G and ∇G are fully faithful, and ΠG preserves finite products. The functor ∆G is
the X 7→ X//G functor (landing in the slice category over ∗//G ≈ BG) indicated above. We
note that in particular, GTop is thus equivalent (in two different ways!) to a full subcategory
of the slice theory TopGlo/BG.

1.5. Orbispaces. It turns out that the functors δG : GTop → TopGlo have their values
contained in a certain sub-homotopy theory TopOrb, which we call the theory of “orbispaces”.
It is a non-full subtheory. For instance, the theory of orbispaces contains all the objects
BG = δG(∗) described above, for all compact Lie groups G, but only contains morphisms
Bφ : BH → BG associated to injective homomorphisms φ : H → G (while TopGlo contains
Bφ for all homomorphisms φ.)

It turns out that the slice theory TopOrb/BG is in fact equivalent to the theory of G-
spaces. On the other hand, while the functors PG

Π : h(TopOrb)op → Set remain representable
in TopOrb, the representing objects are no longer the global spaces BG.

We will show that for any orbispace X, there is an associated cohesion, which amounts to
an adjoint sequence ΠX a ∆X a ΓX a ∇X of functors with ∆X : TopOrb/X → TopGlo/X so
that ∆X and ∇X are fully faithful and ΠG preserves finite products. When X = BG, then
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TopOrb/BG ≈ GTop, and this result recovers as a special case the cohesion ∆G : GTop →
TopGlo/BG described above.

We note that there is a terminal orbispace N (which is not the same as the terminal global
space), and thus in particular there is a cohesion TopOrb → TopGlo/N relating orbispaces
and global spaces sliced over N . In particular, the theory of orbispaces is a full subtheory
of global spaces sliced over N .

Remark 1.5.1. The term “orbispace” comes from [GH07], where it is in fact used more
generally; in particular, in their usage it might apply to either what we have called TopGlo

and TopOrb. It seems good to have separate terms for these concepts. Thus, I have stolen
the term “orbispaces” to refer to objects of TopOrb, while I use the term “global spaces” to
refer to objects of TopGlo, as this latter category seems to be the correct place to do “global
homotopy theory”. I realize this may cause some confusion; I am not strongly attached to
this choice of terminology, and would be happy to consider an alternative.

1.6. Models. There are two kinds of models for the unstable global equivariant homotopy
theory TopGlo that I know of: a presheaf model (as in Gepner-Henriques [GH07]), and the
“orthogonal space model” of Schwede [Sch13a]. I’ll describe the presheaf model TopGlo first,
though in detail it won’t be exactly the same as [GH07]. Then I’ll briefly talk about the
orthogonal space model LTop.

2. The category of compact Lie groups

Global spaces may be defined as presheaves of spaces on Glo, a topologically enriched
category built from compact Lie groups. The idea is reminiscent of Elmendorff’s theorem,
which gives an equivalence of homotopy theories

GTop ≈ TopOG

between G-spaces and the homotopy theory of functors Oop
G → Top, where O is the orbit

category of the group G.
Below I’ll describe a model for Glo based on groupoids of representations. The category

TopGlo of presheaves of spaces on the Top-enriched category Glo will be our basic model for
global spaces.

2.1. Topological groupoids. Let G andH be groupoids internal to Top. We write Fun(H,G)
for the groupoid whose objects are (continuous) functors H → G, and whose morphisms are
natural transformations between such. There is an evident topology on the object and
morphism sets of Fun(H,G) (given by the compact-open topology).

Given a topological groupoid G, we write BG for the geometric realization of the nerve of
G (which is itself a simplicial space).

For the most part, we will consider topological groupoids of a very special form, namely
Lie groups G, and more generally action groupoids G y X obtained from the action of a
Lie group G on a space X.

2.2. Representation groupoids and Glo. Given Lie groupsG andH, the functor groupoid
Fun(H,G) has the form

Fun(H,G) =

{
obj Hom(H,G)

mor Hom(H,G)×G
.
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The objects are homomorphisms H → G. An element (φ, g) ∈ Hom(H,G)×G is a morphism
with source φ and target ψ, where ψ(x) = gφ(x)g−1; I’ll write g : φ→ gφg−1 as a shorthand
for ψ. The space Hom(H,G) is topologized with the compact-open topology.

Now let Glo be a category enriched over Top, whose objects are compact Lie groups, and
whose morphism spaces are

Glo(H,G) = B Fun(H,G).

We can think of Glo as a “global indexing category”.3

Remark 2.2.1. As a variant, we can consider a topologically enriched groupoid Fun′(H,G),
whose objects are the set of homomorphisms φ : H → G, and whose morphisms φ → ψ are
the space { g ∈ G | ψ = gφg−1 } ⊆ G. Then we can define a topologically enriched category
Glo′ with Glo′(H,G) = B Fun′(H,G).

As long as the Lie groups are compact, this doesn’t make much difference. In fact, it
is “well-known” that if H is compact, then sufficiently close homomorphisms H → G are
conjugate ([CF64, Ch. VIII, Lemma 38.1]; see discussion at [MO13].) This means that
under the conjugation G-action, Hom(H,G) decomposes (topologically) as a disjoint union
of orbits; in fact, as a G-space,

Hom(H,G) ≈
∐
[φ]

G/CG(φ),

the coproduct taken over the set of conjugacy classes of homomorphisms. This implies that
B Fun′(H,G) and B Fun(H,G) are weakly equivalent, and both are weakly equivalent to∐

[φ]

BCG(φ).

Thus, TopGlo ≈ TopGlo′ .
If H is not compact, this kind of equivalence can fail badly. For instance, consider

B Fun(R, U(1)) vs. B Fun′(R, U(1)); one is connected, while the other has uncountably many
components.

2.3. Relation to equivariant classifying spaces. Recall that for an H-space X, we may
consider the notion an H-equivariant G-principal bundle over X, which is a principal
G-bundle P → X over X equipped with an continuous action of H on P covering the given
action on X, so that the induced squares

P
h
//

��

P

��

X
h
// X

3This is nearly the same as what in [GH07] is called Orb. Note that they don’t restrict attention to
compact Lie groups, and allow fairly general classes of isotropy groups. They also (sometimes) restrict
attention to injective homomomorphisms, instead of all homomorphisms. A variant of Glo based on injective
homomorphisms will also play a role and our story; we will call it Orb.

One more difference is that they use the “fat realization” of a simplicial space to construct the classifying
space of a groupoid in Top. (The fat realization does not quotient out degeneracy relations, and thus has
slightly better homotopy theoretic properties that the “thin realization”, which does identify degeneracies;
however, the thin realization is product-preserving on the nose, while the fat realization is not. As long as
we stick to compact Lie groups, we should be able to use the thin realization.)
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are G-bundle maps.
Write PG(H y X) for the ∞-groupoid of H-equivariant principal G-bundles over X.

(This can be modelled (up to some coherence issues) as a simplicial set, so that n-simplices
are H-equivariant principal G-bundles over X ×∆n.)

For compact Lie groups H and G, there is a universal equivariant classifying space BHG,
with the property that for nice X (e.g., G-CW complexes), we have

PG(H y X) ≈ MapHTop(X,BHG).

We note that if X = ∗, then an H-equivariant principal G-bundle over X is nothing more
than a G-representation. That is,

PG(H y ∗) ≈ MapHTop(∗, BHG) ≈ B Fun(H,G).

In other words, Glo(H,G) = B Fun(H,G) defined above is equivalent to the space (BHG)H ,
the H-fixed points of the classifying space of H-equivariant G-principal bundles.

Remark 2.3.1. If H is compact Lie, and G is either a (i) finite or (ii) abelian compact Lie
group (see [May90], or [LMS83] for the abelian case), then for a G-CW complex X we have4

MapHTop(X,BHG) ≈ MapTop(XhH , BG),

where XhH = (X × EH)H is the usual homotopy orbit construction of the H-action on X.
In particular, if H is compact Lie and G satisfies (i) or (ii) above, then the map

B Fun(H,G)→ Map(BH,BG),

which is defined so that a homomorphism φ : H → G is sent to Bφ : BH → BG, is a weak
equivalence.

2.4. Universal bundle model of Glo. There is another model for Glo, obtained immedi-
ately from the construction of equivariant classifying spaces.

For each compact Lie group G, pick a universal principal G bundle EG→ EG/G = BG.
Let Ogl be the topologically enriched category whose objects are compact Lie groups, and
whose morphism spaces are

Ogl(G,H) = [Top(EG,EH)/H]G.

That is, a point of Ogl(G,H) is an equivalence class of maps f : EG → EH such that for
each g ∈ G, there exists h ∈ H such that f · g = h · f . Because H acts freely on EH, the
stabilizer group Λ(f) ≤ G×H of such an f must be the graph of a continuous homomorphism
φ : G → H. Composition is defined evidently. It can be shown [May90] that Ogl(G,H) is a
model for the equivariant classifying space BGH.

2.5. Linear isometry model of Orb. A variant of the universal bundle model for Glo built
from linear isometries is the category Schwede calls Ogl [Sch13a, I.6.13].

Schwede’s model for Ogl is obtained as follows. To describe this, let L = L(R∞,R∞) be
the topological monoid of endomorphisms of the real inner product space R∞ =

⋃
Rn. A

universal subgroup [Sch13a, I.6.1] of L is a closed subgroup G ⊂ L which (i) admits the
structure of a Lie group, and (ii) is such that the induced G action on R∞ makes it into a
complete G-universe [Sch13a, I.1.5] (i.e., is isomorphic to a direct sum of countably many
copies of each irreducible orthogonal G-representation).

4It seems likely to me that the result holds when G is any extension of a finite group by a compact torus,
but I don’t know a reference or a proof.
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The objects of Ogl are the universal subgroups of L. The morphism space Ogl(G,H) is

Ogl(G,H) = (L/H)G ≈ MapL(L/G,L/H),

a space of maps of spaces with left L-action. Every compact Lie group is isomorphic to a
universal subgroup of L [Sch13a, I.6.2]. The space (L/H)G is a model for the equivariant
classifying space BGH (see [Sch13a, A.2.5]).

3. Global spaces

The model for global homotopy that we consider is simply that of presheaves of spaces on
Glo.

3.1. Global spaces as presheaves on Glo. Let TopGlo denote the category of Top-enriched
functors Gloop → Top. We call such objects global spaces. We say that a map f : X → Y
of global spaces is an weak equivalence if f(G) : X(G)→ Y (G) is a weak equivalence for
every group G.

Each G gives a representable functor,

BG : Gloop → Top, BG(H) = Glo(H,G),

and thus we obtain a fully faithful Yoneda embedding B : Glo→ TopGlo.

3.2. Constructing global spaces from G-spaces: functors δG and ∆G. Next we build
a functor δG : GTop → TopOrb for each compact Lie group G, which associates to each G-
space a global space. The functor δG will not in any sense be an inclusion (i.e., fully faithful).
However, the value of δG on the terminal object 1 of GTop will be BG. Therefore, our functor
δG will immediately give rise to a functor

∆G : GTop→ TopOrb/BG
to the slice category of global space over BG, whose value at a G-space X will be the map
δG(X)→ δG(1) = BG. As we will see below, the functor ∆G will induce a full embedding of
the homotopy of G-spaces inside the slice homotopy theory TopGlo/BG.

For a general G-space X, the object δGX should be some kind of “fiber bundle” over BG,
whose “fibers” (over points of each space (BG)(H)) are fixed point spaces of the action of
some closed subgroup of G on X. For instance, suppose φ ∈ (BG)(H) = B Fun(H,G) is a
point corresponding to an actual homomorphism φ : H → G. We would like the fiber of

(δGX)(H)→ B Fun(H,G) over φ

to be the space Xφ(H) of points in X fixed by the subgroup φ(H) of G. (Observe that
φ(H) ≤ G is a closed subgroup, since H is compact.)

We define
(δGX)(H) := B Fun(H,G y X),

the classifying space of the topological groupoid of functors to the action groupoid of G
acting on X. Set theoretically this has the form

Fun(H,G y X) =

{
obj

∐
φ∈Hom(H,G) X

φ(H)

mor
∐

φ∈Hom(H,G) X
φ(H) ×G.

The objects and morphisms are topologized as subspaces of Hom(H,G)×X and Hom(H,G)×
X ×G respectively.
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A morphism (φ, x)→ (φ′, x′) in Fun(H,G y X), where φ, φ′ : H → G and x ∈ Xφ(H) and
x′ ∈ Xφ′(H), is thus a g ∈ G such that φ′ = gφg−1 and x′ = gx. The map

∐
φ∈Hom(H,G)X

φ(H) →
Hom(H,G) is actually a fiber bundle: under the isomorphism Hom(H,G) ≈

∐
[φ] G/CG(φ),

the restriction of this bundle over G/CG(φ) is G×CG(φ) X
φ(H) → G/CG(φ).

Observe that after taking classifying spaces, the map

π : B Fun(H,G y X)→ B Fun(H,G)

remains a fiber bundle.
We thus have a topologically enriched functor

δG : GTop→ TopGlo, δG(X)(H)
def
= B Fun(H,G y X),

where the action on morphisms is defined via the evident composition functor Fun(H,G y
X)× Fun(H ′, H)→ Fun(H ′, G y X), which on objects sends ((φ, x), ψ) to (φψ, x).

We also obtain a topologically enriched functor

∆G : GTop→ TopGlo/BG, ∆G(X)(H)
def
=
(
π : B Fun(H,G y X)→ B Fun(H,G)

)
.

Both δG and ∆G take G-equivariant weak equivalences to weak equivalences of orbispaces.

3.3. Compatibility of δ functors with induction. Next, we note that the δ functors are
compatible with “inducing up” from subgroups, in the following sense.

Proposition 3.3.1. If H ⊆ G is a closed subgroup5 and X is a H-space, there is a weak
equivalence δH(X) → δG(G ×H X), natural in X. In particular, taking X = ∗ we find
∆G(G/H) ≈ (BιH : BH → BG).

Proof. This amounts to showing that the evident map B Fun(K,H y X)→ B Fun(K,G y
G×HX) is a weak equivalence for any Lie group K. The key calculation is the case of X = ∗,
and to prove this case, note that for a homomorphism φ : K → G, it is straightforward to
calculate that the homotopy fiber of B Fun(K,H) → B Fun(K,G) over φ is equivalent to
(G/H)φ(K). �

3.4. Faithful morphisms of global spaces. Say that a map f : X → Y in TopGlo is
faithful6 if for every compact Lie group G, and every closed normal subgroup N ⊆ G, the
resulting square

X(G/N) //

��

X(G)

��

Y (G/N) // Y (G)

is a homotopy pullback of spaces.
We can characterize the faithful maps in the following way.

Proposition 3.4.1. The faithful maps in TopGlo are precisely those which are right-orthogonal
(in the (∞, 1)-categorical sense) to the set of maps {Bφ} where φ ranges over all surjective
homomorphisms of compact Lie groups.

Proof. This is a straightforward translation of the definition. �

5All subgroup we consider in this note will be closed.
6Alternately, we could say that f is representable. Both terms are used in [GH07] for notions like this.
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We write Topfaith
Glo for the (non-full) subtheory of TopGlo consisting of all objects and all

faithful maps. The derived mapping space MapTopfaith
Glo

(X, Y ) is equivalent to the union of

path components of MapTopGlo
(X, Y ) which contain faithful maps.

Example 3.4.2. If φ : G→ H is a homomorphism of compact Lie groups, then Bφ : BG→ BH
is faithful if and only if φ is injective.

Example 3.4.3. If X is a G-space, then the projection π : δGX → BG is a faithful map. To
see this, observe that for a group H, the homotopy fiber of (δGX)(H)→ BG(H) over a point
corresponding to a homomorphism φ : H → G is Xφ(H), which only depends on the image
of φ inside G.

Exercise 3.4.4. Let X be a G-CW complex. Show that δGX → ∗ is a faithful map in TopGlo

if and only if G acts freely on X.

We record the following properties of faithful maps, whose proof is straightforward.

Proposition 3.4.5.

(1) The homotopy pullback of a faithful map is faithful.
(2) If f : Y → X is faithful, then g : Z → Y is faithful if and only if gf is faithful.
(3) Let f : X → Y be a natural transformation of functors X, Y : C → TopGlo, such that

each f(c) : X(c)→ Y (c) is faithful. Then holimC f is faithful.

3.5. GTop corresponds to faithful objects of TopGlo/BG. Now we will show that the
functor ∆G : GTop→ TopGlo/BG is homotopically fully faithful, and thus embeds the homo-
topy theory of G-spaces inside the homotopy theory of global spaces over BG. Furthermore,
we identify the essential image of ∆G as consisting of faithful morphisms to BG.

Proposition 3.5.1. The functor ∆G : GTop→ TopGlo/BG between homotopy theories com-
mutes with homotopy limits and homotopy colimits, and gives an equivalence between G-
spaces and the full sub-homotopy-theory (TopGlo/BG)faith of TopGlo/BG whose objects are
faithful morphisms to BG.

Proof. By construction, the functor ∆G factors as a composite

GTop
∼−→ TopOG → TopGlo/BG.

The first functor in the composite (obtained by taking fixed points) is an equivalence by
Elmendorff’s theorem, while the second functor preserves both homotopy limits and colimits,
since it does so fiberwise.

We can describe a right adjoint ΓG : TopGlo/BG→ GTop via a composite

TopGlo/BG
Γ′G−→ TopOG

∼−→ GTop,

where the second functor is Elmendorff’s equivalence. The first functor Γ′G may be defined
by

(Γ′G(X))(G/H) = (TopOrb/BG)(∆G(G/H), X) ≈ (TopGlo/BG)(BιH , X),

where the last equivalence is by (3.3.1). Thus for a subgroup H ≤ G, the space ΓG(X)H is
naturally equivalent to the homotopy fiber of X(H)→ B Fun(H,G) over ιH .

It follows immediately that the (derived) counit map ΓG∆G → IdTopGlo/BG is a weak
equivalence, since the homotopy fiber of ∆GT : δGT → B Fun(H,G) over ιH is the fiber,
which by construction is TH .
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On the other hand, we see that IdTopGlo/BG → ∆GΓG(X) is an equivalence if and only if
X is faithful over BG. This gives the desired equivalence of homotopy theories. �

We obtain as a corollary the following alternative characterization of faithful maps.

Proposition 3.5.2. A map f : X → Y in TopGlo is faithful if and only if for every compact
Lie group G and every map y : BG → Y , the homotopy pullback Xy → BG of f along y is
weakly equivalent in TopGlo/BG to an object of the form ∆G(T ) for some G-space T .

Proof. Straightforward. �

3.6. The functor γG. Note that the functor δG : GTop→ TopGlo is not itself homotopically
fully faithful. However, it does have a homotopical right adjoint γG : TopGlo → GTop, with
the property that

(γGX)K ≈ X(K)

for a closed subgroup K ⊆ G. This is an immediate consequence of the identification
δG(G/H) ≈ BH.

In particular, note that for a group H and a subgroup K ≤ G,

(γGBH)K ≈ B Fun(K,H).

This means that γGBH ≈ BGH, the G-equivariant classifying space of H. As a consequence,
we see that for a G-space X,

MapTopGlo
(δG(X),BH)

is weakly equivalent to the classifying space PH(G y X) of G-equivariant H-principal
bundles over X.

The unit map X → γGδG(X) ≈ BGG of the adjunction, applied to a G-space X, classifies
the G-equivariant G-principal bundle π1 : X × G → X, in which the G × G-action on the
total space is (u, v) · (x, g) = (ux, ugv−1).

Exercise 3.6.1. Let X be a G-space, and let P → G be a G-equivariant H-principal bundle
over X, which is classified by a map f : δGX → BH. Show that the map f is faithful if and
only if G acts freely on P .

3.7. The functor ∂G. Finally, we note that the functor γG : TopOrb → GTop itself admits
a homotopical right adjoint ∂G : GTop→ TopOrb, with the property that

(∂GX)(H) ≈ MapGTop(BGH,X).

Altogether, we have functors

GTop

δG
��

∂G
��

TopOrb

γG

OO

4. Orbispaces

In this section we identify an interesting class of global spaces, called “orbispaces”, which
includes all global spaces obtained from spaces equipped with actions by a compact Lie group.
There is a corresponding homotopy theory consisting of the orbispaces and the faithful maps
between them, which turns out itself to be modelled as presheaves on a subcategory Orb of
Glo.
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4.1. The normal subgroup classifier. Define N in TopGlo by

N (G) = {normal subgroups of G}.

The right-hand side is a set viewed as a discrete space. A homomorphism φ : G→ H induces
the map N (φ) which sends N EH to φ−1N EG. The global space N is called the normal
subgroup classifier.

Exercise 4.1.1. Show that MapTopGlo
(N ,BG) ≈ BG.

4.2. Orbispaces. We say that a global space X is an orbispace if there exists a faithful
map X → N to the normal subgroup classifier.

Proposition 4.2.1. If Y is a global space such that there exists a faithful map Y → X to
an orbispace X, then Y is an orbispace.

Proof. Immediate from (3.4.5)(2). �

Example 4.2.2. The normal subgroup classifier is tautologically an orbispace.

Example 4.2.3. For any compact Lie group G, the global space BG is an orbispace. To see
this, consider the map I : BG → N which classifies the trivial subgroup of G. Explicitly,
I sends a point in BG(H) corresponding to a homomorphism φ : H → G to the subgroup
Kerφ E H. The map I is a faithful map, a fact which amounts to the observation that if
φ : H → G is a homomorphism and N EH is such that N ⊆ Kerφ, then φ factors through
the quotient H/N . This observation also shows that I is the unique faithful map BG→ N .

Example 4.2.4. By (4.2.1), it follows that δG(T ) is an orbispace for any compact Lie group
G and G-space T .

4.3. The inertia map. When X is an orbispace, any “G-point” of X factors uniquely
through a “G/N -point” which is itself represented by a faithful map.

Proposition 4.3.1. Suppose f : X → N is a faithful map of global spaces. Let x : BG→ X
be map and let NEG be a normal subgroup, with π : G→ G/N the quotient homomorphism.
There exists a factorization of x of the form

BG Bπ−→ B(G/N)
x−→ X

in which x is a faithful map, if and only if N = f(x).

Proof. First, suppose such a factorization of x through some faithful x : B(G/N)→ X exists.
Then the composite f◦x : B(G/N)→ N is faithful by (3.4.5)(2), and thus classifies the trivial
subgroup of G/N , whence f(x) = N .

Conversely, let N = f(x). Then there is a commutative square

BG x
//

Bπ
��

X

f

��

B(G/N)
{1}
//

x

::

N

As faithful maps are right orthogonal to Bπ when π is surjective, a lift x exists making the
diagram commute. As f and {1} are faithful, it follows that x is faithful by (3.4.5)(2). �
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Given an orbispace X and a map x : BG → X, the inertia group of x is the unique
normal subgroup IX(x) E G such that x factors through a faithful map B(G/IX(x)) → X.
It is straightforward to check that if φ : H → G is a homomorphism, then IX(x ◦ Bφ) =
φ−1(IX(x)). Thus for any orbispace X we may define its inertia map IX : X → N by
x 7→ IX(x) for x ∈ X(G). The previous proposition implies that for an orbispace X, any
faithful map X → N coincides with the inertia map IX , and thus the inertia map is itself
faithful. We can summarize this discussion as follows.

Proposition 4.3.2. Let X be an arbitrary global space. Then the space Mapfaith
TopGlo

(X,N )

of faithful maps to N is a (−1)-type (i.e., is either empty or contractible). It is non-empty
(and hence contractible) exactly when X is an orbispace, in which case the inertia map
IX : X → N exhibits a point of Mapfaith

TopGlo
(X,N ).

We have the following criterion for a global space X to be an orbispace.

Proposition 4.3.3. Let X be an arbitrary global space. The following are equivalent.

(1) X is an orbispace.
(2) For every x : BG → X, there exists a factorization up to homotopy of x of the form

BG→ B(G/N)
x−→ X where x is faithful.

(3) For every x : BG → X, there exists a factorization up to homotopy of x of the form

BG y−→ Y
f−→ X where Y is an orbispace and f is faithful.

Proof. Direction (1) =⇒ (2) follows from (4.3.1), and direction (2) =⇒ (3) is immediate
since B(G/N) is an orbispace.

To show that (2) =⇒ (1), note that the factorization whose existence is proclaimed by
(2) is essentially unique, by (3.4.1). We may use this to associate to each x : BG → X the
unique normal subgroup I(x)EG such that x factors through a faithful x : B(G/I(x))→ X,
which thus defines a map I : X → N , which is easily seen to be faithful using the uniqueness
of the factorization. It follows that X is an orbispace.

To show that (3) =⇒ (2), note that given x : BG → X, we can factor it through some

BG y−→ Y
f−→ X with f faithful by (3), and we can then factor y through BG→ B(G/IY (y))

y−→
Y with y faithful by (4.3.1). Therefore fy : B(G/IY (y))→ X is a faithful (3.4.5) factorization
of x. �

4.4. The homotopy theory of orbispaces. We can now define a homotopy theory Toporbi
Glo

of orbispaces, as the topologically enriched category, whose objects are the orbispaces, and
whose morphisms spaces are the spaces Mapfaith

TopGlo
(X, Y ) of faithful morphisms (viewed as a

subspace of the derived mapping space in TopGlo). Thus, Toporbi
Glo ⊂ TopGlo can be regarded

as a non-full sub-theory.
In view of (3.4.5)(2) and (4.3.2), there is an equivalence

(TopGlo/N )faith
∼−→ Toporbi

Glo

between the theory of orbispaces and the full subtheory (TopGlo/N )faith of the slice category
TopGlo/N whose objects are precisely the faithful morphisms X → N . On objects, the
equivalence sends a faithful map X → N of global spaces to the orbispace X.

Thus, the theory of orbispaces can be seen (in view of (3.5.1)) as an analogue of the
homotopy theory of G-spaces, with the role of BG replaced by N .
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4.5. The global orbit category Orb. Let Orb ⊂ Glo denote the subtheory consisting
of all objects, and injective homomorphisms. That is, Orb(G,H) = B Funinj(G,H), where
Funinj(G,H) ⊆ Fun(G,H) is the full subgroupoid whose objects are injective homomor-
phisms. Write TopOrb for the category of presheaves on Orb, and write BOrb : Orb→ TopOrb

for the Yoneda embedding. We refer to Orb as the global orbit category.7

Let i : Orb → Glo denote the evident inclusion functor. It gives rise to a series of homo-
topically adjoint functors

TopGlo

γOrb

��

TopOrb

δOrb

OO

∂Orb

OO

The functor γOrb is defined by restriction along i, so that

(γOrbX)(G) = X(iG).

The functor δOrb is defined by left Kan extension along i. It may be described explicitly
on objects by

(δOrbX)(G) =
∐
NEG

X(G/N).

A homomorphism φ : H → G sends the summand X(G/N) ⊂ (δOrbX)(G) to X(H/φ−1N) ⊂
(δOrbX)(H) via the induced homomorphism H/φ−1N → G/N . Note that δOrbBOrbG ≈ BG.

The functor ∂Orb is defined by right Kan extension along i. It satisfies (∂OrbX)(G) ≈
MapTopOrb

(γOrbBG,X).

4.6. Orbispaces are presheaves on Orb. Note that δOrb(1) ≈ N . It is straightforward to
check that for any X in TopOrb, the map δOrbX → δOrb1 ≈ N is faithful. Thus, δOrb lifts to
a functor

∆Orb : TopOrb → TopGlo/N ,
whose image lies in the full subcategory (TopGlo/N )faith. (Likewise, the functor δOrb : TopOrb →
TopGlo takes values in the subcategory Toporbi

Glo ⊂ TopGlo of orbispaces.)
The functor ∆Orb admits a right adjoint ΓOrb : TopGlo/N → TopOrb, which can be com-

puted by
(ΓOrbX)(G) ≈ X(G; 1),

where the space X(G;N) ⊆ X(G) is the preimage of IX(G) : X(G)→ N (G) over N ∈ N (G).

Proposition 4.6.1. The functor ∆Orb : TopOrb → TopGlo/N is fully faithful, and its essen-
tial image is precisely (TopGlo/N )faith ≈ Toporbi

Glo .

Proof. It is immediate from the above descriptions of the adjoint pair ∆Orb : TopOrb �
TopGlo/N : ΓOrb that the unit map X → ΓOrb∆OrbX is an equivalence for all X in TopOrb.
Conversely, for Y in TopGlo/N , the counit map ∆OrbΓOrbY → Y is given by

∆OrbΓOrbY (G) ≈
∐
NEG

Y (G/N ; 1)→
∐
NEG

Y (G;N) ≈ Y (G),

induced by the quotient maps G → G/N . It is straightforward to check that Y → N is
faithful if and only if Y (φ) : Y (G;N) → Y (H;φ−1N) is an equivalence for every surjective
homomorphism φ : H → G and normal N E G, which holds if and only if Y (G;N) →

7Recall that we call Glo that “global indexing category”.
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Y (G/N ; 1) is an equivalence for every pair N EG. Thus ∆OrbΓOrbY → Y is an equivalence
if and only if Y → N is faithful, as desired. �

5. Cohesion

Cohesion is a category theoretic notion due to Lawvere, which has been generalized to
the ∞-categorical setting by Schreiber [Sch13b]. By a cohesion, we mean a collection of
functors

C
Π
��

Γ
��

T

∆

OO

∇

OO

between homotopy theories, equipped with homotopical adjunctions Π a ∆ a Γ a ∇ (so
that Π is left adjoint to ∆, etc.), such that

(1) the natural unit and counit maps

Π ◦∆→ IdT → Γ ◦∆, IdT → Γ ◦ ∇

are equivalences, and
(2) the functor Π preserves finite products (up to weak equivalence).

Note that (1) is equivalent to saying that both ∆ and ∇ are homotopically fully-faithful. As
a consequence, T is equivalent to a full sub-homotopy-theory of C in two different ways. A
brief notation for a cohesion is to just give the fully-faithful functor ∆: T → C, which in
fact determines the rest of the structure.

Typically in a cohesion, both T and C are ∞-topoi. When this is the case, and T ≈ Top,
then we say that C is a cohesive ∞-topos. The motivation for cohesion comes from
attempting to formalize notions of geometry based on collections of “points” which “cohere”
via some kind of geometric structure8.

Example 5.0.2. A familiar (to homotopy theorists) example of a cohesive ∞-topos is that of
simplicial spaces. Write Top∆ for the homotopy theory of functors ∆op → Top. In this case,
the functors

Top∆

Π
��

Γ
��

Top

∆

OO

∇

OO

are as follows.

• Π is the homotopy colimit functor, which can be computed by geometric realization,
which is finite product preserving.
• ∆ is the constant simplicial object functor, sending T to (∆T )([n]) = T .
• Γ is the evaluation at [0] functor, sending X to ΓX = X([0]); it is equivalent to the

homotopy limit functor.
• ∇ is the functor given by (∇T )([n]) = Map([n], T ), where the finite set [n] is regarded

as a discrete space.

8See [Sch14]. I don’t actually understand this motivation, which doesn’t seem to relate easily to the sorts
of cohesion which appear in this note.
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We are going to show that for any orbispace X we obtain a cohesion of the form

TopGlo/X

ΠX
��

ΓX
��

(TopGlo/X)faith

∆X

OO

∇X

OO

associated to the full subtheory of the slice theory over X whose objects are precisely the
faithful maps Y → X. We will describe how this works in the particular examples of X = ∗,
X = BG, and X = N before giving a general proof.

5.1. Cohesion for global spaces. Global spaces are a cohesive (∞, 1)-topos. That is there
is a sequence of adjoint functors

TopGlo

Π
��

Γ
��

Top

∆

OO

∇

OO

such that Π∆, Γ∆, and Γ∇ are equivalent to the identity, and Π preserves finite products.
We describe each of these functors in turn. (In fact, we have already described three of them
in a previous section, as ∆ = δ1, Γ = γ1, and ∇ = ∂1.)

• The functor ∆: Top→ TopGlo sends a space T to the constant functor Gloop → Top
with value T . We will call ∆ the inclusion of spaces into global spaces; it is the
same as the functor δ1 of §3.2.
• The functor Π is the strict quotient functor. It can be identified with the homotopy

colimit functor: Π(X) ≈ hocolimGloop(X). This implies that Π(BG) ≈ ∗ for every
compact Lie groupG. Since Orb has finite products, Π(BG×BH) ≈ Π(B(G×H)) ≈ ∗
and Π(∗) ≈ ΠB1 ≈ ∗. It follows from this that Π preserves finite products in general,
since every global space is a homotopy colimit of a diagram of BGs.

Note that Π does not preserve pullbacks. For instance, the loop object of BG at
a map ∗ ≈ B1 → BG is equivalent to ∆(G), but Π∆(G) ≈ G is not equivalent to
Ω(Π(BG)) ≈ ∗.

For a group G and a G-CW complex X, we have that

Π(δG(X)) ≈ XG,

the quotient space obtained by identifying G-translates in X. (The G-space X is built
by attaching cells G/K×Sn−1 → G/K×Dn, and Π takes such maps to Sn−1 → Dn.)
In particular, Π∆ ≈ Id.
• The functor Γ is the homotopy quotient functor. It can be identified with the

homotopy limit functor: Γ(X) ≈ holimGloop(X). Since Glo has a terminal object (the
trivial group 1), we see that in fact Γ(X) ≈ X(1). It is immediate that Γ∆ ≈ Id.

For a group G and a G-space X, we have that

Γ(δG(X)) ≈ XhG,

the homotopy orbit space of X.



16 CHARLES REZK

• The functor ∇ is the co-inclusion of spaces into global spaces9. It is a right Kan
extension along {1} → Gloop. On a space T and an object G ∈ Glo it is given by

∇(T )(G) ≈ MapTop(BG, T ).

It is clear that Γ∇ ≈ Id. There is an evident map ∆(T )→ ∇(T ) from inclusion to co-
inclusion, which is not generally an equivalence, though it is closer to an equivalence
than one might initially think; Miller’s theorem (the Sullivan conjecture) says that
∆(T )(G)→ ∇(T )(G) is a weak equivalence when G is a finite group and T is a finite
CW-complex.

By (2.3.1), we have that BG ≈ ∇(BG) for any G which is either a finite group or
a compact abelian group (compare [Sch13a, 2.18]).

5.2. Another model for the slice TopGlo/BG. In this section, we describe a presheaf
model for TopGlo/BG, which will be useful when we discuss the cohesion associated to
∆G : GTop→ TopGlo/BG.

Let GloBG be the full homotopy theory of TopGlo/BG, whose objects are maps Bφ : BK →
BG corresponding to homomorphisms φ : K → G of compact Lie groups. Then it is standard
that as homotopy theories,

TopGlo/BG ≈ TopGloBG
.

It is possible to give an explicit model for GloBG as a category enriched over spaces, so
that objects are homomorphisms φ : K → G, and GloBG(φ1, φ2) = B FunG(φ1, φ2), where
FunG(φ1, φ2) is a topological groupoid having the form

FunG(φ1, φ2) =

{
obj (ρ : K1 → K2, γ ∈ G) | φ2ρ = γφ1γ

−1

mor (ρ, γ)
δ−→ (ρ′, γ′) : δ ∈ K2 | ρ′ = δρδ−1, γ′ = φ2(δ)γ.

We can represent an object of this groupoid by the picture

K1

ρ
//

φ1   
AA

AA
AA

AA
K2

φ2~~}}
}}

}}
}}

G

γ

If φ2 : K2 → G is an inclusion of a subgroup K2 ⊆ G, then

B FunG(φ1, φ2) = { γ ∈ G | γφ1γ
−1(K1) ⊆ K2 }hK2

≈ (G/K2)φ1(K1).

5.3. Cohesion for global spaces over BG, relative to G-spaces. Earlier we described
cohesion for global spaces. There is an similar cohesion phenomenon for the slice cate-
gories TopGlo/BG, which is relative to the homotopy of G-spaces GTop. That is, there are
homotopical adjoint functors

TopGlo/BG

ΠG
��

ΓG
��

GTop

∆G

OO

∇G

OO

so that the natural maps

ΠG ◦∆G → IdGTop → ΓG ◦∆G, IdGTop → ΓG ◦ ∇G

9The essential image of ∇ corresponds to what Schwede calls cofree orthogonal spaces [Sch13a, 2.14].
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are weak equivalences, and ΠG preserves finite products. I’ll describe this structure below,
making heavy use of the equivalence TopGlo/BG ≈ TopGloBG

.
The most difficult part in showing cohesion is verifying that ΠG preserves finite products;

the proof of this property will be deferred to the next section, where it is proved in a more
general setting.

• The functor ∆G : GTop→ TopGlo/BG was defined in §3.2. As we observed above, we
may factor it naturally through a functor GTop → TopGloBG

, which we also denote
∆G, and which satisfies

(∆GT )(φ) = T φ(K) for φ : K → G.

• The (homotopical) left adjoint ΠG : TopGloBG
→ GTop to ∆G is thus given on gener-

ators Bφ : BK → BG by

ΠG(Bφ) ≈ G/φ(K).

It is immediate that ΠG ◦∆G → IdGTop is an equivalence at orbits G/H, and thus is
an equivalence on all objects, since both ΠG and ∆G preserve homotopy colimits.

The functor ΠG preserves finite products; we will prove this below.
• The functor ΓG : TopGloBG

→ GTop is described (via the Elmendorff equivalence
GTop ≈ TopOG) by

(ΓG(X))H ≈ X(ιH),

where ιH : H → G is the inclusion of a subgroup. We have already noted (in the
proof of (3.5.1)) that IdGTop → ΓG ◦∆G is an equivalence. In particular, ΓG(BιH) ≈
ΓG∆G(G/H) ≈ G/H.

It is useful to have a description of ΓG(Bφ)H , where φ : K → G is a homomorphism
and H ⊆ G is a subgroup. To do this, note that

FunG(ιH , φ) =

{
obj U

mor U ×K
,

where
U = { (α, γ) ∈ Hom(H,K)×G | γ(φ ◦ α)γ−1 = ιH },

and where an element ((α, γ), δ) ∈ U × K is regarded as a morphism (α, γ) →
(δαδ−1, φ(δ)γ).

Given a homomorphism α : H → K, let

U(α) = { γ ∈ G | γ−1(φ ◦ α)γ = ιH } ⊆ G.

Then
ΓG(Bφ)H ≈ B FunG(ιH , φ) ≈

∐
[α]

U(α)hCK(α),

where the coproduct is over K-conjugacy classes of α : H → K, and CK(α) y U(α)
by δ · γ = φ(δ)γ.

In the special case that π : K × G → G is a projection homomorphism, we find
that

ΓG(Bπ)H ≈ B Fun(H,K),

and thus ΓG(Bπ) ≈ BGK. More generally, if Γ is a compact Lie group with normal
subgroup ΠE Γ and quotient homomorphism φ : Γ→ Γ/Π = G, we have that

ΓG(Bφ) ≈ BG(Π; Γ),



18 CHARLES REZK

where the right-hand side denotes the classifying space of G-equivariant principal
(Π; Γ)-bundles, as in [May90].
• The functor ∇G : GTop→ TopGloBG

is described by

∇G(T )(φ) ≈ MapGTop(ΓG(Bφ), T )

where φ : K → G is a homomorphism. To show that ΓG ◦ ∇G → IdGTop is an
equivalence, note that

(ΓG∇G(T ))H ≈ ∇G(T )(ιH) ≈ MapGTop(ΓG(BιH), T ) ≈ MapGTop(G/H, T ) ≈ TH .

5.4. Cohesion for global spaces over N , relative to orbispaces. There are homotopi-
cal adjoint functors

TopGlo/N

ΠOrb

��

ΓOrb

��

(TopGlo/N )faith ≈ TopOrb

∆Orb

OO

∇Orb

OO

so that the natural maps

ΠOrb ◦∆Orb → Id→ ΓOrb ◦∆Orb, Id→ ΓOrb ◦ ∇Orb

are equivalences, and ΠOrb preserves finite products.

• The functor ∆Orb : (TopGlo/N )faith → TopGlo/N is the evident inclusion functor. In
terms of the equivalence (TopGlo/N )faith ≈ TopOrb, it is the functor ∆Orb : TopOrb →
TopGlo/N which sends X in TopOrb to the map δOrbX → δOrb1 = N , where the
functor δOrb : TopOrb → TopGlo is as described in §4.5. That is, for X in TopOrb, the
map ∆OrbX(G)→ N (G) is given by∐

NEG

X(G/N)→
∐
NEG

∗.

We have noted that ∆G(BOrbG) ≈ (BG 1−→ N ) where the map labelled “1” classifies
the trivial subgroup of G.
• The functor ΠOrb : TopGlo/N → TopOrb is homotopically left adjoint to ∆Orb. It is

given on generators BG N−→ N of TopGlo/N by

ΓOrb(BG N−→ N ) ≈ BOrb(G/N).

The functor ΠOrb preserves finite products; we will prove this below.
• The functor ΓOrb : TopGlo/N → TopOrb is homotopically right adjoint to ∆Orb. On

an object fY : Y → N of TopGlo/N and an object G in Orb, it takes the value

(ΓOrbY )(G) ≈ Y (G; 1),

where we write Y (G;N) for the fiber of fY (G) : Y (G)→ N (G) over the point corre-
sponding to N EG.

Consider an object BH N−→ N of TopGlo/N . For G in Orb, we have

ΓOrb(BH N−→ N ) ≈ B Fun(G,H)1,N ,

where Fun(G,H)1,N denotes the full subgroupoid of Fun(G,H) whose objects are
homomorphisms φ : G → H such that φ−1N = 1; i.e., such that the composite

G
φ−→ H → H/N is injective.
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In particular, ΓOrb(BH 1−→ N ) ≈ BOrbH, while ΓOrb(BH H−→ N ) ≈ BH × BOrb1.
• The functor ∇Orb : TopOrb → TopGlo/N is homotopically right adjoint to ΓOrb. For-

mally, we have

(∇OrbX)(G) ≈
∐
NEG

MapTopOrb

(
ΓOrb(BG N−→ N ), X

)
.

6. Fiber products of Lie groups and the fiber product property

In our proofs of cohesion, the only difficult part will be the proof that the functors labelled
ΠX are product preserving. This fact turns out to depend on something we call the fiber
product property of Glo, which asserts that Glo contains homotopy pullbacks along surjective
group homomorphisms.

6.1. The fiber product property. A finite product of compact Lie groups is a compact
Lie group, and it is straightforward to see that Glo thus has (homotopical) finite products
(including a terminal object), and thus that the Yoneda embedding B : Glo→ Top preserves
such finite products.

Note that Glo does not have general homotopy pullbacks, even though fiber product of
compact Lie groups always exist. However, some homotopy pullbacks do exist in Glo, namely
those in which one of the homomorphisms is surjective.

Proposition 6.1.1 (Fiber product property). Let φ : G→ H and ψ : H ′ → H be homomor-
phisms of compact Lie groups, and let G′ = G ×H H ′. If φ is surjective, then the evident
map BG′ → BG×BH BH ′ to the homotopy pullback of Bψ along Bφ is a weak equivalence of
global spaces.

6.2. Proof of the fiber product property. We prove this after a couple of lemmas.

Lemma 6.2.1. Let f : C → D and g : D′ → D be functors of groupoids enriched over Top,
and let C ′ = D′ ×D C, the pullback of f along g in the category of groupoids enriched over
Top. Suppose that f has the following properties.

(1) For each object c of C, object d′ of D, and morphism δ ∈ D(f(c), d), there exists an
object c′ of C and a morphism γ ∈ C(c, c′) such that f(c′) = d′ and f(γ) = δ.

(2) For each pair of objects c, c′ in C, the map f : C(c, c′)→ D(f(c), f(c′)) is a fibration
of spaces.

Then BC ′ → BD′ ×hBD BC is a weak equivalence; i.e., the resulting pullback square of
classifying spaces is in fact a homotopy pullback square.

Proof. Given a topologically enriched groupoid C, let C• denote the corresponding simplicial
space whose realization is BC. Condition (2) implies that C• → D• is a levelwise fibration
of simplicial spaces. We write [m] for the representable simplicial space ∆(−, [m]), and
i : {0} = [0] → [m] for map induced by inclusion of the 0th vertex.a To prove the result, it
suffices to show that the induced map

{0} ×D• C•
i×D•C•−−−−→ [m]×D• C•

becomes a weak equivalence after geometric realization, or equivalently that B(i) : B({0}×D
C)→ B([m]×D C) is a weak equivalence. It suffices to construct a functor j : [m]×D C →
{0} ×D C and a natural map ji → Id, which can be done using (1); this relies on the fact
that C0 and D0 are discrete. �
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Lemma 6.2.2. Let φ : G→ H be a surjective homomorphism of Lie groups, and α : K → G
a homomorphism from a compact Lie group K. Then the induced homomorphism CG(α)→
CH(φα) of centralizers restricts to a surjective map on identity components (i.e., it is an
open map).

Proof. Without loss of generality, we may replace K with its image α(K), and replace α
with the inclusion map. Write Z = CG(K) and N = Ker(φ). Then

X = {x ∈ G | kxk−1x−1 ∈ N ∀k ∈ K }
is a closed subgroup of G containing Z and N , and K acts on X by conjugation. To show
that the homomorphism Z → X/N = CH(φ(K)) is surjective on identity components, it
suffices to show that TeX = TeZ + TeN .

Given a representation ρ : K → GL(V ), write V1 = { v ∈ V | ρ(k)(v) = v ∀k ∈ K } for
the K-fixed subspace of V , and let V2 be the span of { ρ(k)(v)− v | v ∈ V, k ∈ K }; both V1

and V2 are K-invariant subspaces of V . Because K is compact, V = V1 + V2. (Proof: V is a
direct sum of irreducible K-representations.)

Now consider the adjoint action ad: K y V = TeX. We have that V1 ⊆ TeZ by a
standard argument using k exp(tv)k−1 = exp(t ad(k)(v)), and that V2 ⊆ TeN using the fact
that ad(k)(v)−v = γ′(0), where γ(t) = k exp(tv)k−1 exp(−tv) ∈ N . Thus TeZ+TeN = TeX
as desired. �

Proof of (6.1.1). Recall that we can model (BG)(K) ≈ B Fun′(K,G), where Fun′(K,G) is
a groupoid enriched over Top. We note that the hypotheses (1) and (2) of (6.2.1) apply to
the functor Fun′(K,φ) : Fun′(K,G)→ Fun′(K,H). To see this, note that property (1) holds
because φ is a surjective homomorphism, while property (2) is a consequence of (6.2.2). The
proposition follows. �

6.3. A model for Bπ : BG → BH when π is surjective. We can adapt the proof of the
previous proposition to describe the homotopy fiber of Bπ : BG→ BH when π is a surjective
homomorphism. Given homomorphisms π : G → H and φ : K → H, define a topological
groupoid by

LiftH(φ, π) =

{
obj α : K → G | πα = φ

mor α→ α′ : g ∈ G | α′ = gαg−1, π(g) = 1,

where objects are topologized as a subspace of Hom(K,G).

Proposition 6.3.1. If π : G → H is a surjective homomorphism, then B LiftH(φ, π) is
weakly equivalent to the homotopy fiber of B Fun(K, π) : B Fun(K,G) → B Fun(K,H) over
the point corresponding to φ.

Proof. First, let’s consider a category Lift′H(φ, π) enriched over Top, which set theoretically
is the same as LiftH(φ, π), but has discrete object set. Then Lift′H(φ, π) is precisely the fiber
of Fun′(K,G)→ Fun′(K,H) over the object φ. The argument of the proof of (6.1.1) shows
that B Lift′H(φ, π) is equivalent to the homotopy fiber of B Fun′(K,G)→ B Fun′(K,H) over
φ, using that π is a surjective homomorphism.

Next, I claim that B Lift′H(φ, π) ≈ B LiftH(φ, π). It will suffice to show that any two suffi-
ciently nearby objects in LiftH(φ, π) are isomorphic in the groupoid. Fix α ∈ obj LiftH(φ, π),
and set L = π−1(CH(φ)) and L0 = π−1(π(CG(α))), so that L0 ⊆ L ⊆ G are closed sub-
groups. Let ρ : L→ obj LiftH(φ, π) be ρ(g) = gαg−1. The image ρ(L) ≈ L/CG(α) is an open
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neighborhood of α, as it is precisely the intersection in Hom(K,G) of obj LiftH(φ, π) with
{ gαg−1 | g ∈ G } (2.2.1). The set ρ(L0) ≈ L0/CG(α) is precisely the set of elements of ρ(L)
which are isomorphic to α in the groupoid LiftH(φ, π).

By (6.2.2), L/L0 ≈ CH(φ)/π(CG(α)) is discrete, so ρ(L0) is open in ρ(L), and thus ρ(L0)
is an open neighborhood of α ∈ obj LiftH(φ, π) consisting of points isomorphic to α. �

7. Cohesion relative to an orbispace

In this section, we prove our general cohesion result, which exhibits for each orbispace
X in TopGlo a cohesion ∆X : (TopGlo/X)faith → TopGlo/X. In the case when X = BG or
X = N , this recovers the instances of cohesion discussed in §5.

7.1. The indexing category of a global space. Given a global space X in TopGlo, let
GloX ⊂ TopGlo/X, the full sub-homotopy theory of the slice category whose objects are of
the form BG → X. It is standard that the inclusion functor GloX → TopGlo/X is dense,
i.e., that it extends to an equivalence

TopGloX
≈ TopGlo/X.

Thus, we can regard an object Y → X of TopGlo/X as a presheaf Ỹ in GloX , whose value
at x : BG→ X is the homotopy fiber of Y (G)→ X(G) over the point corresponding to x.

From this point of view, we see that a map f : Y → X of global spaces is faithful if and

only if Ỹ (x) → Ỹ (x ◦ Bφ) is a weak equivalence for every object x : BG → X in GloX and
every surjective homomorphism φ : H → G.

We call GloX the indexing category of the global space X.

7.2. The orbit category of an orbispace. Suppose now that the global spaceX is actually
an orbispace. Let OrbX = GloX ∩ (TopGlo/X)faith, the full subtheory of GloX consisting of
x : BG → X which are faithful. We write iX : OrbX → GloX for the evident inclusion
functor. It is evident that iX admits a left adjoint

jX : GloX � OrbX : iX ;

the value of jX on x : BG→ X is the canonical factorization jX(x) : B(G/I(x))→ X through
a faithful map.

We call OrbX the orbit category of the orbispace X.

Example 7.2.1. If X = N , then OrbN ≈ Orb, the theory formed from compact Lie groups
and injective homomorphisms described in §4.5.

Example 7.2.2. If X = BG, then OrbBG is equivalent to OG, the classical orbit category of
the Lie group G.

Example 7.2.3. Suppose X = δG(T ) for some G-space T . Then every object of OrbX is
equivalent to one of the form δG(t) : δG(G/H) → X where t : G/H → T is a map in GTop
and H ≤ G is a closed subgroup. In other words, objects of OrbX correspond (up to
equivalence) to pairs (H ≤ G, t ∈ TH).
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The adjoint pair jX : GloX � OrbX : iX gives rise to a chain of homotopical adjoint
functors.

TopGloX
≈ TopGlo/X

(jX)#
��

(jX)∗=(iX)∗

��

TopOrbX

(jX)∗=(iX)#

OO

(iX)∗

OO

where (jX)#(iX)# ≈ IdTopOX
≈ (iX)∗(jX)∗ and (jX)∗(iX)∗ ≈ IdTopOX

, which we will take as

the definitions of the functors ΠX a ∆X a ΓX a ∇X . Note that ∆X and ∇X are thus fully
faithful.

Theorem 7.2.4. The functor ∆X = (iX)# : TopOrbX
→ TopGloX

≈ TopGlo/X gives an

equivalence TopOrbX

∼−→ (TopGlo/X)faith between presheaves on OrbX and the full subtheory
of faithful morphisms of global spaces to X.

Theorem 7.2.5. For any orbispace X, the above structure defines a cohesion

∆X : (TopGlo/X)faith → TopGlo/X.

We will prove both of these below.

7.3. Recognizing cohesion. Fix an adjoint pair j : G � O : i between small homotopy
theories, with the property that ji → IdO is an equivalence. We immediately obtain a
sequence of homotopical adjoint functors

TopG

Π=j#
��

Γ=j∗=i∗

��

TopO

∆=j∗=i#

OO

∇=i∗

OO

so that Π∆ → Id → Γ∆ and Γ∇ → Id are equivalences, so that both ∆ and ∇ are fully
faithful. In addition, Π preserves the terminal object, since Π(1) ≈ Π∆(1) ≈ 1.

We have two goals in this section: first, to identify the essential image of ∆, and second,
to give a criterion which ensures that ∆ is a cohesion.

Let C ⊂ TopG denote the (non-full) subtheory consisting of morphisms f in TopG such
that Π(f) = j#(f) is an equivalence in TopO. Because ∆ is fully faithful, a morphism f is
in C if and only if ∆Π(f) is an equivalence in TopG.

In the following, we will identify G with its Yoneda image in TopG. Then for objects A in
G, we have that Π(A) = j#(A) ≈ j(A). Thus C ∩ G is the subtheory consisting precisely of
morphisms f ∈ G such that j(f) is an equivalence in O. Say that an object X in TopG is
C ∩ G-local if for every U → V in C ∩ G, we have that MapTopG

(V,X)→ MapTopG
(U,X) is

an equivalence. Write (TopG)local ⊂ TopG for the full subtheory of C ∩ G-local objects.

Proposition 7.3.1. The functor ∆ = i# restricts to an equivalence TopO → (TopG)local.

Proof. Since ∆ = i# is fully faithful, it suffices to show that the essential image of ∆ consists
precisely of C ∩ G-local objects. It is immediate that all objects in the essential image of ∆
are C ∩ G-local; in fact, they are even C-local, since MapTopG

(U,∆X) ≈ MapTopO
(ΠU,X),

and Π takes elements of C to equivalences by definition.
Conversely, let X be an C ∩ G-local object of TopG. To show that X is in the essential

image of ∆, it suffices to show that the counit map ∆ΓX → X of the ∆ a Γ adjunction is
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an equivalence. Since objects of G generate TopG, it suffices to show that this counit map
induces equivalences MapTopG

(U,∆ΓX)→ MapTopG
(U,X) for all U in G. By the adjunction

∆Π a ∆Γ obtained by composing the adjunctions Π a ∆ and ∆ a Γ, this is equivalent to
the map MapTopG

(∆ΠU,X)→ MapTopG
(U,X) induced by the unit η(U) : U → ∆ΠU of the

Π a ∆ adjunction. The claim follows, because η(U) ∈ C since Π∆→ Id is an equivalence. �

We have the following criteria for constructing morphisms in C.

Proposition 7.3.2. Let D be a small topologically enriched category, and f : F → G a
natural transformation of functors D → TopG. If f(d) : F (d) → G(d) is contained in C for
each object d ∈ D, then hocolimD f : hocolimD F → hocolimDG is contained in C.

Proof. A straightforward consequence of the fact that Π commutes with homotopy colimits.
�

Proposition 7.3.3. Let f : V → U be a morphism of TopG. Suppose that for every morphism
g : B → U in TopG such that B is an object of G, the homotopy pullback f ′ : C → B of f
along g is contained in C. Then f is contained in C.

Proof. Because G → TopG is dense, there exists a small category D, a functor G : D → G ⊂
TopG, and an equivalence hocolimDG → U . Define F : D → TopG by F (d) := G(d) ×U
V (homotopy pullback), and let f ′ : F → G be the evident natural transformation. By
hypothesis, each map f(d) : F (d) → G(d) is in C, and thus hocolimD f

′ is in C by (7.3.2).
Since hocolimD f

′ is equivalent to f , the result follows. �

With the same setup as above, we now give a condition for ∆: TopO → TopG to be a
cohesion.

Proposition 7.3.4. Suppose the following holds:

(*) Homotopy pullbacks in TopG of morphisms in C ∩ G along arbitrary morphisms of G
are contained in C ∩ G.

Then ∆: TopO → TopG is a cohesion.

Proof. The existence of the adjoint functors, as well as the natural isomorphisms Π∆ →
Id → Γ∆ and Γ∇ → Id, is immediate, as is the fact that Π preserves the terminal object.
Thus, it remains only to show that Π = j# preserves binary products. Because ∆ = i#
preserves products and i#j# = Π∆

∼−→ Id, it suffices to show that for any pair of objects
X1, X2 in TopG, the map η(X1)× η(X2) : X1 ×X2 → ∆ΠX1 ×∆ΠX2 is contained in C.

Choose functors Fi : Di → G ⊂ TopG and equivalences hocolimDi Fi → Xi for i = 1, 2,

where Di are small categories. Let F i = ∆ΠFi, whence hocolimDi F i ≈ ∆ΠXi, since ∆Π
preserves homotopy colimits. Note that ∆ΠFi(d) = i#j#(Fi(d)) ≈ ij(Fi(d)). Since binary
products in TopG preserve colimits in each variable, the map η(X1)× η(X2) is equivalent to
the homotopy colimit over D1 ×D2 of the maps

η(F1(d))× η(F2(d)) : F1(d)× F2(d)→ F 1(d)× F 2(d),

where the maps η(Fi(d)) : Fi(d) → F i(d) are contained in C ∩ G. In view of of (7.3.2), it
suffices to prove the following.

(**) For any pair of maps fi : Ai → Ai in C ∩ G, the product map f1 × f2 is contained in
C.

In view of (7.3.3), it thus suffices to prove the following.
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(***) For any pair of maps fi : Ai → Ai in C ∩ G and any pair of maps ui : B → Ai in G,
the map g obtained as the homotopy pullback of f = f1 × f2 : A1 × A2 → A1 × A2

along u = (u1, u2) : B → A1 × A2 in TopG is contained in C.
Let gi : Ci → B denote the homotopy pullback of fi along ui, and consider the homotopy
pullback diagrams

C1 ×B C2
//

hi
��

Ci //

gi

��

Ai

fi
��

Cj gj
// B ui

// Ai

in TopG, with {i, j} = {1, 2}. Hypothesis (*) implies that gi ∈ C∩G, and a second application
of hypothesis (*) gives that hi ∈ C ∩ G. Thus g = gjhi ∈ C. The map g is in fact the desired
pullback of f along u, as demonstrated by the homotopy pullback squares

C1 ×B C2
//

g

��

C1 × C2
//

g1×g2
��

A1 × A2

f1×f2
��

B
diag

// B ×B
u1×u2

// A1 × A2

Thus, we have proved (***), and the result follows.
�

7.4. Proofs of the theorems. We now give the proofs which show that ∆X : (TopGlo/X)faith →
TopGlo/X is a cohesion when X is an orbispace. We now set the adjunction j : G � O : i to
be jX : GloX � OrbX : iX as defined earlier. First we identify the class C ∩GloX ⊂ TopGloX

.

Lemma 7.4.1. A morphism Bφ : x → x′ in GloX (presented as BG Bφ−→ BG′ x′−→ X with
x = x′ ◦ Bφ) is in C if and only if φ is surjective.

Proof. Since X is an orbispace, there are canonical factorizations of x and x′ of the form

BG //

Bφ
��

B(G/I(x))

Bφ
��

x

%%J
JJJJJJJJJJ

BG′ // B(G′/I(x′))
x′
// X

with x and x′ are faithful. This exhibits the result of j applied to Bφ : x → x′, namely
Bφ : x → x′. Since Bφ is faithful (by (3.4.5)) we see that φ is an injective homomorphism.
Thus Bφ : x→ x′ is in C if and only if φ is surjectve, if and only if φ is surjective. �

Proof of (7.2.4). By (7.3.1), the essential image of ∆X : TopOrbX
→ TopGloX

≈ TopGlo/X
thus consists precisely of C ∩ GloX-local objects, which by (7.4.1) are exactly the faithful
morphisms to X in TopGlo/X; i.e.., the essential image of ∆X is (TopGlo/X)faith, as desired.

�

Proof of (7.2.5). By (7.3.4), we must show that pullbacks of morphisms in C ∩ GloX along
morphisms of GloX are contained in C ∩GloX . By (7.4.1), this precisely reduces to the fiber
product property (6.1.1) �
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8. Orthogonal spaces

I have nothing much to say not already in [Sch13a]. Mainly I try to link Schwede’s
constuctions to the ones I used in previous sections.

8.1. The Stiefel category. The Stiefel category L has as objects finite dimensional real
inner product spaces, and as morphisms f : V → W all isometric embeddings. There is
an evident topology on L(V,W ), which is in fact a Stiefel manifold, so L is a topologically
enriched category. Furthermore, L admits a symmetric monoidal structure ⊕, so that V ⊕W
is the orthogonal direct sum of V and W .

Given a Lie group G, write LG for the category of functors G → L. Thus, an object
of LG is a pair (V, ρ) consisting of a real inner product space V and a homomorphism
ρ : G → L(V, V ), while a morphism (V, ρ) → (V ′, ρ′) is a map f : V → V ′ of L which is a
map of G-representations.

Remark 8.1.1. I’m going to supress the homomorphism ρ when talking about objects of LG.
Thus, an object of LG is a G-representation V , which is a vector space with a left G-action:
g, v 7→ g · v. I’ll write ρV : G → L(V, V ) for the corresponding homomorphism, though
sometimes I’ll actually write “V ” for this homomorphism.

For instance, if φ : H → G is a group homomorphism and V is an object of LG, then I
write V φ for the evident object of LH obtained by restriction along φ.

Note that LG is also a topologically enriched category, with LG(V, V ′) ⊆ L(V, V ′), and that
LG is also symmetric monoidal under orthogonal direct sum. There is an evident forgetful
functor LG → L, which is compatible with direct sum.

More generally, given any homomorphism φ : H → G, we obtain a functor φ∗ : LG → LH ,
given on objects by V 7→ V φ. If g : φ⇒ φ′ is such that φ′ = gφg−1, then we obtain a natural
isomorphism of functors cg : φ∗ → φ′∗, which to each object V of LG associates the map
V φ→ V φ′ defined by acting by g.

Remark 8.1.2. It is also possible to consider a category L̃G internal to Top, which set

theoretically is the same as LG; the object space of L̃G is
∐

V Hom(G,L(V, V )), where
Hom(G,L(V, V )) ≈ Hom(G,O(V )) has the compact-open topology.

Proposition 8.1.3. The Top-enriched categories LG are homotopically filtered. That is,

(a) for every pair V1, V2 of objects in LG, there exists an object W and maps Vi → W in
LG;

(b) for every k ≥ 0, every pair of objects V , V ′ in LG, and every continuous map
f : Sk−1 → LG(V, V ′), there exists a map α : V ′ → W of LG and a continuous map
Dk → LG(V,W ) making

Sk−1
f
//

��

LG(V, V ′)

LG(V,α)
��

Dk
g
// LG(V,W )

commute

Proof. For (a), simply use the direct sum for W .
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For (b), recall that any orthogonal V representation admits an orthogonal direct sum

V ≈
⊕
λ

Uλ ⊗ Rnλ(V ),

where Uλ is irreducible, the sum is over isomorphism classes of irreducibles, and
∑
nλ(V ) <

∞. Observe that

LG
(⊕

λ

Uλ ⊗ Rnλ ,
⊕
λ

Uλ ⊗ Rn′λ
)
≈
∏
λ

L(Rnλ ,Rn′λ),

and that L(Rn,Rn+k) is (k− 2)-connected, and is a one-point space if n = 0. Thus, we may
set W = V ′ ⊕ (V ⊗ Rk+1). �

8.2. Faithful representations. An object V of LG is called a G-representation. Of
especial importance are the faithful G-representations; we write LG

faith ⊂ LG for the full
Top-enriched subcategory of faithful G-representations. We observe that LG

faith is also homo-
topically filtered, and that the inclusion LG

faith → LG is cofinal.

8.3. Orthogonal spaces. An orthogonal space is a topologically enriched functorX : L→
Top. We write LTop for the category of such functors.

Given a compact Lie group H, we obtain a functor XH : LH → Top by

XH(V ) := X(V )ρV (H).

We write X[H] = hocolimLH X
H .

We say that a map f : X → Y of orthogonal spaces is a global equivalence if X[H] →
Y [H] is a weak equivalence of spaces for every compact Lie group H. (This is essentially the
same as Schwede’s definition [Sch13a, 1.1.3]. His form is more elementary and is probably
preferable.)

As we will note below, orthogonal spaces under global equivalence is a model for TopOrb.

8.4. Free orthogonal spaces. For each V in LG, we have a functor

LG,V : GTop→ LTop

defined by

LG,V (X)(W ) = (L(V,W )×X)G,

using the diagonal action of G (acting on L(V,W ) through ρ). This is the free orthogonal
space generated by X at (G, V ) [Sch13a, §I.2].

Let LG,V = LG,V (∗). Then one shows that LG,V [H] is a model for the equivariant clas-
sifying space BH(ρV (G)), where ρV (G) ⊆ L(V, V ). In particular, if V is a faithful G-
representation, then LG,V [H] ≈ BHG [Sch13a, I.2.6]. Furthermore, since any two faithful
G-representations V1, V2 can be embedded in their orthogonal direct sum V1⊕V2, we see that
there are global weak equivalences LG,V1(X)← LG,V1⊕V2(X)→ LG,V2(X) [Sch13a, I.2.11].

The functor LG,V : GTop → LTop for any faithful V in LG is a model for δG : GTop →
TopOrb.
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8.5. Cofree orthogonal spaces. Let R∞ =
⋃

Rn be a countable dimensional real inner
product space, and write L(V,R∞) for the space of linear isometric embeddings. We define
R : Top→ LTop by

(RT )(V ) = MapTop(L(V,R∞), T ).

Note that if (V, ρ) is a faithful H-representation, then H acts freely on L(V,R∞), and thus
L(V,R∞)H ≈ BH. Therefore, for faithful (V, ρ) we have

(RT )H(V, ρ) = MapTop(L(V,R∞)H , T ) ≈ MapTop(BH, T ),

and thus, (RT )[H] ≈ MapTop(BH, T ). We say that RT is the cofree orthognal space on T
[Sch13a, I.2.12].

The functor R : Top→ LTop is a model for ∇ : Top→ TopOrb.
More generally, we can define RG : GTop→ LTop by

(RGT )(V ) = MapGTop(L(V,UG), T ),

where UG is a complete G-universe [Sch13a, I.1.5]10. If (V, ρ) is a faithful H-representation,
then H acts freely on L(V,UG), and L(V,UG)H ≈ BGH as a G-space. Thus, for faithful
(V, ρ) we have

(RGT )H(V, ρ) = MapGTop(L(V,UG)H , T ) ≈ MapGTop(BGH,T ),

and thus (RGT )[H] ≈ MapGTop(BGH,T ).
The functor RG : GTop→ LTop is a model for ∂G : GTop→ TopOrb.

8.6. Orthogonal spaces with G-action. Just as functors L → Top model global spaces,
it is also the case that functors L→ GTop model global spaces sliced over BG.

Fix a compact Lie group G. A G-orthogonal space is a topologically enriched functor
X : L→ GTop. We write LGTop for the category of such functors.

Given a compact Lie group H together with a homomorphism φ : H → G, we obtain a
functor Xφ : LH → Top by

Xφ(V ) := X(V )(φ,ρV ).

That is, points in this space are x ∈ X(V ) such that for all h ∈ H, we have φ(h)·x = x·ρV (h),
using the action of G on X and the action of H on the representation V . Set

X[φ] := hocolimLH X
φ.

Say that a map X → Y of G-orthogonal spaces is a G-global equivalence if X[φ]→ Y [φ]
is a weak equivalence of spaces for every homomorphism φ : H → G.

For each homomorphism φ : H → G and object V in LH , we have an object Lφ,V in
LGTop, defined by

Lφ,V (W ) := G×φ,H L(V,W ).

That is, this is collection of pairs (g, f) ∈ G × L(V,W ), subject to the relation (g, f) ∼
(gφ(h), fρV (h)) for all h ∈ H. It is clear that

MapLGTop(Lφ,V , X) ≈ Xφ(V ),

and therefore

X[φ] ≈ hocolimV ∈LH MapLGTop(Lφ,V , X).

10I do not see that Schwede discusses the functor RG anywhere in [Sch13a].
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Proposition 8.6.1. Let φ : H → G be a homomorphism, and let V be a faithful representa-
tion of H. Then for any homomorphism ψ : K → G, there is a weak equivalence

Lφ,V [ψ] ≈ GloBG(ψ, φ).

Proof. First we compute (Lφ,V )ψ(W ) for an object W of LK . Let X(W ) denote the space
of pairs (g, f) ∈ G × L(V,W ) such that for every k ∈ K, there exists an h ∈ H such that
(ψ(k)g, kf) = (gφ(h), fh). The group H acts on X(W ) by (g, f) · h := (gφ(h), fh), and we
have that

(Lφ,V )ψ(W ) = X(W )H ,

and furthermore H acts freely on X(W ).
Because V is a faithful representation, for every (g, f) ∈ X(W ) there is a (unique) homo-

morphism σ = σg,f : K → H (depending on (g, f)), such that h = σ(k) is the unique element
such that (ψ(k)g, kf) = (gφ(h), fh). Thus, there is a map

(g, f) 7→ σg,f : X(W )→ Hom(K,H),

whose fiber Xσ(W ) over σ ∈ Hom(K,H) is the space

Xσ(W ) = { (g, f) ∈ G× L(V,W ) | φσ = g−1ψg, kf = fσ(k)∀k ∈ K }
If we write Yσ = { g ∈ G | φσ = g−1ψg }, then

Xσ(W ) = Yσ × L(V σ,W )K .

�
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