
NOTES ON COMBINATORIAL MODEL CATEGORIES

GEORGE RAPTIS

These notes were written for a series of lectures on combinatorial model categories
at the University of Stuttgart in July 2014 (slightly revised and expanded in 2020).
The purpose of the notes is to give an overview of the theory of combinatorial
model categories and discuss some of their applications. We assume that the reader
is familiar with model categories (see, for example, [11, Chapters 1–2]) and simplicial
homotopy theory.

1. Cofibrantly generated model categories

A useful and general way of constructing factorizations of morphisms in homo-
topical algebra, and consequently also of constructing derived functors, is given by
Quillen’s small object argument (used in [16]). This powerful method is formalized
in the following statement.

Theorem 1.1. Let C be a cocomplete category and I a set of morphisms whose
domains are small relative to cell(I). Then there is a functorial factorization of
every morphism in C into a morphism in cell(I) followed by a morphism in inj(I).

Proof. See [11, Theorem 2.1.14]. �

If the set of morphisms I satisfies the condition of the theorem, then we say that
I permits the small object argument. Under this smallness condition on I, it can be
shown that the class of morphisms that have the left lifting property with respect
to inj(I) is exactly the cofibrant closure cof(I) of I, i.e., the closure of I under
pushouts, transfinite compositions and retracts. This is a consequence of the small
object argument combined with the ‘retract argument’ [11, Lemma 1.1.9].

The small object argument is used to show the existence of model category struc-
tures if the candidate classes of cofibrations and trivial cofibrations are generated
by suitable sets of morphisms. Indeed, this often turns out to be case since the
classes of trivial fibrations and fibrations are often described by right lifting prop-
erties with respect to sets of morphisms which permit the small object argument.
This situation is formalized in the notion of a cofibrantly generated model category.

Definition 1.2. A model category M is called cofibrantly generated if there exist
sets of morphisms I and J such that the following hold:

(i) I and J permit the small object argument.
(ii) inj(J) is the class of fibrations; inj(I) is the class of trivial fibrations.

The set I is a called a set of generating cofibrations and J a set of generating trivial
cofibrations.
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Equivalently, a model category is cofibrantly generated if the classes of cofibra-
tions and trivial cofibrations are cofibrantly generated (i.e. they are the cofibrant
closures of sets of morphisms) and the required smallness condition (i) of the defi-
nition is satisfied.

We have the following useful and widely applied recognition theorem for cofibrantly
generated model structures.

Theorem 1.3. Let C be a category which admits all small limits and colimits,W ⊆ C
a subcategory, and let I and J be two sets of morphisms in C. Suppose that the
following conditions are satisfied:

1. W has the 2-out-of-3 property and is closed under retracts.
2. I and J permit the small object argument.
3. cell(J) ⊆ cof(I) ∩W.
4. inj(I) ⊆ inj(J) ∩W.
5. Either cof(I) ∩W ⊆ cof(J) or inj(J) ∩W ⊆ inj(I).

Then there is a cofibrantly generated model category structure on C with weak equiv-
alences W, and I and J as the sets of generating cofibrations and trivial cofibrations
respectively.

Proof. See [11, Theorem 2.1.19]. �

An important application of this theorem is the construction of model structures
on diagram categories when the underlying model category is cofibrantly gener-
erated.

Example 1.4. (Projective model structure) Let M be a cofibrantly generated
model category and let C be a small category. It is easy to see that the prod-
uct model categoryMOb(C) is cofibrantly generated. Sets of generating cofibrations
IOb(C) and generating trivial cofibrations JOb(C) can be given by placing the mor-
phisms of I and J in each one of the components of the product while the rest of
the components have trivial entries. There is an adjunction:

u! : MOb(C) �MC : u∗

where u∗ is the restriction functor along the inclusion u : Ob(C) → C. Then the
recognition theorem applies easily to endowMC with a cofibrantly generated model
structure where the weak equivalences are defined pointwise and IC : = u!(IOb(C))
and JC : = u!(JOb(C)) are sets of generating cofibrations and trivial cofibrations

respectively. By adjunction, it follows that the fibrations in MC are also defined
pointwise.

With respect to this model structure, every functor u : C → D gives rise to a
Quillen adjunction

u! : MC �MD : u∗.

In particular, this shows the existence of the left derived homotopy Kan extension
Lu! : Ho(MC)→ Ho(MD) along any functor u.
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A general difficulty which arises when one tries to apply the recognition theorem
is that a set of generating trivial cofibrations J is often difficult to specify. This
happens, for example, in the construction of left Bousfield localizations of model
categories. The analogue of the recognition theorem for combinatorial model cate-
gories avoids the assumption of an explicit set J and its existence is formally deduced
from special accessibility properties.

The notion of a combinatorial model category introduces the following additional
assumptions: (a) every object in M is assumed to be presentable, and as conse-
quence, every set of morphisms permits the small object argument, and (b) the
underlying category is generated in a suitable sense by a small subcategory. These
assumptions are practically convenient and widely applicable – most model cat-
egories of interest are combinatorial (up to Quillen equivalence). The theory of
combinatorial model categories rests crucially on fundamental results about acces-
sible and locally presentable categories, while at the same time the theory extends
these results from ordinary category theory to homotopical algebra.

2. Accessible and locally presentable model categories

We review some basic definitions and facts about locally presentable categories.
The concept was introduced by Gabriel and Ulmer in [8]. See also [1] for a detailed
account of the theory.

Let λ be a regular cardinal, i.e. an infinite cardinal which is not a sum of a smaller
number of smaller cardinals. For example, ℵ0 and ℵ1 are regular. A poset is called
λ-directed if every subset of cardinality smaller than λ has an upper bound.

2.1. Basic definitions and examples. Let C be a (locally small) category. An
object X of C is called λ-presentable if the corepresentable functor

C(X,−) : C → Set

preserves λ-directed colimits. An object X is called presentable if it is λ-presentable
for some λ. If X is λ-presentable and λ′ > λ, then X is also λ′-presentable. The
colimit of a diagram F : I → C such that I is λ-small (= |Mor(I)| < λ), and F (i) is
λ-presentable for all i ∈ Ob(I), is also λ-presentable [1, 1.16].

Example 2.1. In the category of sets, X is λ-presentable if its cardinality is less
than λ. In the category of groups, a group G is ℵ0-presentable (= finitely pre-
sentable) if it admits a finite presentation. In the category of presheaves SetCop

,
the representable functors are finitely (= ℵ0-)presentable objects. In the category
of topological spaces, only the discrete spaces are presentable.

Let C be a category and A a small full subcategory. For every object X in C,
there is a comma category A ↓ X. Its objects are the morphisms f : A→ X where
A ∈ Ob(A) and a morphism from (f : A → X) to (f ′ : A′ → X) is given by a
morphism g : A→ A′ such that f = f ′g. The diagram

X : A ↓ X → C
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that forgets the morphism to X is called the canonical diagram of X with respect
to A. X is a canonical colimit of A-objects if the canonical diagram has a colimit
with colimit-object X and colimit-maps f : X(f : A → X) → X. A small full
subcategory A of C is called dense if every object X is a canonical colimit of A-
objects. The objects of a dense subcategory form a strong generator1 of C. C is
called bounded if it has a dense subcategory. (We use the convention that a dense
subcategory is assumed to be small by definition.)

Definition 2.2. A category C is called λ-accessible if it is closed under λ-directed
colimits and has a set A of λ-presentable objects such that every object of C is
a λ-directed colimit of objects from A. A category C is called accessible if it is
λ-accessible for some λ.

In a λ-accessible category, there exists only a set of λ-presentable objects, up to
isomorphism, and this defines a dense subcategory [1, 2.2(4) and 2.8].

Definition 2.3. A category C is called locally λ-presentable if it is cocomplete and
λ-accessible. A category C is called locally presentable if it is locally λ-presentable
for some λ.

An equivalent characterization is that C is cocomplete and has a strong generator
consisting of λ-presentable objects [1, 1.20].

The canonical diagram of X ∈ C in a locally λ-presentable category C with respect
to the (essentially) small full subcategory of λ-presentable objects is λ-filtered, rather
than λ-directed. For our purposes, the difference between λ-filtered and λ-directed
is not significant (see the discussion in [1, 1.21] for more details).

Example 2.4. The categories of sets, R-modules, and presheaves (of sets) are lo-
cally finitely presentable.

Grothendieck topoi are locally presentable. The idea of the proof is as follows: By
Giraud’s theorem, a Grothendieck topos is a full reflective subcategory of a presheaf
category where the left adjoint (= sheafification functor) preserves finite limits.
It follows that the corresponding subcategory of sheaves is closed under λ-filtered
colimits for some λ (indeed the sheaf condition can be stated as an orthogonality
condition in terms of the sieves of the Grothendieck topology). Then the sheafifica-
tion functor preserves λ-presentable objects. In particular, the sheaves associated to
the representable presheaves are λ-presentable and form a strong generator – since
they do so in the presheaf category.

Grothendieck abelian categories (i.e. cocomplete abelian categories with a gener-
ator satisfying AB5) are also locally presentable. They may be regarded as additive
analogues of Grothendieck topoi and an analogous argument as above shows that
they are locally presentable – using the Gabriel-Popescu theorem instead of Giraud’s
theorem (see [3, Proposition 3.10]).

1A set of objects S in a category C defines a strong generator if the corepresentable functors
C(A,−) : C → Set, A ∈ S, are jointly faithful and jointly isomorphism–reflecting.
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2.2. Structural properties. We would like to understand better how a locally
λ-presentable category is generated by its (essentially) small full subcategory of λ-
presentable objects. This will lead us to a nice characterization of locally presentable
categories.

Let A be a small category. The category SetAop
of presheaves on A, together

with the Yoneda embedding Y : A → SetAop
, is characterized by the following

property: SetAop
is cocomplete and for every cocomplete category K, the Yoneda

embedding induces an equivalence between the category of cocontinuous functors
SetAop → K and the category of functors A → K. That is, for every functor
F : A → K to a cocomplete category K, there exists a canonical cocontinuous
extension F ∗ : SetAop → K which is unique up to natural isomorphism. This is
essentially a reformulation of the fact that every object in SetAop

is a canonical
colimit of representable functors. Thus, the category of presheaves on A can be
regarded as the cocomplete category which is obtained by adding freely all small
colimits to A.

Let Contλ(A) denote the full subcategory of SetAop
with objects the set-valued

presheaves on A that preserve all λ-small colimits that exist in A. Note that the
representable presheaves satisfy this property. Moreover, the Yoneda embedding
A → Contλ(A) satisfies the following universal property of λ-free cocompletion:
every functor F : A → B, where B is cocomplete and F preserves λ-small colimits,
has a cocontinuous extension F λ : Contλ(A)→ B, unique up to natural isomorphism
(see [1, 1.45]).

Theorem 2.5. Let C be a category. The following are equivalent:

(a) C is a locally λ-presentable category.
(b) C is cocomplete and has a dense subcategory consisting of λ-presentable ob-

jects.
(c) C is a full reflective subcategory of a presheaf category SetAop

closed under
λ-directed colimits, for some small category A.

(d) C is equivalent to Contλ(A) for some small category A.

Proof. See [1, 1.46]. (a) ⇒ (b): it is easy to see that the (essentially) small subcat-
egory of λ-presentable objects is dense (see [1, 1.22]). (b) ⇒ (c): let A be a dense
small subcategory of λ-presentable objects. There is a functor YA : C → SetAop

defined on objects by

C 7→ (A 7→ HomC(A,C))

Notice that A is dense if and only if YA is full and faithful [1, 1.26]. Furthermore,
YA preserves λ-directed colimits if and only if every object in A is λ-presentable
in C. YA has a left adjoint which is the cocontinuous extension of the inclusion
A ↪→ C. (c) ⇒ (a) is left as an exercise. (a) ⇒ (d): for A the (essentially) small
dense subcategory of λ-presentable objects, the essential image of the full embedding
YA : C → SetAop

is the full subcategory Contλ(A) [1, 1.46]. (d) ⇒ (c): Contλ(A)
can be described as a λ-orthogonality class in SetAop

(see [1, 1.46]). These define
full reflective subcategories by [1, 1.39]. �
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Corollary 2.6. Every locally presentable category is complete and well-powered.

Proof. This follows from Theorem 2.5(c). �

2.3. Accessible functors. A functor F : C → D is called λ-accessible if C and D
are λ-accessible and F preserves λ-directed colimits. A functor F is called accessible
if it is λ-accessible for some regular cardinal λ. According to the Uniformization
Theorem (see [1, 2.19]), for every accessible functor F : C → D, there is a regular
cardinal λ such that F is λ-accessible and preserves λ-presentable objects.

A full subcategory B of an accessible category C is called accessibly embedded if it
is closed under λ-directed colimits in C for some λ. The following fact is often very
useful.

Proposition 2.7. Let F : C → D be an accessible functor and D′ an accessible,
accessibly embedded subcategory of D. Then F−1(D′) is accessible and accessibly
embedded in C.

Proof. See [1, 2.50]. �

It is difficult in general to determine the rank of accessibility of F−1(D′), even
when the accessibility ranks of F and of the inclusion functor D′ ↪→ D are known.
An estimate for this accessibility rank is provided by the following fundamental
theorem – this theorem can be used to give a proof of Proposition 2.7.

Theorem 2.8 (Pseudopullback Theorem). Let λ be a regular cardinal and let K,
L and M be λ-accessible categories which admit κ-filtered colimits for some κ < λ.
Let F : K → L and G : M → L be functors which preserve κ-filtered colimits and
λ-presentable objects. Consider the pseudopullback

P

��

//M

G

��
K F // L

Then P is λ-accessible and has κ-filtered colimits.

Proof. The statement can be found in [18]. See [1, 14] for more details about limits
of accessible categories. �

The following result relates accessibility with the solution–set condition. This
connection is used in the theory of combinatorial model categories in order to assert
the existence of generating sets.

Theorem 2.9 (Hu–Makkai). Let C be an accessible category and B an accessibly
embedded subcategory. Then B is accessible if and only if it is cone–reflective in C.

Proof. See [1, 2.53]. �

We recall that cone–reflective here means that for every object C of C, there is a
set of morphisms gi : C → Bi, with Bi in B, such that every morphism g : C → B,
with B in B, factors as the composition of some gi followed by a morphism in B.
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2.4. Vopěnka’s principle. Vopěnka’s large–cardinal principle has many strong
connections with the theory of locally presentable categories. They are investi-
gated in detail in [1, Chapter 6]. Among the many equivalent formulations of this
axiom here is perhaps one of the most basic ones. Recall that a graph is simply a
set endowed with a binary relation and a morphism of graphs is a function (of sets)
that preserves the binary relation.

Vopěnka’s principle. For every large collection of graphs there is a non-identity
morphism between two graphs in the collection.

We refer to [1, Appendix] for the set–theoretical status of this axiom and its
relation to other large–cardinal axioms. We mention the following implications of
Vopěnka’s principle in the theory of locally presentable and accessible categories:

(1) a category C is locally presentable if and only if it is cocomplete and bounded
(= has a dense subcategory) [1, 6.14],

(2) a full subcategory A of an accessible category C is accessible if and only if
it is accessibly embedded in C [1, 6.17],

(3) every full subcategory A of a locally presentable category C, that is closed
under limits in C, is reflective in C [1, 6.22],

(4) every full subcategory A of a locally presentable category C, that is closed
under colimits in C, is coreflective in C [1, 6.28].

Moreover, each one of the statements (1), (2), and (4) is actually equivalent to
Vopěnka’s principle – (3) is equivalent to weak Vopěnka’s principle.

3. Combinatorial model categories

Definition 3.1 (Smith). A model category M is called combinatorial if it is cofi-
brantly generated and the underlying category of M is locally presentable.

Example 3.2. The projective model category SSetC (Example 1.4) is combinato-
rial.

3.1. The recognition theorem and other properties. The following is a useful
recognition theorem for combinatorial model categories.

Theorem 3.3 (Smith). Let C be a locally presentable category,W ⊆ C a subcategory,
and let I be a set of morphisms in C. Suppose that the following conditions are
satisfied:

1. W has the 2-out-of-3 property and is closed under retracts.
2. W satisfies the solution-set condition at I, i.e., for each i ∈ I, there is a set

of morphisms Wi ⊆ W such that for every commutative square

•
i
��

// •
w

��
• // •
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where w ∈ W, there is a factorization

• //

i
��

• //

w′

��

•
w

��
• // • // •

where w′ ∈ Wi.
3. cof(I) ∩W is closed under pushouts and transfinite compositions.
4. inj(I) ⊆ W.

Then (C,W, cof(I), inj(cof(I) ∩W)) is a combinatorial model category.

Proof. A proof can be found in [3, Theorem 1.7]. This proof can be simplified slightly
as follows. First, following [3, Lemma 1.9], we find a set of morphisms J ⊂ cof(I)∩W
which has the same property as the set of morphisms Wi in condition (2). This set
J consists of morphisms which are obtained from commutative squares

•
i
��

// •
w

��
• // •

with i ∈ I and w ∈ Wi, in the following way: let i′ be the pushout of i,

•
i
��

// •
i′

��

•
w

��
• // •

g // •

and let g = qh be a factorization into h ∈ cof(I) and q ∈ inj(I) – using the
small object argument (Theorem 1.1). Then q ∈ W – using (4) – and hence also
j := hi′ ∈ cof(I) ∩ W – using (1). The morphisms j that arise in this way define
the set J . This is our candidate set of generating trivial cofibrations.

Then we apply the recognition theorem for cofibrantly generated model categories
(Theorem 1.3). As most of the conditions of Theorem 1.3 are easy to verify, it suffices
to show that inj(J)∩W ⊆ inj(I). Let f ∈ inj(J)∩W and consider a lifting problem

•
i
��

// •
f

��
• // •

where i ∈ I. Then there is a factorization

• //

i
��

• //

j

��

•
f

��
• // •

??

// •

where j ∈ J and the dotted arrow exists because f ∈ inj(J). Thus, the initial square
also admits a lift. �
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Condition (2) of Theorem 3.3 is the most mysterious and difficult to verify in prac-
tice. From earlier results (Theorem 2.9), we know that

if the full subcategory W ⊆ C→ is accessible and accessibly embed-
ded, then W is cone-reflective.

In particular, in this case, W satisfies the solution-set condition at every morphism.
This means that Condition (2) can be replaced by the following condition:

2∗. The full subcategory W ⊆ C→, spanned by the morphisms in W
(weak equivalences), is accessible and accessibly embedded in C→.

In this case, W is automatically closed under retracts. This stronger condition (2∗)
turns out to be also necessary for combinatorial model categories.

Theorem 3.4. LetM be a combinatorial model category. Then the full subcategory
of weak equivalences W ⊆ M→ is accessible and accessibly embedded in M→. In
particular, W satisfies the solution-set condition at every morphism of M.

Proof. Proofs can be found in [13, Corollary A.2.6.8], [19, Theorem 4.1], [17], and
[18]. The idea is to express W as a pullback of accessible categories and ap-
ply the Pseudopullback Theorem (Theorem 2.8). For example, the following is
a (pseudo)pullback:

W //

��

F ∩W

��
M→ R //M→

where F ∩ W ⊆ M→ denotes the full subcategory of trivial fibrations, and R :
M→ →M→ is the functor which replaces a morphism by a fibration using the small
object argument. The subcategory F ∩ W is accessible and accessibly embedded
(see [18, Section 2] or [13, Corollary A.2.6.6]) and R is accessible. �

Remark 3.5. Moreover, for every combinatorial model category M, there is an
accessible functor F :M→ SSet such that a morphism f inM is a weak equivalence
if and only if F (f) is a weak equivalence of simplicial sets [17], [18, Remark 2.4]. This
also shows the accessibility of the weak equivalences of M using the accessibility of
the weak equivalences of simplicial sets (see [3], [17]).

The problem of finding a good estimate for the accessibility rank of weak equiv-
alences was studied in [18]. We recall that a model category M is called λ-
combinatorial if it has generating sets I and J between λ-presentable objects and
its underlying category is locally λ-presentable. A Cisinski model category is a com-
binatorial model category whose underlying category is a Grothendieck topos and
the cofibrations are exactly the monomorphisms.

Theorem 3.6. Let M be a Cisinski model category. Suppose that M is a κ-
combinatorial model category and there is a cylinder functor which preserves κ-
presentable objects. Then the full subcategory of weak equivalences W ⊆M→ is κ-
accessible.
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Proof. This is a special case of [18, Theorem 4.2]. We refer to [18] for further and
stronger results in this direction. �

Corollary 3.7. The full subcategory of weak equivalences W ⊂ SSet→ is finitely
accessible.

Remark 3.8. We do not know whether the class of quasi-isomorphisms of chain
complexes is finitely accessible in general (cf. [18, Corollary 5.3]).

Applications 3.9. (1) Homological localizations of spaces. Let h∗ : SSet → AbZ
be a generalized homology theory satisfying the limit axiom. Then h∗ is accessible
and therefore the class of h∗-equivalences is accessible and accessibly embedded in
SSet→. The recognition theorem for combinatorial model categories (Theorem 3.3)
can be applied to show that SSet carries a combinatorial model structure where
the cofibrations are the monomorphisms and the weak equivalences are the h∗-
equivalences. This model structure was first constructed by Bousfield [4].

(2) (Beke [3, Proposition 3.13]) Let A be a Grothendieck abelian category. The cat-
egory of unbounded chain complexes Ch(A) is (again) locally presentable. The
homology functor H∗ : Ch(A) → AbZ is accessible, hence the class of quasi-
isomorphisms is accessible and accessibly embedded in Ch(A)→. The class of
monomorphisms in Ch(A) is cofibrantly generated (see [3, Proposition 1.12] for a
general method). Then the recognition theorem for combinatorial model categories
(Theorem 3.3) and basic homological algebra show there is a (injective) combinato-
rial model structure on Ch(A) where the cofibrations are the monomorphisms and
the weak equivalences are the quasi-isomorphisms.

(3) (Injective model category) Let M be a combinatorial model category and C a
small category. The class of pointwise weak equivalences WC of C-diagrams in M
is accessible and accessibly embedded. (This can be shown by applying Theorem
3.4 to the projective model structure of Example 1.4.) Therefore for every set of
pointwise cofibrations I which is large enough so that inj(I) ⊆ WC , there is a com-
binatorial model structure on MC with WC as the class of weak equivalences and
I as a set of generating cofibrations. We note that the class of pointwise cofibratios
is indeed cofibrantly generated (see [13, Lemma A.2.8.3]).

See also [2] (e.g., [2, Theorem 4.38]) for further interesting applications and examples
of combinatorial model categories.

4. Small Presentations of Combinatorial Model Categories

4.1. Bousfield localization. Let M be a model category and S a class of mor-
phisms in M. An object X is called S-local if it is fibrant and for every f : A→ B
in S, the induced map

f∗ : Map(B,X)→ Map(A,X)
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is a weak equivalence of simplicial sets. Here Map(B,X) denotes the homotopy
function complex (or derived mapping space), which can be defined functorially
in every model category – not just a simplicial one. We recall that one way of

defining Map(B,X) is by choosing a (functorial) cosimplicial resolution B̃• of B
(= a cofibrant replacement of the constant cosimplicial object at B in the Reedy
model category of cosimplicial objects in M) . Then Map(B,X) is the simplicial

set whose n-simplices are the morphisms in M from B̃n to (the fibrant object) X.
The connected components of this mapping spaces correspond to the morphisms
B → X in the homotopy category of M. We refer to [10] for a detailed account of
the construction and general properties of homotopy function complexes.

Example 4.1. Let T op∗ be the model category of based topological spaces, and
S = {q : Sn → ∗}. A based space X is S-local (or q-local) if and only if πk(X) = 0
for all k > n.

A morphism g : X → Y is called an S-local equivalence if for every S-local object
Z, the induced map

g∗ : Map(Y, Z)→ Map(X,Z)

is a weak equivalence of simplicial sets.

Definition 4.2. The (left) Bousfield localisation of M at S is a model category
LSM with the following properties.

(1) It has the same underlying category as M.
(2) The weak equivalences WS of LSM are the S-local equivalences,
(3) The cofibrations of LSM are the cofibrations of M. These are also called

S-cofibrations.
(4) The fibrations of LSM are the morphisms that have the right lifting prop-

erty with respect to the trivial S-cofibrations (= morphisms that are both
cofibrations and S-local equivalences). These are called S-fibrations.

Proofs of the following statements can be found in [10].

Proposition 4.3 (basic properties of WS). Every weak equivalence of M is also
a weak equivalence of LSM. The class of S-local equivalences has the “2-out-
of-3” property and is closed under retracts. An S-local equivalence between S-
local objects is a weak equivalence. If g : C → D is a cofibration and an S-local
equivalence, then so is any pushout of g assuming that M is left proper.

Proposition 4.4 (basic properties of LSM). The identity functor IdM : M →
LSM is a left Quillen functor. The Quillen adjunction IdM : M � LSM : IdM
induces a reflection on the homotopy categories. Moreover, the Bousfield localization
(when it exists) has the following universal property: for every left Quillen functor
F : M → N that maps a cofibrant replacement of every map in S to a weak
equivalence, the functor F : LSM→N is also left Quillen.

We now discuss the problem of the existence of Bousfield localizations. Axioms
(M1–M3) are obvious. Since fibrations in LSM are defined implicitly as the mor-
phisms that have a certain right lifting property, half of (M4) is obviously satisfied.
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The factorizations into (cofibration, trivial fibration) are the same as in the model
categoryM. The main difficulty is to prove the existence of factorizations into (triv-
ial cofibration, fibration). The natural strategy is to apply the small object argument
with respect to an adequate set of trivial S-cofibrations. The problem is exactly
finding such a set which detects S-fibrations (or generates trivial S-cofibrations).
At this point, some set-theoretical arguments are usually required – in the case of
combinatorial model categories, these can be formulated in terms of accessibility
properties.

Remark 4.5. Suppose, for simplicity, that M is a simplicial model category and
S is a set of cofibrations between cofibrant objects (which are also small, in an
appropriate sense). Then there is a natural choice of a set of trivial S-cofibrations:

S′ = {A⊗∆n
⋃

A⊗∂∆n

B ⊗ ∂∆n → B ⊗∆n | (A→ B) ∈ S, n > 0}.

This set of morphisms detects S-local objects. Moreover, it is sufficient for the
construction of the homotopy idempotent functor of S-localization onM by applying
the small object argument to the canonical morphisms X → 1 (where 1 denotes a
terminal object ofM). However, this does not guarantee the required factorizations,
since the set of morphisms S′ does not characterize S-fibrations in LSM in general.

Hirschhorn [10] introduced the notion of a cellular model category as a special
type of cofibrantly generated model category with additional properties inspired
by certain formal properties of the model category T op of topological spaces. The
model categories SSet, T op and (projective or injective) SSetC are cellular. Note
that T op is not a combinatorial model category.

Theorem 4.6 (Hirschhorn [10]). Let M be a left proper, cellular model category
and S a set of maps. Then the left Bousfield localization LSM exists and is left
proper and cellular. The fibrant objects of LSM are the S-local objects. If M is a
simplicial model category, then so is LSM with the same simplicial structure.

4.2. Dugger’s theorem. Theorem 2.5 characterized locally presentable categories
as accessibly embedded reflective subcategories (or orthogonality classes) of presheaf
categories. There is an analogous characterization for (model categories which are
Quillen equivalent to) combinatorial model categories due to Dugger [6].

Theorem 4.7 (Dugger [6]). LetM be a combinatorial model category. Then there is
a small category A, a set S of morphisms in the projective model category SSetAop

,
and a Quillen equivalence

LSSSetA
op
�M.

The idea of the proof is the same as for the case of ordinary locally presentable
categories but carrying it out is considerably more complicated. We give below an
outline of the proof and refer to [6] for more details.

The first part of the proof shows the existence of a homotopically surjective map

F : SSetAop
�M : G.
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This means a left Quillen functor F whose left derived functor is a reflection onto
the homotopy category of M. A left adjoint F as above is uniquely determined by
its restriction to the representable presheaves:

f : A×∆→M.

Moreover, the cocontinuous extension of f is a left Quillen functor if and only if f
is pointwise in A a Reedy cofibrant replacement of a cosimplicially constant object
in the Reedy model category of cosimplicial objects in M . In other words, for
every X ∈ A, the cosimplicial object f(X, [•]) ∈ cM is a cosimplicial resolution
of f(X, [0]) (= Reedy cofibrant and homotopically constant). Moreover, we have a
weak equivalence

F cof(G(X)) ' hocolim(A×∆ ↓ X)

for every fibrant object X and the derived counit transformation of the Quillen
adjunction (F,G) is identified with the canonical map

hocolim(A×∆ ↓ X)→ X.

(F,G) is homotopically surjective if and only if the derived counit transformation
is a weak equivalence for every fibrant object X. (The superscript “cof” denotes
cofibrant replacement.)

The proof of Theorem 4.7 shows that this can be achieved if we choose A to
be the (essentially) small full subcategory Mcof

λ of M consisting of the cofibrant
λ-presentable objects for a sufficiently large regular cardinal λ. Let us assume for
simplicity that M is a simplicial model category (so that, among other things,
cosimplicial resolutions are easier to construct). Then we consider the left Quillen
functor F specified by

f : Mcof
λ ×∆→M, (X, [n]) 7→ X ⊗∆n.

Choose λ to be large enough so that the following are satisfied:

(a) M is λ-combinatorial,
(b) a cofibrant replacement functor in M preserves λ-presentable objects.

Then, using (a) and (b), it is shown that there are canonical weak equivalences for
every fibrant object X ∈M:

hocolim(Mcof
λ ×∆ ↓ X)

'← hocolim(Mcof
λ ↓ X)

'→ hocolim(Mλ ↓ X)

and

hocolim(Mλ ↓ X)
'→ colim(Mλ ↓ X) ∼= X.

Combining these weak equivalences, we may conclude that the derived counit trans-
formation F cofG(X)→ X is a natural weak equivalence for every fibrant X.

The second part of the proof shows that a homotopically surjective map (F,G) can
be turned into a Quillen equivalence after Bousfield localization. To achieve this, we
would like to localize SSetAop

at the components of the derived unit transformation
of (F,G), which are canonical morphisms of the form

(1) Y → GfibF cof(Y ),
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but these defines a class of morphisms, rather than a set, and therefore we cannot
directly conclude that this Bousfield localization exists. However, the derived unit
transformation (1) is a natural transformation between accessible functors. In ad-
dition, note that filtered colimits in SSetAop

are also homotopy colimits. Then the
idea is to restrict to the set S of derived unit morphisms (1) only for λ-presentable
objects Y , for some appropriate choice of λ, and consider the associated Bousfield
localization LSSSetA

op
(which exists by Theorem 4.6). The regular cardinal λ has

the property that every derived unit morphism (1) is a (homotopy) filtered colimit of
morphisms in S. As a consequence, every morphism in (1) becomes a weak equiva-
lence in LSSSetA

op
. We can then conclude that (F,G) induces a Quillen equivalence

LSSSetA
op 'M as requred. This completes our outline of Dugger’s proof.

There are also versions of Theorem 4.7 for pointed and for stable combinatorial
model categories (see [7]).

5. Applications

5.1. Brown representability for model categories. Let M be a model cate-
gory. We write [X,Y ] to denote the set of morphisms from X to Y in the homotopy
category Ho(M). A functor F : Mop → Set is called representable if it is isomor-
phic to a functor of the form [−, X] :Mop → Set for some object X of M. Every
representable functor satisfies the conditions B1 – B3 below.

A model category M is said to satisfy Brown representability if for any given
functor F : Mop → Set, F is representable if (and only if) the following conditions
are satisfied.

B1. F sends weak equivalences to bijections.
B2. (wedge property) For any coproduct

∐
i∈I Xi of cofibrant objects inM, the

canonical morphism

F

(∐
i∈I

Xi

)
−→

∏
i∈I

F (Xi)

is an isomorphism.
B3. (Mayer-Vietoris property) For every pushout diagram of cofibrant objects

A //� _

i
��

X

��
B // B

∐
AX

where i is a cofibration, the canonical morphism

F (B
∐
A

X) −→ F (B)×F (A) F (X)

is an epimorphism.
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This property is clearly invariant under Quillen equivalences. Brown’s classical
representability theorem shows that the model category of spectra Sp satisfies Brown
representability. Using similar arguments, it can be shown that the projective model
category SpC also satisfies Brown representability. More generally, every compactly
generated2 model category satisfies Brown representability (see [9, 12, 15]). Locally
finitely presentable categories (with the trivial/discrete model structure) are also
examples of compactly generated model categories.

If a model category M satisfies Brown representability, then the same holds for
its Bousfield localizations. According to the stable version of Theorem 4.7 (see
[7]), every stable combinatorial model category is Quillen equivalent to a Bousfield
localization LSSpC of SpC for some small category C and set of morphisms S. Thus,
we conclude

Theorem 5.1. Every stable combinatorial model category satisfies Brown repre-
sentability.

Corollary 5.2. Let T be a triangulated category which is equivalent to the homotopy
category of a stable combinatorial model category, as triangulated categories. Then
a homological functor F : T op → Ab is representable if and only if it sends small
coproducts to products.

Representability theorems are closely related to adjoint functor theorems. A
consequence of Theorem 5.1 is the following “homotopical” adjoint functor theorem.

Theorem 5.3. Let F : M → N be a functor between model categories that pre-
serves the weak equivalences. Suppose that M is stable and combinatorial. Then
Ho(F ) : Ho(M)→ Ho(N ) is a left adjoint if and only if the following conditions are
satisfied.

B2′. (wedge property) For any coproduct
∐
i∈I Xi of cofibrant objects in M, the

canonical morphism ∐
i∈I

F (Xi)
cof −→ F (

∐
i∈I

Xi)

is an isomorphism in Ho(N ).
B3′. (Mayer-Vietoris property) F sends homotopy pushout squares in M to weak

pushout squares in Ho(N ), i.e., for every pushout diagram

A //� _

i
��

X

��
B // B

∐
AX

2We say that a model category M is compactly generated if there is a set of objects G with the
following properties: (a) the objects in G jointly detect the isomorphisms in Ho(M), and (b) for
every G ∈ G, the functor [G,−] : M → Set sends homotopy sequential colimits to colimits. (We
remark that this terminology is not standard in the literature.)
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where i is a cofibration and all objects are cofibrant, the induced diagram

F (A) //

��

F (X)

��
F (B) // F (B

∐
AX)

defines a weak pushout square in Ho(N ).

Proof. Suppose that Ho(F ) is a left adjoint. Then it preserves coproducts and weak
pushouts. Coproduct of cofibrant objects in M define coproducts in Ho(M), so it
follows that B2′ is satisfied. Moreover, a homotopy pushout in M defines a weak
pushout in Ho(M), so B3′ is also satisfied.

For the converse, suppose that B2′-B3′ are satisfied. The functor Ho(F ) is a left
adjoint if (and only if) for every object N of N the functor

yN :Mop → Set, M 7→ [F (M), N ]

is representable. We claim that yN satisfies the conditions B1–B3. B1 is obvious
since F preserves the weak equivalences. B2 and B3 follow easily from B2′ and
B3′ respectively. �

Example 5.4. Let F : M → N be a functor from a locally presentable category
to a category which admits small colimits and limits. We may regard M and
N as model categories with the trivial/discrete model structure (where the weak
equivalences are the isomorphisms and every morphism is a (co)fibration). The
model category M satisfies Brown representability. (This follows, for example,
from the fact that it is a reflective subcategory of a locally finitely presentable
category. Locally finitely presentable categories are compactly generated, so they
satisfy Brown representability.) Then, applying Theorem 5.3, F is a left adjoint if
and only if F preserves coproducts and sends pushouts to weak pushouts. In this
case F actually preserves all colimits.

5.2. Bousfield localizations of combinatorial model categories. Combinato-
rial model categories, similarly to cellular model categories (Theorem 4.6), are also
useful because they admit Bousfield localizations at any set of morphisms.

Theorem 5.5. Let M be a left proper, combinatorial model category and let S be a
set of maps. Then the left Bousfield localization LSM exists and is again left proper
and combinatorial.

The theorem can be shown by applying the recognition theorem for combinatorial
model structures (Theorem 3.3). The main difficulty is to prove the accessibility of
the class of S-local equivalences. This can be done by constructing an accessible S-
localization functor L :M→M using the small object argument (cf. Remark 4.5).
This functor comes together with a natural transformation ηX : X → L(X) which is
an S-local equivalence to an S-local object. Then the class of S-local equivalences
is the preimage under L of the class of weak equivalences in M, so it is accessible
and accessibly embedded in M→ as a consequence of Proposition 2.7.
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A different way of proving Theorem 5.5 is to use Dugger’s theorem (Theorem 4.7)
in order to pass to the projective model category SSetC , for which Bousfield local-
izations exist by Theorem 4.6, and then lift the corresponding Bousfield localization
of SSetC back to a Bousfield localization of M.

See also [5] for an extension of Theorem 5.5 to the case where S is a (possibly
proper) class of morphisms under the assumption of Vopěnka’s principle.
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