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1. THE PROBLEM
To start at the very beginning, we state the basic definitions.
1.1. Notation. Throughout we have integers n > 2 and 0 < k < n.
1.2. Definitions. Let M be a differentiable manifold. Let w: T" — M be the
tangent bundle on M.
(a) A wector field on M is a continuous section v: M — T of 7.

(b) A set of vector fields {vy,...,vx} on M is linearly independent if for each
p € M the vectors vy (p),...,vr(p) are linearly independent in the tangent
space T,. In particular a single vector field v forms a linearly independent
set if and only if it is nowhere vanishing.

Now the actual story: we are taught to love spheres from our very first days in
the land of topology. But perhaps it is the following result—or perhaps really its
title—which first truly beguiles us.

1.3. Theorem (Hairy ball). The sphere S"~! admits a nowhere vanishing vector
field if and only if n is even.

Of course, so enticed, we cannot just leave it there. We must ask the following.

1.4. Question. Then how many vector fields does S”~! admit? Or more precisely,
what is the maximum size of a set of linearly independent vector fields on S~ 1?

This is one of those questions that occupied people for a while. Its answer was
one of the first applications of generalised cohomology theory, and involves some
really nice ideas, some of which are hopefully conveyed in this exposition.

2. LOWER BOUND

We first briefly review the positive side of the problem, that is, how to actually
construct some vector fields and achieve a lower bound. We do this for completeness,
and because it clarifies the sort of numerology we see in the upper bound. One
can see, e.g., [HM12, Mil10] for more details.

2.1. First of all, we have our very nice embedding S"~! < R", which gives
the tangent spaces of S"~! a very concrete description. In particular, a vector
field on S™71 is just a map v: S"7! — R™ such that v(x) L z (in R™) for all
x € 8"~ 1. Note that by Gram-Schmidt, giving % linearly independent vector fields
Vi,...,0: S"1 — R" is equivalent to giving k pointwise orthonormal maps
Vi, vp: ST gL

2.2. Notation. ¢ Write n = 2%b with b odd, and write a = 4c+d with 0 < d < 3.
We define p(n) := 2¢ + 8c.! Note in particular p(n) = 1 if n is odd.
e Define e, :=[{0<j<k:j=0,1,2,4 (mod 8)}|. It’s easy to see that

(2.3) p(n) —1=max{l >0:2% |n} =max{l >0:¢ < a}.
IThe p(n) are called the Radon-Hurwitz numbers.

1



2.4. The Clifford algebras Cl; for | > 0 are the free associative R-algebras with
generators qi, . .., q subject to the relations ¢ = —1 and qiq; = —q;¢; for i # j.
For small values of [ these are as follows?, where A(d) denotes the algebra of d-by-d
matrices in A.

l 01112 3 4 5 6 7 8
CL[R|C|H|H® |H(2) | C4) | R®) | R(8)%? | R(16)

For larger values of [ we have a periodicity Cl;;g ~ Cl; ®g Clg.

What does this have to do with vector fields? Well, suppose V is an R-vector
space of dimension n with a representation Cl; ®g V — V. Let GG; C Cl; be the
multiplicative group genereated by {#¢;}; it’s easy to see |G;| = 2/*1. We can
construct a Gy-invariant inner product on V' (e.g., by averaging any inner product
over ), and then we see that (under this inner product) we get [ orthonormal
vector fields on the unit sphere S(V) ~ S"~! via 2 +— g;z for 1 <i <.

Thus we are interested in knowing the minimal dimension of a representation
of Cl;. By the periodicity above, one can show without much difficulty that
this dimension is precisely 2¢, where ¢; is as defined in (2.2). Thus there is a
representation of Cl; on R™ whenever 2¢ | n, by writing R” ~ R?" x ... x R?"
and acting diagonally via the minimal representation. This gives the following
lower bound on our question (1.4).

2.5. Theorem. There is a set of p(n) — 1 linearly independent vector fields on

St
Proof. Let | := p(n) — 1. By (2.3), 2% | n, so the discussion in (2.4) gives the
claim. 0

3. UPPER BOUND: A REDUCTION

Getting an upper bound is where the real difficulty lies. Well, we know one
upper bound: S"~! certainly can’t admit n linearly independent vector fields, since
dim S™ ! =n—1. And to say S”~! admits n — 1 linearly independent vector fields
is to say S™~! is parallelisable, which famously is true if and only if n € {2, 4, 8}.
An optimal upper bound would at least tell us this parallelisability result. So let’s
think about it for a second and reduce the question to one more attackable by
algebra.

3.1. Definition. For [ € N, the Stiefel manifold V, ,, is the space
{(Ul, . ,UZ) T € Snil, <’Ui, Uj> = 51'7]‘}
of orthonormal [-frames on R".

3.2. Lemma. Let m: Vip1, — S™7! be the projection (vi,...,vk41) > v1.
Then S”~! admits a set of k linearly independent vector fields if and only if there
is a section S"' — Vi i1, of mg.

Proof. This is immediate from the discussion in (2.1). O

So we’ve reduced our problem to the existence of some map. Already one can
imagine using algebra to get at the problem now. E.g., we can ask for what k
this map can exist in singular homology or cohomology. This was the strategy
of Steenrod and Whitehead [SW51], who achieve an upper bound k¥ < 2%, in the
notation of (2.2). Of course this result doesn’t tell us that S'° is not parallelisable,
and leaves a large gap from the lower bound (2.5). This gap was finally closed by

20ne should note however that the descriptions in this table are given by completely non-
canonical isomorphisms.



Adams, who ingeniously employed K-theory instead to show the lower bound (2.5)
is in fact optimal.

3.3. Theorem ([Ada62]). There does not exist a set of p(n) linearly independent
vector fields on S~

Our goal for the remainder is to explain the ideas behind a proof of this theorem,
which of course completely answers our question (1.4). Following [Mil10], the
argument we give is not in the original form presented in [Ada62], but rather
one utilising Adams’s later work on bounding the image of the J-homomorphism
[Ada65].

However, we will only work in complex K-theory. As a result we will achieve a
very slightly worse upper bound than promised by (3.3), but this way we get to
avoid a few subtleties that arise in studying real K-theory. At least to the author,
it seems the argument in complex K-theory retains the main ideas and yet is much
easier to absorb. At the end we will explain why, after sorting out the subtleties,
translating the argument into real K-theory gives the full result.

4. CONNECTION TO THE J-HOMOMORPHISM

We first review our basic notation and the general setup of Adams’s study of
the J-homomorphism.
4.1. Notation. (a) X will always denote a connected finite CW-complex.
(b) Denote? real and complex K-theory by K (X) with A =R or A = C, respec-
tively, and reduced K-theory by K (X).
(¢c) We have maps:
e 1: K¢(X) — Kgr(X) by forgetting complex structure;
o r: Kp(X) — K¢(X) by complexification, i.e., tensoring with X x C.
Note that since C ~ R & R the map ¢ o k is just multiplication by 2.
(d) If £ — X is a real or complex vector bundle, we abusively denote its class in
KA (X) by & as well.
(e) Let ep for A =R or A = C denote the trivial real or complex line bundle (over
a space understood from context), respectively.

4.2. Remark. Since we always work over a connected base, any vector bundle
§ — X has a well-defined dimension over a specified A, and this extends to a ring
morphism dim: K, (X) — Z. Recall Kx(X) = ker(dim).

4.3. Definitions. (a) A spherical fibration over X is a fibre bundle S — X whose
fibre has the homotopy type of a sphere.

(b) Let S — X and S’ — X be two spaces over X. We say S and S’ are fibre
homotopy equivalent if there are maps f: S — S’ and g: S’ — S over X and
homotopies gf ~ idg and fg ~ idg: over X.*

(¢) Denote by SF(X) the Grothendieck group of the monoid of fibre homotopy
equivalence classes of spherical fibrations over X with fibre-wise smash product.

(d) The (real) J-homomorphism is the map Jg: Kgr(X) — SF(X) induced by
& +— & — 0 for bundles £ — X, i.e., removing the zero section. Or if we equip
& with a metric, then the unit sphere bundle S(§) == {v € & : |v| = 1} is
evidently fibre homotopy equivalent to £ — 0, so we have J(&) = S(&).

3We use Adams’s notation for K-theory rather than the what is the standard notation these

days, since it seems more convenient for our purposes.
4As usual, “over X” just means preserving fibres.
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(e) We get a complex J-homomorphism J¢ := Jrotv: K¢(X) — Kgr(X) — SF(X).
(f) The image of the J-homomorphism is denoted Jx(X) with A =R or A =C.

We now translate our problem into a question about the J-homomorphism.

4.4. Lemma (Dold-Lashof). Let Y — X and Y’ — X be fibre bundles. Assume
Y and Y’ have the homotopy type of CW-complexes and X is connected. Then a
map Y — Y’ over X inducing a homotopy equivalence on all fibres is in fact a
fibre homotopy equivalence.

Proof. Omitted. ]
4.5. Notation. Let v denote the tautological real line bundle over RP*.

4.6. Lemma. Assume m: Vi1, — S™ ! has a section. Then there is a fibre
homotopy equivalence S(ef™) — S(y%") over RP.

Proof. First let Y := (S* x S"71)/(Z/2), with Z/2 acting diagonally via the
antipodal maps, and observe there is a homeomorphism Y ~ S(y®") over RP*,
where the map ¥ — RP* is induced by projection

Sk snl s Sk L RPF, (v, ) > £,

Indeed, viewing S(v®") ¢ 4®" ¢ RP* x (R¥+1)", the homeomorphism is induced
by
SF x 8" L RPF x (R*H™, (v, 2) > (Ly, 210, ..., 2n0),
where (z1,...,2,) =2z € S"1 C R™. Then since S(eg") ~ RP* x S~ 1 we are
left to give a fibre homotopy equivalence RP* x §"~1 Y.
If s: S"7! — Vii1., is a section of 7 then we get a map f: RPF x §"~1 Y
over RP* induced by the map

Sk gt Sk sl (v, x) > (v, s(z)v),

where s(x) € Viy1., acts on S* by identifying an orthonormal frame with an
n-by-(k + 1) matrix. Note that since s is a section, if e; € S* is the first canonical
basis vector, then s(z)e; = .

Since f preserves fibres, over each ¢ € RP” it induces a map fo: P71 — gn—L
On any connected open set U C RP* over which ~®™ is trivial, the assignment
¢ +— f; gives a continuous map U — map(S™~1, 8"~ 1), whose image lies in a
single connected component. Since RP* is connected and can be covered by such U,
it follows that deg(f;) is constant. But above we noted that f induces the identity
over {.,, so in fact f, must be a homotopy equivalence for all ¢ € RP*. We are

then done by (4.4). O
4.7. Notation. Define A := v — 1 € Kg(RP*) and v := x(\) = k(y) — 1 €
Kc(RPF).

4.8. Lemma. Suppose n = 2m. If S?~! admits a set of k linearly independent
vector fields, then Je(mv) = Jr(nA) = 0.

Proof. Given the hypothesis, it is immediate from (3.2) and (4.6) that Jr(nA) = 0.
And by definition we have Jc(mv) = Jr(t(k(mA))) = Jr(2mA) = Jr(nA). O

So solving our problem now reduces to understanding K (RP¥) and Jx (RP¥),
and as indicated earlier we will work with A = C. We first address the former.

5. K-THEORY OF PROJECTIVE SPACE
5.1. Notation. Let fj := |k/2].



5.2. Theorem. K¢ (RIE”k) is generated by v, which satisfies the relations v? = —2v
and v/**1 = 0. This determines a group isomorphism KC(RIPk_l) ~ 7,/2%. Finally,
the Adams operations are given by

0 ifl even
l _
Vi) = {,, if 1 odd.

Proof. The case k = 1 is trivial, so assume k > 1. Since real line bundles have
structure group O(1) ~ {1}, we automatically have 42 = 1 € Kr(RP"). It follows
that k(y)? = 1 € Kc(RP¥), and hence that v = —2u.

Next we prove v/*T1 = 0. Since the tautological line bundle on RP*! pulls
back to the tautological line bundle on RP* via the inclusion RPF — RIP’k+1, by
naturality we may assume k = 2f, +1 is odd. Let 7: RP* — CP’* be the canonical
projection, and let £ — CP’* be the tautological (complex) line bundle. It is easy
to see directly that 7*¢ ~ k(). Thus that v+ = 0 follows from the fact® that
K¢ (CP) ~ Z[t] /t++! where ¢ := £ — 1.

We now show K¢ (RP¥) ~ 7 /2 using the Atiyah-Hirzebruch spectral sequence

ED? .= HP(RP*, K&(x)) = KETI(RPY).

Recall Bott periodicity and the cohomology of projective space:

KO(x) ~ Z if q even HP(RIP’k'Z)N ZJ2 if0<p<k, peven
770 if ¢ odd, P)=N2 itp—k, kodd
0 otherwise.

Thus the E5 page looks as follows, where A depends on the parity of k as indicated
above.

4 Z 7/2 zZ/2 - A
3
2| Z 72 7/2 - A
1
o| Z 7.)2 zj2 - A
—1_1 0 1 2 3 4 k k+1
2| Z 7/2 z/2 - A
-3
-4 Z Z]2 zj2 - A

We claim the spectral sequence is trivial, i.e., all the differentials on every page
vanish. By naturality of the spectral sequence in a point inclusion % — RP* we
know all the differentials on the column p = 0 vanish. All differentials change the
parity of the total degree p + ¢, so a differential from a Z/2 can only possibly
map to 0 or A ~ Z (in the case k odd) and hence must vanish. And obviously the

50ne can see [Ati67] or [Ada62] for (two different) proofs.
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differentials on the column p = k vanish. So we conclude

Z ifp=20
GerC(RPk):E&fp:Eg’_p: 7)2 if1<p<fi
0 otherwise.

We next claim that Gr, Kc(RP*) ~ Z/2 is generated by the class of v? for
1 < p < fg. It suffices to show this for p = 1, because the spectral sequence
is multiplicative, and has multiplication induced by the cup product in singular
cohomology on Es, and if x € H 2(]R]P’k; Z) is a generator then we know a? # 0 for
1 <p < fx. And for p = 1 it suffices to treat the case k = 2, since the spectral
sequence is natural and the inclusion RP? — RP* both:

e pulls back the tautological bundle on RP” to the tautological bundle on RP?;
e induces an isomorphism H?(RP*:Z) ~ H?(RP?;Z) ~ 7Z/2.
But in the case k = 2, we have Gry K¢ (RP?) ~ K¢ (RP?), so to say that v is a
generator is just to say v # 0, or equivalently () # 1. One can prove this with
the Stiefel-Whitney class: it suffices to show 1 # t(k(7)) = 2y € Kg(RP?), which
is witnessed by w(y @) = w(y)? = 1 4+ 22 # 1, where z € H'(RP*Z/2) is a
generator.

Now we can determine the extensions needed to compute K¢ (RPF) from the
associated graded Gr, K¢(RPF). Let F, be the p-th filtered piece of Kc(RPY),
so that F,/F, 1 ~ Gr, Kc(RP¥) ~ 7/2 for 1 < p < fj, and Fy ~ Kc(RP¥). We
inductively show that F), ~ 7./27+=P+1 with generator v7*; the base case p = f is
done already. To induct, we have the extension problem

0—»Z/2f’°_p—>Fpﬁ>Z/2—>0.

We just need to show v? has order 2f+=P+1. But we have the identity vP*! = —2uP,
and we inductively know v? has order 2/+~P. Since we know F, is a 2-group this
implies the claim.

To finish the proof we just need to verify the Adams operations, but this is evident
from the identity ()2 = 1 shown above, since ! (v) = ¢! (k(7))—1 = k(y)!=1. O
5.3. Remark. Given the information from (5.2), the multiplicative structure on
Kc(RP) can be clarified by observing that we can define an injective morphism
of (non-unital) rings a: K¢(RP*™Y) — Z/2/5+1 via v > —2.

6. THE THOM ISOMORPHISM

Before moving on to studying J¢ (RIPk_l) we briefly review the basic theory of
the Thom isomorphism.

6.1. Definition. Let £ — X be a vector bundle of real dimension r. The Thom
space Th(§) of £ is obtained by fibre-wise one-point compactifying £ and then
identifying all the points at infinity. More precisely we have Th(§) ~ P({ @ er)/P(E),
or if we equip £ with a metric then we have Th(¢) ~ D(§)/S(€) the unit disk
bundle quotiented by the unit sphere bundle.

6.2. Remark. For any p € X the fibre R" =~ {, < & determines a “fibre” S ~
Th(&p) < Th(¢).

6.3. Let £ — X be an oriented vector bundle of real dimension r. Let E be a
multiplicative cohomology theory. Then we have

E*(Th(€)) ~ E*(D(&), S(€)) = E*(£,€ - 0),
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and in this way E*(Th(¢)) is a module over E*(X) ~ E*(£).

A Thom class in E of ¢ is an element u € ET(Th(§)) such that for any fibre
i: 8" ~ Th(§,) — Th(€), where the identification S” ~ Th(¢,) is determined by
the orientation of £, the restriction

E"(Th(€)) —— E"(S") — E°(x)

sends u to the canonical unit 1 € E°(x).
The Thom isomorphism theorem states that if £ has a Thom class u then the
map
¢: E*(X) — E*T"(Th(¢)), x>z -u

is an isomorphism of E*(X)-modules.
6.4. Proposition. There exist Thom classes u¢ in K¢ for all complex vector
bundles & — X. These can be chosen to satisfy the following pleasant properties.

(a) Naturality: for any pullback square

e 2 ¢

Lo

Y4f>X

of complex vector bundles, uys-¢ = g*(u¢).

(b) Multiplicativity: let £ — X and n — Y be complex vector bundles. Consider
the product bundle { xn — X xY,and let m¢: E xn— Land m;: Exn— 7
be the projections. Then

Ugsen = T¢ (ug) - 7 (up).
By naturality this implies the same multiplicativity when X =Y and we
replace £ x 1 with £ & 7.
Proof. This is achieved by the “difference bundle” construction of [ABS64], but
this topic is omitted here, unfortunately. O

6.5. Example. Let £ — CP* be the tautological line bundle. We claim that in
fact Th(¢) ~ CP*. Indeed since S(§) ~ S is contractible, we have Th(§) ~
D(£)/S(€) ~ D(€) ~ CP*™.5 Tt is easy to see then that the K (CP>)-module
structure on K§(Th(§)) is just given by multiplication in K#(CP), and hence
the Thom class ue € K2(Th(€)) ~ Kc(CP™) must be a generator #(& — 1).

7. CHARACTERISTIC CLASSES

We now begin our quest to understand Je(RP*). This will fall out of Adams’s
more general results on the J-homomorphism, namely, the construction of a certain
quotient Jy (X) — J}(X), a “lower bound” on Jx(X). We begin with a general
discussion of characteristic classes, which are used to define the group Jj (X).

7.1. Let F and F' be multiplicative cohomology theories. Consider the following
data.

(a) Let V be some class of vector bundles £ — X equipped with natural” Thom
classes u¢ in E and t¢ in F.

(b) Let T: E — F be a natural transformation of cohomology theories.

6 learned this argument from [May12].
"Here “natural” is used in the same sense as (6.4).
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Then for any £ — X in V we can form a characteristic class
l(T,€) = g 'Te(1) = T(ug) /te € F*(X),

where ¢¢, 1¢ denote the Thom isomorphisms in F, I’ respectively. Note by naturality
of our Thom classes, cl(T, &) is natural in bundle maps f*¢ — &.

7.2. Example. If we take E = F = H*(—;Z/2) in (7.1) then we have natural
orientations on all vector bundles. It turns out that if we set 7' to be the Steenrod
square Sq’ then the resulting characteristic class cl(Sqi, —) is just the Stiefel-
Whitney class w;.

7.3. Definition. Take E = F = K and T = ¢! the Adams operation for [ € N
in (7.1). The resulting classes p! := cl(y!, —) are called the cannibalistic classes.®

7.4. Remark. By (6.4) the cannibalistic classes p' are defined on all complex
vector bundles, and moreover satisfy the exponential property

(7.5) pE@n) =p'©p ().
7.6. Convention. For the remainder, all bundles are complex vector bundles, and

dimension always refers to complex dimension.

7.7. Lemma. Let £ — X be a line bundle. Then p!(¢) = 1+ ¢+ --- + &1 for
leN.

Proof. By naturality it suffices to prove this for the universal line bundle § — CP.
By (6.5), Th(§) ~ CP* with Thom class £(§ — 1) € K¢(CP>). Then by definition
of p! and ¢! we have

P(EE-1) -1

!
p (&) = =
O="eon “eod
7.8. Remark. By the splitting principle, (7.5) and (7.7) imply that dim p!(¢) =
[4m& for any bundle &€ — X.
7.9. Combining (7.5) and (7.7) gives p!(eZ") = I". This tells us that, after inverting
I, we can extend the definition of p! from bundles to all of K¢(X). Namely, since

any element of K¢(X) can be written in the form £ — r for some bundle £, we can
define

=1+&+--+ &N O

ph: Ke(X) — Ke(X), §—rpl(O/1,
where K¢ (X); denotes the localisation at I. Since { —r =n—s <= {+s=n+r,
this is obviously well defined. And note we have preserved the exponential property:

Pz +y) = pl(x)p'(y) for z,y € Ke(X).
We next show how the cannibalistic classes p! allows us to bound J¢(X).

7.10. Lemma. Suppose Jc(§) = Je(n) for two bundles £ — X and 7 — X. Then
there exists y € K¢ (X) such that 1 +y € K¢(X) is invertible and

I 1 wl(l + y)
p () =p'(&) 1y
Proof. The hypothesis is that there is a fibre homotopy equivalence f: S(§) —
S(n) over X. This then extends to a homotopy equivalence of Thom complexes
g: Th(¢) — Th(n). On each fibre, g induces a map g¢,: Th(§,) — Th(n,) which
is just (homotopic to) the suspension of f,: S(&,) — S(n,); since f, is a homotopy
equivalence so is g,.

for all [ € N.

8Because they live in K-theory and also eat things in K-theory, and because Adams was
awesome.



Let v := qbglg*(bn(l) = g*(uy)/ue € Kc(X). Since g, is a homotopy equivalence,
gp(un,) = fug, forpe X.

It follows that dimv = +1. Let € := dimv € K¢ (X), so that dim ev = 1, and hence
ev =1+ y for some y € Kc(X).

Let h: Th(n) — Th(§) be a homotopy inverse to g; define w := qb;lh*(bf(l) €
Kc(X). Since ¢¢, ¢y, are isomorphisms of K¢ (X)-modules and pullback respects
multiplication, we have

vw = g g oy (1) - by W70 (1) = 6 h b g by (1) = 1,

and symmetrically wv = 1. So w is inverse to v, and hence ew is inverse to ev,
implying 1 + y is invertible.
Finally let [ € N. By naturality of the Adams operation 1! we have

((6g g dn) (0 0'00)) (1) = (¢ 0 ) (¥ ' g™ b)) (1).

Then by definition of p!, multplicativity of 1/;, and the fact that ¢¢ is an isomorphism
of K¢ (X)-modules, we get

vep'(n) = ¢ (¥ (v ue)) = 6 (W' (ue)) - ¥ (v) = p'(€) - ' (v).
Now, multiplying this equation by € = 1!(¢) we get
(L+y)-p'(m) = p'(€) - ' (L +y),

and since 1 + y is invertible we are done. O

7.11. Definitions. (a) Let Vo(X) € K¢(X) be the subgroup of elements x for
which there exists y € K¢(X) such that 1+ y is invertible and
V(1 +y)

That Ve (X) is in fact a subgroup follows from the fact that each p! is expo-
nential and each ¢ is multiplicative.

(b) Define J(X) := Kc(X)/Ve(X).
7.13. Lemma. Vc(X) C K¢(X).
Proof. Suppose z € Vi (X), and let y is as in (7.11). Writing « = £ — n for bundles

¢ and 7, we must have

l
po) =T € Kot = F 40O = UL+ )6 ) € Ke(X).

The Adams operations preserve dimension (by the splitting principle and their
definition), so dim¢!(1 + y) = dim (1 +y). It follows that dim pl(€) = dim pl(n),
whence dim ¢ = dim7 by (7.8). Therefore x € K¢ (X). O
7.14. Proposition. The quotient map K¢(X) — J{(X) factors through Jc. That
is, ker(Jc) C Ve(X), so JG(X) is a quotient of Jg(X).

Proof. Immediate from (7.10). O

8. FINISHING

We now specialise to the case X = RP¥. Computing Je (RP*) will give us enough
information about J¢(RP¥) to finally give an upper bound to our question (1.4)
on vector fields.



8.1. Lemma. Let v be the generator of K¢(RP®) as in (5.2). For I € N odd we

have
t

Ir—1
pltr) =1+ -——v for0<t< 2/

20
Proof. Let £ := x(7). By (7.7) and the identity £2 = 1 we have
_ I+1 11— -1
PEO=T+E+ &7 =—— +—£ 5V
The desired identity for ¢ = 1 then follows from v = ¢ — 1 = pl(v) = p'(&)/I.
Then t > 1 follows by induction using the relation v?> = —2v (and t = 0 is
trivial). O

8.2. Lemma. Vi(RPF) C {0,2/+ 10},

Proof. Let z € Ve (RP¥), and let y € Kc(RP) be such that (7.12) holds. By (5.2)
we have ¥!(14y) =1+ y for | odd, so we in fact have p'(x) = 1 for I odd.

Next, z € K¢ (X) by (7.13), so by (5.2) we can write 2 = tv for some 0 < ¢ < 27,
Then from (8.1) we know that

It—1
21t "
Recall the ring morphism a: K¢(RPF) — Z/2/+%1 defined in (5.3) by a(v) :=
—2. Observe this gives a morphism of multiplicative groups 8: 1 + KC(R]P’k ) —
(Z/27+ )% via B(1 + 2) == 1+ a(z).
So finally let I be odd. Note K¢(RP¥) ~ Z/2/s — K¢ (RPF), ~ K¢(RPF).
Thus from the above we get

plx) = pl(tr) =1+

It—1
2ltU> = 1/lt

We now use the fact that (Z/2f++1)* ~ 7/2 x Z/2/*~! has an element of order
27k=1 to see that choosing | appropriately implies 2f+~1 | ¢, as desired. O

1=pl(z) = 1:5<1+

8.3. Theorem. There does not exist a set of p(n) + 4 linearly independent vector
fields on S™~1.

Proof. If n is odd this is trivial by the hairy ball theorem (1.3). So assume n = 2m,
and suppose S"~! admits a set of k vector fields. Combining (4.8), (7.14), and
(8.2) gives that 2/+=1 | m == 2/ | n. Then observe that f; > ey — 1 > ey_4. By
(2.3) it follows that k —4 < p(n) — 1 = k < p(n) + 3. O

So ends our journey.

8.4. Remark. Our final upper bound in (8.3) is off by 4 from the right answer
(3.3). If we were computer scientists, that would be good enough. As remarked
above, that 4 goes away if one translates our work from complex K-theory into
real K-theory. Indeed one can define p' using the Adams operations in K rather
than K¢, and then define analogous groups V(X)) and Jg(X). But there is a bit
of nastiness:

e Thom classes don’t exist for all real vector bundles, so the analogue of (6.4) is
more subtle. However, in [ABS64] natural Thom clases are also constructed
for certain Spin bundles, and this is where one must begin.

e This means our proof of (7.7) won’t go through in the real case, and indeed
this implies that extending p' to Kg(X) is much more technical than the
simple discussion of (7.9).
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These subtleties are handled in [Ada65], and the reward is the correct bound. The
argument is essentially the same: one uses Jgr(nA) = 0 from (4.8), and this time
computes Vi (RP*) ~ 0, so Kg(RP") ~ Jg(RP*) ~ J& (RP¥). The crucial difference
is that Kr(RP*) ~ Z/2° so now we get 2° | n rather than 2/* | n when proving
the upper bound (8.3). Getting precisely ey, instead of the approximation fj means
that no pesky 4 will show up.

8.5. Remark. In addition to computing Jg (R]P’k), Adams computes Jf for spheres
as well, by using another characteristic class coming from the formalism of (7.1).
This gives bounds on the image of the J-homomorphism for spheres, where the
study of the J-homomorphism originated.
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