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1. The problem
To start at the very beginning, we state the basic definitions.

1.1. Notation. Throughout we have integers n ≥ 2 and 0 ≤ k ≤ n.
1.2. Definitions. Let M be a differentiable manifold. Let π : T M be the
tangent bundle on M .

(a) A vector field on M is a continuous section v : M T of π.
(b) A set of vector fields {v1, . . . , vk} on M is linearly independent if for each

p ∈ M the vectors v1(p), . . . , vk(p) are linearly independent in the tangent
space Tp. In particular a single vector field v forms a linearly independent
set if and only if it is nowhere vanishing.

Now the actual story: we are taught to love spheres from our very first days in
the land of topology. But perhaps it is the following result—or perhaps really its
title—which first truly beguiles us.
1.3. Theorem (Hairy ball). The sphere Sn−1 admits a nowhere vanishing vector
field if and only if n is even.

Of course, so enticed, we cannot just leave it there. We must ask the following.
1.4. Question. Then how many vector fields does Sn−1 admit? Or more precisely,
what is the maximum size of a set of linearly independent vector fields on Sn−1?

This is one of those questions that occupied people for a while. Its answer was
one of the first applications of generalised cohomology theory, and involves some
really nice ideas, some of which are hopefully conveyed in this exposition.

2. Lower bound
We first briefly review the positive side of the problem, that is, how to actually

construct some vector fields and achieve a lower bound. We do this for completeness,
and because it clarifies the sort of numerology we see in the upper bound. One
can see, e.g., [HM12, Mil10] for more details.
2.1. First of all, we have our very nice embedding Sn−1 Rn, which gives
the tangent spaces of Sn−1 a very concrete description. In particular, a vector
field on Sn−1 is just a map v : Sn−1 Rn such that v(x) ⊥ x (in Rn) for all
x ∈ Sn−1. Note that by Gram-Schmidt, giving k linearly independent vector fields
v1, . . . , vk : Sn−1 Rn is equivalent to giving k pointwise orthonormal maps
v1, . . . , vk : Sn−1 Sn−1.
2.2. Notation. • Write n = 2ab with b odd, and write a = 4c+ d with 0 ≤ d ≤ 3.

We define ρ(n) := 2d + 8c.1 Note in particular ρ(n) = 1 if n is odd.
• Define ek := |{0 < j ≤ k : j ≡ 0, 1, 2, 4 (mod 8)}|. It’s easy to see that

(2.3) ρ(n)− 1 = max{l ≥ 0 : 2el | n} = max{l ≥ 0 : el ≤ a}.

1The ρ(n) are called the Radon-Hurwitz numbers.
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2.4. The Clifford algebras Cll for l ≥ 0 are the free associative R-algebras with
generators q1, . . . , ql subject to the relations q2

i = −1 and qiqj = −qjqi for i 6= j.
For small values of l these are as follows2, where A(d) denotes the algebra of d-by-d
matrices in A.

l 0 1 2 3 4 5 6 7 8
Cll R C H H⊕2 H(2) C(4) R(8) R(8)⊕2 R(16)

For larger values of l we have a periodicity Cll+8 ' Cll ⊗R Cl8.
What does this have to do with vector fields? Well, suppose V is an R-vector

space of dimension n with a representation Cll ⊗R V V . Let Gl ⊂ Cll be the
multiplicative group genereated by {±qi}; it’s easy to see |Gl| = 2l+1. We can
construct a Gl-invariant inner product on V (e.g., by averaging any inner product
over Gl), and then we see that (under this inner product) we get l orthonormal
vector fields on the unit sphere S(V ) ' Sn−1 via x qix for 1 ≤ i ≤ l.

Thus we are interested in knowing the minimal dimension of a representation
of Cll. By the periodicity above, one can show without much difficulty that
this dimension is precisely 2el , where el is as defined in (2.2). Thus there is a
representation of Cll on Rn whenever 2el | n, by writing Rn ' R2el × · · · × R2el

and acting diagonally via the minimal representation. This gives the following
lower bound on our question (1.4).
2.5. Theorem. There is a set of ρ(n) − 1 linearly independent vector fields on
Sn−1.
Proof. Let l := ρ(n) − 1. By (2.3), 2el | n, so the discussion in (2.4) gives the
claim. �

3. Upper bound: a reduction
Getting an upper bound is where the real difficulty lies. Well, we know one

upper bound: Sn−1 certainly can’t admit n linearly independent vector fields, since
dimSn−1 = n− 1. And to say Sn−1 admits n− 1 linearly independent vector fields
is to say Sn−1 is parallelisable, which famously is true if and only if n ∈ {2, 4, 8}.
An optimal upper bound would at least tell us this parallelisability result. So let’s
think about it for a second and reduce the question to one more attackable by
algebra.
3.1. Definition. For l ∈ N, the Stiefel manifold Vl,n is the space

{(v1, . . . , vl) : vi ∈ Sn−1, 〈vi, vj〉 = δi,j}
of orthonormal l-frames on Rn.
3.2. Lemma. Let πk : Vk+1,n Sn−1 be the projection (v1, . . . , vk+1) v1.
Then Sn−1 admits a set of k linearly independent vector fields if and only if there
is a section Sn−1 Vk+1,n of πk.
Proof. This is immediate from the discussion in (2.1). �

So we’ve reduced our problem to the existence of some map. Already one can
imagine using algebra to get at the problem now. E.g., we can ask for what k
this map can exist in singular homology or cohomology. This was the strategy
of Steenrod and Whitehead [SW51], who achieve an upper bound k ≤ 2a, in the
notation of (2.2). Of course this result doesn’t tell us that S15 is not parallelisable,
and leaves a large gap from the lower bound (2.5). This gap was finally closed by

2One should note however that the descriptions in this table are given by completely non-
canonical isomorphisms.
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Adams, who ingeniously employed K-theory instead to show the lower bound (2.5)
is in fact optimal.
3.3. Theorem ([Ada62]). There does not exist a set of ρ(n) linearly independent
vector fields on Sn−1.

Our goal for the remainder is to explain the ideas behind a proof of this theorem,
which of course completely answers our question (1.4). Following [Mil10], the
argument we give is not in the original form presented in [Ada62], but rather
one utilising Adams’s later work on bounding the image of the J-homomorphism
[Ada65].

However, we will only work in complex K-theory. As a result we will achieve a
very slightly worse upper bound than promised by (3.3), but this way we get to
avoid a few subtleties that arise in studying real K-theory. At least to the author,
it seems the argument in complex K-theory retains the main ideas and yet is much
easier to absorb. At the end we will explain why, after sorting out the subtleties,
translating the argument into real K-theory gives the full result.

4. Connection to the J-homomorphism
We first review our basic notation and the general setup of Adams’s study of

the J-homomorphism.
4.1. Notation. (a) X will always denote a connected finite CW-complex.
(b) Denote3 real and complex K-theory by KΛ(X) with Λ = R or Λ = C, respec-

tively, and reduced K-theory by K̃Λ(X).
(c) We have maps:

• ι : KC(X) KR(X) by forgetting complex structure;
• κ : KR(X) KC(X) by complexification, i.e., tensoring with X × C.

Note that since C ' R⊕ R the map ι ◦ κ is just multiplication by 2.
(d) If ξ X is a real or complex vector bundle, we abusively denote its class in

KΛ(X) by ξ as well.
(e) Let εΛ for Λ = R or Λ = C denote the trivial real or complex line bundle (over

a space understood from context), respectively.
4.2. Remark. Since we always work over a connected base, any vector bundle
ξ X has a well-defined dimension over a specified Λ, and this extends to a ring
morphism dim: KΛ(X) Z. Recall K̃Λ(X) = ker(dim).
4.3. Definitions. (a) A spherical fibration over X is a fibre bundle S X whose

fibre has the homotopy type of a sphere.
(b) Let S X and S′ X be two spaces over X. We say S and S′ are fibre

homotopy equivalent if there are maps f : S S′ and g : S′ S over X and
homotopies gf ' idS and fg ' idS′ over X.4

(c) Denote by SF (X) the Grothendieck group of the monoid of fibre homotopy
equivalence classes of spherical fibrations over X with fibre-wise smash product.

(d) The (real) J-homomorphism is the map JR : KR(X) SF (X) induced by
ξ ξ − 0 for bundles ξ X, i.e., removing the zero section. Or if we equip
ξ with a metric, then the unit sphere bundle S(ξ) := {v ∈ ξ : |v| = 1} is
evidently fibre homotopy equivalent to ξ − 0, so we have J(ξ) = S(ξ).

3We use Adams’s notation for K-theory rather than the what is the standard notation these
days, since it seems more convenient for our purposes.

4As usual, “over X” just means preserving fibres.
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(e) We get a complex J-homomorphism JC := JR◦ι : KC(X) KR(X) SF (X).
(f) The image of the J-homomorphism is denoted JΛ(X) with Λ = R or Λ = C.

We now translate our problem into a question about the J-homomorphism.
4.4. Lemma (Dold-Lashof). Let Y X and Y ′ X be fibre bundles. Assume
Y and Y ′ have the homotopy type of CW-complexes and X is connected. Then a
map Y Y ′ over X inducing a homotopy equivalence on all fibres is in fact a
fibre homotopy equivalence.
Proof. Omitted. �

4.5. Notation. Let γ denote the tautological real line bundle over RPk.
4.6. Lemma. Assume πk : Vk+1,n Sn−1 has a section. Then there is a fibre
homotopy equivalence S(ε⊕nR ) S(γ⊕n) over RPk.
Proof. First let Y := (Sk × Sn−1)/(Z/2), with Z/2 acting diagonally via the
antipodal maps, and observe there is a homeomorphism Y ' S(γ⊕n) over RPk,
where the map Y RPk is induced by projection

Sk × Sn−1 Sk RPk, (v, x) `v.

Indeed, viewing S(γ⊕n) ⊂ γ⊕n ⊂ RPk × (Rk+1)n, the homeomorphism is induced
by

Sk × Sn−1 RPk × (Rk+1)n, (v, x) (`v, x1v, . . . , xnv),
where (x1, . . . , xn) := x ∈ Sn−1 ⊂ Rn. Then since S(ε⊕nR ) ' RPk × Sn−1, we are
left to give a fibre homotopy equivalence RPk × Sn−1 Y .

If s : Sn−1 Vk+1,n is a section of πk then we get a map f : RPk × Sn−1 Y

over RPk induced by the map
Sk × Sn−1 Sk × Sn−1, (v, x) (v, s(x)v),

where s(x) ∈ Vk+1,n acts on Sk by identifying an orthonormal frame with an
n-by-(k + 1) matrix. Note that since s is a section, if e1 ∈ Sk is the first canonical
basis vector, then s(x)e1 = x.

Since f preserves fibres, over each ` ∈ RPk it induces a map f` : Sn−1 Sn−1.
On any connected open set U ⊆ RPk over which γ⊕n is trivial, the assignment
` f` gives a continuous map U map(Sn−1, Sn−1), whose image lies in a
single connected component. Since RPk is connected and can be covered by such U ,
it follows that deg(f`) is constant. But above we noted that f induces the identity
over `e1 , so in fact f` must be a homotopy equivalence for all ` ∈ RPk. We are
then done by (4.4). �

4.7. Notation. Define λ := γ − 1 ∈ K̃R(RPk) and ν := κ(λ) = κ(γ) − 1 ∈
K̃C(RPk).
4.8. Lemma. Suppose n = 2m. If Sn−1 admits a set of k linearly independent
vector fields, then JC(mν) = JR(nλ) = 0.
Proof. Given the hypothesis, it is immediate from (3.2) and (4.6) that JR(nλ) = 0.
And by definition we have JC(mν) = JR(ι(κ(mλ))) = JR(2mλ) = JR(nλ). �

So solving our problem now reduces to understanding KΛ(RPk) and JΛ(RPk),
and as indicated earlier we will work with Λ = C. We first address the former.

5. K-theory of projective space
5.1. Notation. Let fk := bk/2c.
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5.2. Theorem. K̃C(RPk) is generated by ν, which satisfies the relations ν2 = −2ν
and νfk+1 = 0. This determines a group isomorphism K̃C(RPk−1) ' Z/2fk . Finally,
the Adams operations are given by

ψl(ν) =
{

0 if l even
ν if l odd.

Proof. The case k = 1 is trivial, so assume k > 1. Since real line bundles have
structure group O(1) ' {±1}, we automatically have γ2 = 1 ∈ KR(RPk). It follows
that κ(γ)2 = 1 ∈ KC(RPk), and hence that ν2 = −2ν.

Next we prove νfk+1 = 0. Since the tautological line bundle on RPk+1 pulls
back to the tautological line bundle on RPk via the inclusion RPk RPk+1, by
naturality we may assume k = 2fk+1 is odd. Let π : RPk CPfk be the canonical
projection, and let ξ CPfk be the tautological (complex) line bundle. It is easy
to see directly that π∗ξ ' κ(γ). Thus that νfk+1 = 0 follows from the fact5 that
K̃C(CPfk ) ' Z[t]/tfk+1 where t := ξ − 1.

We now show K̃C(RPk) ' Z/2fk , using the Atiyah-Hirzebruch spectral sequence

Ep,q2 := Hp(RPk,Kq
C(∗)) =⇒ Kp+q

C (RPk).

Recall Bott periodicity and the cohomology of projective space:

Kq
C(∗) '

{
Z if q even
0 if q odd,

Hp(RPk;Z) '


Z if p = 0
Z/2 if 0 < p ≤ k, p even
Z if p = k, k odd
0 otherwise.

Thus the E2 page looks as follows, where A depends on the parity of k as indicated
above.

-1 0 1 2 3 4 · · · k k+1

-4

-3

-2

-1

0

1

2

3

4

Z · · · AZ/2 Z/2

Z · · · AZ/2 Z/2

Z · · · AZ/2 Z/2

Z · · · AZ/2 Z/2

Z · · · AZ/2 Z/2

We claim the spectral sequence is trivial, i.e., all the differentials on every page
vanish. By naturality of the spectral sequence in a point inclusion ∗ RPk we
know all the differentials on the column p = 0 vanish. All differentials change the
parity of the total degree p + q, so a differential from a Z/2 can only possibly
map to 0 or A ' Z (in the case k odd) and hence must vanish. And obviously the

5One can see [Ati67] or [Ada62] for (two different) proofs.
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differentials on the column p = k vanish. So we conclude

GrpKC(RPk) ' Ep,−p∞ ' Ep,−p2 '


Z if p = 0
Z/2 if 1 ≤ p ≤ fk
0 otherwise.

We next claim that GrpKC(RPk) ' Z/2 is generated by the class of νp for
1 ≤ p ≤ fk. It suffices to show this for p = 1, because the spectral sequence
is multiplicative, and has multiplication induced by the cup product in singular
cohomology on E2, and if x ∈ H2(RPk;Z) is a generator then we know xp 6= 0 for
1 ≤ p ≤ fk. And for p = 1 it suffices to treat the case k = 2, since the spectral
sequence is natural and the inclusion RP2 RPk both:

• pulls back the tautological bundle on RPk to the tautological bundle on RP2;
• induces an isomorphism H2(RPk;Z) ' H2(RP2;Z) ' Z/2.

But in the case k = 2, we have Gr1KC(RP2) ' K̃C(RP2), so to say that ν is a
generator is just to say ν 6= 0, or equivalently κ(γ) 6= 1. One can prove this with
the Stiefel-Whitney class: it suffices to show 1 6= ι(κ(γ)) = 2γ ∈ KR(RP2), which
is witnessed by w(γ ⊕ γ) = w(γ)2 = 1 + x2 6= 1, where x ∈ H1(RP2;Z/2) is a
generator.

Now we can determine the extensions needed to compute KC(RPk) from the
associated graded Gr∗KC(RPk). Let Fp be the p-th filtered piece of KC(RPk),
so that Fp/Fp+1 ' GrpKC(RPk) ' Z/2 for 1 ≤ p ≤ fk and F1 ' K̃C(RPk). We
inductively show that Fp ' Z/2fk−p+1 with generator νfk ; the base case p = fk is
done already. To induct, we have the extension problem

0 Z/2fk−p Fp Z/2 0.

We just need to show νp has order 2fk−p+1. But we have the identity νp+1 = −2νp,
and we inductively know νp has order 2fk−p. Since we know Fp is a 2-group this
implies the claim.

To finish the proof we just need to verify the Adams operations, but this is evident
from the identity κ(γ)2 = 1 shown above, since ψl(ν) = ψl(κ(γ))−1 = κ(γ)l−1. �

5.3. Remark. Given the information from (5.2), the multiplicative structure on
K̃C(RPk) can be clarified by observing that we can define an injective morphism
of (non-unital) rings α : K̃C(RPk−1) Z/2fk+1 via ν −2.

6. The Thom isomorphism

Before moving on to studying JC(RPk−1) we briefly review the basic theory of
the Thom isomorphism.
6.1. Definition. Let ξ X be a vector bundle of real dimension r. The Thom
space Th(ξ) of ξ is obtained by fibre-wise one-point compactifying ξ and then
identifying all the points at infinity. More precisely we have Th(ξ) ' P(ξ⊕εR)/P(ξ),
or if we equip ξ with a metric then we have Th(ξ) ' D(ξ)/S(ξ) the unit disk
bundle quotiented by the unit sphere bundle.
6.2. Remark. For any p ∈ X the fibre Rr ' ξp ξ determines a “fibre” Sr '
Th(ξp) Th(ξ).
6.3. Let ξ X be an oriented vector bundle of real dimension r. Let E be a
multiplicative cohomology theory. Then we have

Ẽ∗(Th(ξ)) ' E∗(D(ξ), S(ξ)) ' E∗(ξ, ξ − 0),
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and in this way Ẽ∗(Th(ξ)) is a module over E∗(X) ' E∗(ξ).
A Thom class in E of ξ is an element u ∈ Ẽr(Th(ξ)) such that for any fibre

i : Sr ' Th(ξp) Th(ξ), where the identification Sr ' Th(ξp) is determined by
the orientation of ξ, the restriction

Ẽr(Th(ξ)) Ẽr(Sr) E0(∗)i∗ ∼

sends u to the canonical unit 1 ∈ E0(∗).
The Thom isomorphism theorem states that if ξ has a Thom class u then the

map
φ : E∗(X) Ẽ∗+r(Th(ξ)), x x · u

is an isomorphism of E∗(X)-modules.
6.4. Proposition. There exist Thom classes uξ in KC for all complex vector
bundles ξ X. These can be chosen to satisfy the following pleasant properties.

(a) Naturality: for any pullback square

f∗ξ ξ

Y X

g

f

of complex vector bundles, uf∗ξ = g∗(uξ).
(b) Multiplicativity: let ξ X and η Y be complex vector bundles. Consider

the product bundle ξ×η X×Y , and let πξ : ξ×η ξ and πη : ξ×η η
be the projections. Then

uξ×η = π∗ξ (uξ) · π∗η(uη).
By naturality this implies the same multiplicativity when X = Y and we
replace ξ × η with ξ ⊕ η.

Proof. This is achieved by the “difference bundle” construction of [ABS64], but
this topic is omitted here, unfortunately. �

6.5. Example. Let ξ CP∞ be the tautological line bundle. We claim that in
fact Th(ξ) ' CP∞. Indeed since S(ξ) ' S∞ is contractible, we have Th(ξ) '
D(ξ)/S(ξ) ' D(ξ) ' CP∞.6 It is easy to see then that the K∗C(CP∞)-module
structure on K∗C(Th(ξ)) is just given by multiplication in K∗C(CP∞), and hence
the Thom class uξ ∈ K̃2

C(Th(ξ)) ' K̃C(CP∞) must be a generator ±(ξ − 1).

7. Characteristic classes

We now begin our quest to understand JC(RPk). This will fall out of Adams’s
more general results on the J-homomorphism, namely, the construction of a certain
quotient JΛ(X) J ′Λ(X), a “lower bound” on JΛ(X). We begin with a general
discussion of characteristic classes, which are used to define the group J ′Λ(X).
7.1. Let E and F be multiplicative cohomology theories. Consider the following
data.

(a) Let V be some class of vector bundles ξ X equipped with natural7 Thom
classes uξ in E and tξ in F .

(b) Let T : E F be a natural transformation of cohomology theories.

6I learned this argument from [May12].
7Here “natural” is used in the same sense as (6.4).
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Then for any ξ X in V we can form a characteristic class

cl(T, ξ) := ψ−1
ξ Tφξ(1) = T (uξ)/tξ ∈ F ∗(X),

where φξ, ψξ denote the Thom isomorphisms in E,F respectively. Note by naturality
of our Thom classes, cl(T, ξ) is natural in bundle maps f∗ξ ξ.
7.2. Example. If we take E = F = H∗(−;Z/2) in (7.1) then we have natural
orientations on all vector bundles. It turns out that if we set T to be the Steenrod
square Sqi then the resulting characteristic class cl(Sqi,−) is just the Stiefel-
Whitney class wi.
7.3. Definition. Take E = F = K∗C and T = ψl the Adams operation for l ∈ N
in (7.1). The resulting classes ρl := cl(ψl,−) are called the cannibalistic classes.8

7.4. Remark. By (6.4) the cannibalistic classes ρl are defined on all complex
vector bundles, and moreover satisfy the exponential property

(7.5) ρl(ξ ⊕ η) = ρl(ξ)ρl(η).
7.6. Convention. For the remainder, all bundles are complex vector bundles, and
dimension always refers to complex dimension.
7.7. Lemma. Let ξ X be a line bundle. Then ρl(ξ) = 1 + ξ + · · · + ξl−1 for
l ∈ N.
Proof. By naturality it suffices to prove this for the universal line bundle ξ CP∞.
By (6.5), Th(ξ) ' CP∞ with Thom class ±(ξ− 1) ∈ K̃C(CP∞). Then by definition
of ρl and ψl we have

ρl(ξ) = ψl(±(ξ − 1))
±(ξ − 1) = ξl − 1

ξ − 1 = 1 + ξ + · · ·+ ξl−1. �

7.8. Remark. By the splitting principle, (7.5) and (7.7) imply that dim ρl(ξ) =
ldim ξ for any bundle ξ X.
7.9. Combining (7.5) and (7.7) gives ρl(ε⊕rC ) = lr. This tells us that, after inverting
l, we can extend the definition of ρl from bundles to all of KC(X). Namely, since
any element of KC(X) can be written in the form ξ − r for some bundle ξ, we can
define

ρl : KC(X) KC(X)l, ξ − r ρl(ξ)/lr,
where KC(X)l denotes the localisation at l. Since ξ− r = η− s ⇐⇒ ξ+ s = η+ r,
this is obviously well defined. And note we have preserved the exponential property:
ρl(x+ y) = ρl(x)ρl(y) for x, y ∈ KC(X).

We next show how the cannibalistic classes ρl allows us to bound JC(X).
7.10. Lemma. Suppose JC(ξ) = JC(η) for two bundles ξ X and η X. Then
there exists y ∈ K̃C(X) such that 1 + y ∈ KC(X) is invertible and

ρl(η) = ρl(ξ) · ψ
l(1 + y)
1 + y

for all l ∈ N.

Proof. The hypothesis is that there is a fibre homotopy equivalence f : S(ξ)
S(η) over X. This then extends to a homotopy equivalence of Thom complexes
g : Th(ξ) Th(η). On each fibre, g induces a map gp : Th(ξp) Th(ηp) which
is just (homotopic to) the suspension of fp : S(ξp) S(ηp); since fp is a homotopy
equivalence so is gp.

8Because they live in K-theory and also eat things in K-theory, and because Adams was
awesome.
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Let v := φ−1
ξ g∗φη(1) = g∗(uη)/uξ ∈ KC(X). Since gp is a homotopy equivalence,

g∗p(uηp
) = ±uξp

for p ∈ X.

It follows that dim v = ±1. Let ε := dim v ∈ KC(X), so that dim εv = 1, and hence
εv = 1 + y for some y ∈ K̃C(X).

Let h : Th(η) Th(ξ) be a homotopy inverse to g; define w := φ−1
η h∗φξ(1) ∈

KC(X). Since φξ, φη are isomorphisms of KC(X)-modules and pullback respects
multiplication, we have

vw = φ−1
ξ g∗φη(1) · φ−1

η h∗φξ(1) = φ−1
η h∗φξ(φ−1

ξ g∗φη(1)) = 1,

and symmetrically wv = 1. So w is inverse to v, and hence εw is inverse to εv,
implying 1 + y is invertible.

Finally let l ∈ N. By naturality of the Adams operation ψl we have

((φ−1
ξ g∗φη)(φ−1

η ψlφη))(1) = ((φ−1
ξ ψlφξ)(φ−1

ξ g∗φη))(1).

Then by definition of ρl, multplicativity of ψl, and the fact that φξ is an isomorphism
of KC(X)-modules, we get

v · ρl(η) = φ−1
ξ (ψl(v · uξ)) = φ−1

ξ (ψl(uξ)) · ψl(v) = ρl(ξ) · ψl(v).

Now, multiplying this equation by ε = ψl(ε) we get

(1 + y) · ρl(η) = ρl(ξ) · ψl(1 + y),

and since 1 + y is invertible we are done. �

7.11. Definitions. (a) Let VC(X) ⊆ KC(X) be the subgroup of elements x for
which there exists y ∈ K̃C(X) such that 1 + y is invertible and

(7.12) ρl(x) = ψl(1 + y)
1 + y

∈ KC(X)l for l ∈ N.

That VC(X) is in fact a subgroup follows from the fact that each ρl is expo-
nential and each ψl is multiplicative.

(b) Define J ′C(X) := KC(X)/VC(X).

7.13. Lemma. VC(X) ⊆ K̃C(X).
Proof. Suppose x ∈ VC(X), and let y is as in (7.11). Writing x = ξ−η for bundles
ξ and η, we must have

ρl(x) = ψl(1 + y)
1 + y

∈ KC(X)l =⇒ lr(1 + y)ρl(ξ) = lrψl(1 + y)ρl(η) ∈ KC(X).

The Adams operations preserve dimension (by the splitting principle and their
definition), so dimψl(1 + y) = dim (1 + y). It follows that dim ρl(ξ) = dim ρl(η),
whence dim ξ = dim η by (7.8). Therefore x ∈ K̃C(X). �

7.14. Proposition. The quotient map KC(X) J ′C(X) factors through JC. That
is, ker(JC) ⊆ VC(X), so J ′C(X) is a quotient of JC(X).
Proof. Immediate from (7.10). �

8. Finishing

We now specialise to the case X = RPk. Computing J ′C(RPk) will give us enough
information about JC(RPk) to finally give an upper bound to our question (1.4)
on vector fields.
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8.1. Lemma. Let ν be the generator of K̃C(RPk) as in (5.2). For l ∈ N odd we
have

ρl(tν) = 1 + lt − 1
2lt ν for 0 ≤ t < 2fk .

Proof. Let ξ := κ(γ). By (7.7) and the identity ξ2 = 1 we have

ρl(ξ) = 1 + ξ + · · ·+ ξl−1 = l + 1
2 + l − 1

2 ξ = l + l − 1
2 ν.

The desired identity for t = 1 then follows from ν = ξ − 1 =⇒ ρl(ν) = ρl(ξ)/l.
Then t > 1 follows by induction using the relation ν2 = −2ν (and t = 0 is
trivial). �

8.2. Lemma. VC(RPk) ⊆ {0, 2fk−1ν}.

Proof. Let x ∈ VC(RPk), and let y ∈ K̃C(RPk) be such that (7.12) holds. By (5.2)
we have ψl(1 + y) = 1 + y for l odd, so we in fact have ρl(x) = 1 for l odd.

Next, x ∈ K̃C(X) by (7.13), so by (5.2) we can write x = tν for some 0 ≤ t < 2fk .
Then from (8.1) we know that

ρl(x) = ρl(tν) = 1 + lt − 1
2lt ν.

Recall the ring morphism α : K̃C(RPk) Z/2fk+1 defined in (5.3) by α(ν) :=
−2. Observe this gives a morphism of multiplicative groups β : 1 + K̃C(RPk)
(Z/2fk+1)× via β(1 + z) := 1 + α(z).

So finally let l be odd. Note K̃C(RPk) ' Z/2fk =⇒ K̃C(RPk)l ' K̃C(RPk).
Thus from the above we get

1 = ρl(x) =⇒ 1 = β

(
1 + lt − 1

2lt ν

)
= 1/lt.

We now use the fact that (Z/2fk+1)× ' Z/2× Z/2fk−1 has an element of order
2fk−1 to see that choosing l appropriately implies 2fk−1 | t, as desired. �

8.3. Theorem. There does not exist a set of ρ(n) + 4 linearly independent vector
fields on Sn−1.
Proof. If n is odd this is trivial by the hairy ball theorem (1.3). So assume n = 2m,
and suppose Sn−1 admits a set of k vector fields. Combining (4.8), (7.14), and
(8.2) gives that 2fk−1 | m =⇒ 2fk | n. Then observe that fk ≥ ek − 1 ≥ ek−4. By
(2.3) it follows that k − 4 ≤ ρ(n)− 1 =⇒ k ≤ ρ(n) + 3. �

So ends our journey.
8.4. Remark. Our final upper bound in (8.3) is off by 4 from the right answer
(3.3). If we were computer scientists, that would be good enough. As remarked
above, that 4 goes away if one translates our work from complex K-theory into
real K-theory. Indeed one can define ρl using the Adams operations in KR rather
than KC, and then define analogous groups VR(X) and J ′R(X). But there is a bit
of nastiness:

• Thom classes don’t exist for all real vector bundles, so the analogue of (6.4) is
more subtle. However, in [ABS64] natural Thom clases are also constructed
for certain Spin bundles, and this is where one must begin.

• This means our proof of (7.7) won’t go through in the real case, and indeed
this implies that extending ρl to KR(X) is much more technical than the
simple discussion of (7.9).
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These subtleties are handled in [Ada65], and the reward is the correct bound. The
argument is essentially the same: one uses JR(nλ) = 0 from (4.8), and this time
computes VR(RPk) ' 0, so KR(RPk) ' JR(RPk) ' J ′R(RPk). The crucial difference
is that K̃R(RPk) ' Z/2ek , so now we get 2ek | n rather than 2fk | n when proving
the upper bound (8.3). Getting precisely ek instead of the approximation fk means
that no pesky 4 will show up.
8.5. Remark. In addition to computing J ′R(RPk), Adams computes J ′R for spheres
as well, by using another characteristic class coming from the formalism of (7.1).
This gives bounds on the image of the J-homomorphism for spheres, where the
study of the J-homomorphism originated.
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