
Lecture Notes on C∗-algebras

Ian F. Putnam

January 3, 2019



2



Contents

1 Basics of C∗-algebras 7
1.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3 Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.4 Commutative C∗-algebras . . . . . . . . . . . . . . . . . . . . 15
1.5 Further consequences of the C∗-condition . . . . . . . . . . . . 23
1.6 Positivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.7 Finite-dimensional C∗-algebras . . . . . . . . . . . . . . . . . . 28
1.8 Non-unital C∗-algebras . . . . . . . . . . . . . . . . . . . . . . 36
1.9 Ideals and quotients . . . . . . . . . . . . . . . . . . . . . . . 40
1.10 Traces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
1.11 Representations . . . . . . . . . . . . . . . . . . . . . . . . . . 46
1.12 The GNS construction . . . . . . . . . . . . . . . . . . . . . . 52
1.13 von Neumann algebras . . . . . . . . . . . . . . . . . . . . . . 60

2 Group C∗-algebras 65
2.1 Group representations . . . . . . . . . . . . . . . . . . . . . . 65
2.2 Group algebras . . . . . . . . . . . . . . . . . . . . . . . . . . 67
2.3 Finite groups . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
2.4 The C∗-algebra of a discrete group . . . . . . . . . . . . . . . 71
2.5 Abelian groups . . . . . . . . . . . . . . . . . . . . . . . . . . 77
2.6 The infinite dihedral group . . . . . . . . . . . . . . . . . . . . 79
2.7 The group F2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
2.8 Locally compact groups . . . . . . . . . . . . . . . . . . . . . 91

3 Groupoid C∗-algebras 97
3.1 Groupoids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
3.2 Topological groupoids . . . . . . . . . . . . . . . . . . . . . . . 103

3



4 CONTENTS

3.3 The C∗-algebra of an étale groupoid . . . . . . . . . . . . . . . 107
3.3.1 The fundamental lemma . . . . . . . . . . . . . . . . . 107
3.3.2 The ∗-algebra Cc(G) . . . . . . . . . . . . . . . . . . . 108
3.3.3 The left regular representation . . . . . . . . . . . . . . 113
3.3.4 C∗(G) and C∗r (G) . . . . . . . . . . . . . . . . . . . . . 116

3.4 The structure of groupoid C∗-algebras . . . . . . . . . . . . . 119
3.4.1 The expectation onto C(G0) . . . . . . . . . . . . . . . 119
3.4.2 Traces on groupoid C∗-algebras . . . . . . . . . . . . . 121
3.4.3 Ideals in groupoid C∗-algebras . . . . . . . . . . . . . . 126

3.5 AF-algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135



Preface

It is a great pleasure to thank those who have made helpful suggestions and
found errors: Christian Skau, Charles Starling and Maria Ramirez-Solano.

5



6 CONTENTS



Chapter 1

Basics of C∗-algebras

1.1 Definition

We begin with the definition of a C∗-algebra.

Definition 1.1.1. A C∗-algebra A is a (non-empty) set with the following
algebraic operations:

1. addition, which is commutative and associative

2. multiplication, which is associative

3. multiplication by complex scalars

4. an involution a 7→ a∗ (that is, (a∗)∗ = a, for all a in A)

Both types of multiplication distribute over addition. For a, b in A, we have
(ab)∗ = b∗a∗. The involution is conjugate linear; that is, for a, b in A and λ
in C, we have (λa + b)∗ = λ̄a∗ + b∗. For a, b in A and λ, µ in C, we have
λ(ab) = (λa)b = a(λb) and (λµ)a = λ(µa).

In addition, A has a norm in which it is a Banach algebra; that is,

‖λa‖ = |λ|‖a‖,
‖a+ b‖ ≤ ‖a‖+ ‖b‖,
‖ab‖ ≤ ‖a‖‖b‖,

for all a, b in A and λ in C, and A is complete in the metric d(a, b) = ‖a−b‖.
Finally, for all a in A, we have ‖a∗a‖ = ‖a‖2.
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Very simply, A has an algebraic structure and a topological structure
coming from a norm. The condition that A be a Banach algebra expresses
a compatibility between these structures. The final condition, usually re-
ferred to as the C∗-condition, may seem slightly mysterious, but it is a very
strong link between the algebraic and topological structures, as we shall see
presently.

It is probably also worth mentioning two items which are not axioms.
First, the algebra need not have a unit for the multiplication. If it does
have a unit, we write it as 1 or 1A and say that A is unital. Secondly, the
multiplication is not necessarily commutative. That is, it is not generally the
case that ab = ba, for all a, b. The first of these two issues turns out to be a
relatively minor one (which will be dealt with in Section 1.8). The latter is
essential and, in many ways, is the heart of the subject.

One might have expected an axiom stating that the involution is isomet-
ric. In fact, it is a simple consequence of the ones given, particularly the
C∗-condition.

Proposition 1.1.2. If a is an element of a C∗-algebra A, then ‖a‖ = ‖a∗‖.

Proof. As A is a Banach algebra ‖a‖2 = ‖a∗a‖ ≤ ‖a∗‖‖a‖ and so ‖a‖ ≤ ‖a∗‖.
Replacing a with a∗ then yields the result.

Next, we introduce some terminology for elements in a C∗-algebra. For a
given a in A, the element a∗ is usually called the adjoint of a. The first term
in the following definition is then rather obvious. The second is much less
so, but is used for historical reasons from operator theory. The remaining
terms all have a geometric flavour. If one considers the elements in B(H),
operators on a Hilbert space, each of these purely algebraic terms can be given
an equivalent formulation in geometric terms of the action of the operator
on the Hilbert space.

Definition 1.1.3. Let A be a C∗-algebra.

1. An element a is self-adjoint if a∗ = a.

2. An element a is normal if a∗a = aa∗.

3. An element p is a projection if p2 = p = p∗; that is, p is a self-adjoint
idempotent.
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4. Assuming that A is unital, an element u is a unitary if u∗u = 1 = uu∗;
that is, u is invertible and u−1 = u∗.

5. Assuming that A is unital, an element u is an isometry if u∗u = 1.

6. An element u is a partial isometry if u∗u is a projection.

7. An element a is positive if it may be written a = b∗b, for some b in A.
In this case, we often write a ≥ 0 for brevity.

1.2 Examples

Example 1.2.1. C, the complex numbers. More than just an example, it is
the prototype.

Example 1.2.2. Let H be a complex Hilbert space with inner product denoted
< ·, · >. The collection of bounded linear operators on H, denoted by B(H),
is a C∗-algebra. The linear structure is clear. The product is by composition
of operators. The ∗ operation is the adjoint; for any operator a on H, its
adjoint is defined by the equation < a∗ξ, η >=< ξ, aη >, for all ξ and η in
H. Finally, the norm is given by

‖a‖ = sup{‖aξ‖ | ξ ∈ H, ‖ξ‖ ≤ 1},

for any a in B(H).

Example 1.2.3. If n is any positive integer, we let Mn(C) denote the set of
n×n complex matrices. It is a C∗-algebra using the usual algebraic operations
for matrices. The ∗ operation is to take the transpose of the matrix and then
take complex conjugates of all its entries. For the norm, we must resort back
to the same definition as our last example

‖a‖ = sup{‖aξ‖2 | ξ ∈ Cn, ‖ξ‖2 ≤ 1},

where ‖ · ‖2 is the usual `2-norm on Cn.
Of course, this example is a special case of the last using H = Cn, and

using a fixed basis to represent linear transformations as matrices.

Example 1.2.4. Let X be a compact Hausdorff space and consider

C(X) = {f : X → C | f continuous }.
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The algebraic operations of addition, scalar multiplication and multiplication
are all point-wise. The ∗ is point-wise complex conjugation. The norm is the
usual supremum norm

‖f‖ = sup{|f(x)| | x ∈ X}

for any f in C(X). This particular examples has the two additional features
that C(X) is both unital and commutative.

Extending this slightly, let X be a locally compact Hausdorff space and
consider

C0(X) = {f : X → C | f continuous, vanishing at infinity }.

Recall that a function f is said to vanish at infinity if, for every ε > 0, there
is a compact set K such that |f(x)| < ε, for all x in X \K. The algebraic
operations and the norm are done in exactly the same way as the case above.
This example is also commutative, but is unital if and only if X is compact
(in which case it is the same as C(X)).

Example 1.2.5. Suppose that A B are C∗-algebras, we form their direct
sum

A⊕B = {(a, b) | a ∈ A, b ∈ B}.
The algebraic operations are all performed coordinate-wise and the norm is
given by

‖(a, b)‖ = max{‖a‖, ‖b‖},
for any a in A and b in B.

There is an obvious extension of this notion to finite direct sums. Also,
if An, n ≥ 1 is a sequence of C∗-algebras, their direct sum is defined as

⊕∞n=1An = {(a1, a2, . . .) | an ∈ An, for all n, lim
n
‖an‖ = 0}.

Aside from noting the condition above on the norms, there is not much else
to add.

Exercise 1.2.1. Let A = C2 and consider it as a ∗-algebra with coordinate-
wise addition, multiplication and conjugation. (In other words, it is C({1, 2}).)

1. Prove that with the norm

‖(α1, α2)‖ = |α1|+ |α2|

A is not a C∗-algebra.
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2. Prove that
‖(α1, α2)‖ = max{|α1|, |α2|}

is the only norm which makes A into a C∗-algebra. (Hint: Proceed as
follows. First prove that, in any C∗-algebra norm, (1, 0), (1, 1), (0, 1)
all have norm one. Secondly, show that for any (α1, α2) in A, there is
a unitary u such that u(α1, α2) = (|α1|, |α2|). From this, deduce that
‖(α1, α2)‖ = ‖(|α1|, |α2|)‖. Next, show that if a, b have norm one and
0 ≤ t ≤ 1, then ‖ta + (1 − t)b‖ ≤ 1. Finally, show that any elements
of the form (1, α) or (α, 1) have norm 1 provided |α| ≤ 1.)

1.3 Spectrum

We begin our study of C∗-algebra with the basic notion of spectrum and the
simple result that the set of invertible elements in a unital Banach algebra
must be open. While it is fairly easy, it is interesting to observe that this is
an important connection between the algebraic and topological structures.

Lemma 1.3.1. 1. If a is an element of a unital Banach algebra A and
‖a− 1‖ < 1, then a is invertible.

2. The set of invertible elements of A is open.

Proof. Consider the following series in A:

b =
∞∑
n=0

(1− a)n.

It follows from our hypothesis that the sequence of partial sums for this series
is Cauchy and hence they converge to some element b of A. It is then a simple
continuity argument to see that

ab = (1− (1− a))(lim
N

N∑
N=0

(1− a)n) = lim
N

1− (1− a)N+1 = 1.

A similar argument shows ba = 1 and so a is invertible.
If a is invertible, the map b → ab is a homeomorphism of A, which

preserves the set of invertibles. It also maps the unit to a, so the conclusion
follows from the first part.
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We now come to the notion of spectrum. Just to motivate it a little,
consider the C∗-algebra C(X), where X is a compact Hausdorff space. If f
is an element of this algebra and λ is in C, the function λ − f is invertible
precisely when λ is not in the range of f . This gives us a simple algebraic
description of the range of a function and so it can be generalized.

Definition 1.3.2. Let A be a unital algebra and let a be an element of A. The
spectrum of a, denoted spec(a) is {λ ∈ C | λ1 − a is not invertible }. The
spectral radius of a, denoted r(a) is sup{|λ| | λ ∈ spec(a)}, which is defined
provided the spectrum is non-empty, allowing the possibility of r(a) =∞.

Remark 1.3.3. Let us consider for the moment the C∗-algebra Mn(C), where
n is some fixed positive integer. Recall the very nice fact from linear algebra
that the following four conditions on an element a of Mn(C) are equivalent:

1. a is invertible,

2. a : Cn → Cn is injective,

3. a : Cn → Cn is surjective,

4. det(a) 6= 0.

This fact allows us to compute the spectrum of the element a simply by finding
the zeros of det(λ − a), which (conveniently) is a polynomial of degree n.
The remark we make now is that in the C∗-algebra B(H), such a result fails
miserably when H is not finite-dimensional. First of all, the determinant
function simply fails to exist and while the first condition implies the next
two, any other implication between the first three doesn’t hold.

We quote two fundamental results from the theory of Banach algebras,
neither of which will be proved.

Theorem 1.3.4. Let A be a unital Banach algebra. The spectrum of any
element is non-empty and compact.

We will not give a complete proof of this result. Let us sketch the argu-
ment that the spectrum is compact. To see that it is closed one shows that
the complement is open, as an easy consequence of Lemma 1.3.1. Secondly,
if λ is strictly greater than ‖a‖, then a computation similar to the one in the
proof of Lemma 1.3.1 shows that

∑
n λ
−1−nan is a convergent series and its
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sum is an inverse for λ1 − a. Hence the spectrum of a is contained in the
closed disc at the origin of radius ‖a‖.

As for showing the spectrum is non-empty, the basic idea is as follows.
If a is in A and λ1 − a is invertible, for all λ in C, then we may take a
non-zero linear functional φ and look at φ((λ1− a)−1). One first shows this
function is analytic. Then by using the formula from the last paragraph for
(λ1 − a)−1, at least for |λ| large, it can be shown that the function is also
bounded. By Liouville’s Theorem, it is constant. From this it is possible to
deduce a contradiction.

The second fundamental result is the following.

Theorem 1.3.5. Let a be an element of a unital Banach algebra A. The se-
quence ‖an‖ 1

n is bounded by ‖a‖, decreasing and has limit r(a). In particular,
r(a) is finite and r(a) ≤ ‖a‖.

We will not give a complete proof (see [?]), but we will demonstrate part
of the argument. First, as ‖an‖ ≤ ‖a‖n in any Banach algebra, the sequence
is at least bounded. Furthermore, if λ is a complex number with absolute
value greater than lim supn ‖an‖

1
n , then it is a simple matter to show that

the series
∞∑
n=0

λ−n−1an

is convergent in A. Moreover, some basic analysis shows that

(λ1− a)
∞∑
n=0

λ−n−1an = lim
N

1− λ−NaN = 1− 0 = 1.

It follows then that (λ1 − a) is invertible and λ is not in the spectrum of
a. What the reader should take away from this argument is the fact that
working in a Banach algebra (where the series has a sum) is crucial.

With these results available, we move on to consider C∗-algebras. Here,
we see immediately important consequences of the C∗-condition.

Theorem 1.3.6. If a is a self-adjoint element of a unital C∗-algebra A, then
‖a‖ = r(a).

Proof. As a is self-adjoint, we have ‖a2‖ = ‖a∗a‖ = ‖a‖2. It follows by
induction that for any positive integer k, ‖a2k‖ = ‖a‖2k . By then passing to
a subsequence, we have

r(a) = lim
n
‖an‖

1
n = lim

k
‖a2k‖2−k = ‖a‖.
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Here we see a very concrete relation between the algebraic structure (in
the form of the spectral radius) and the topological structure. While this last
result clearly depends on the C∗-condition in an essential way, it tends to
look rather restrictive because it applies only to self-adjoint elements. Rather
curiously, the C∗-condition also allows us to deduce information about the
norm of an arbitrary element, a, since it expresses it as the square root of
the norm of a self-adjoint element, a∗a. For example, we have the following
two somewhat surprising results.

Corollary 1.3.7. Let A and B be C∗-algebras and suppose that ρ : A → B
is a ∗-homomorphism. Then ρ is contractive; that is, ‖ρ(a)‖ ≤ ‖a‖, for all
a in A. In particular, we have ‖ρ‖ ≤ 1.

Proof. First consider the case that a is self-adjoint. As our map is a uni-
tal homomorphism, it carries invertibles to invertibles and it follows that
spec(a) ⊃ spec(ρ(a)). Hence, we have

‖ρ(a)‖ = r(ρ(a)) ≤ r(a) = ‖a‖.

For an arbitrary element, we have

‖ρ(a)‖ = ‖ρ(a)∗ρ(a)‖
1
2 = ‖ρ(a∗a)‖

1
2 ≤ ‖a∗a‖

1
2 = ‖a‖.

Corollary 1.3.8. If A is a C∗-algebra, then its norm is unique. That is, if
a ∗-algebra possess a norm in which it is a C∗-algebra, then it possesses only
one such norm.

Proof. We combine the C∗-condition with the fact that a∗a is self-adjoint for
any a in A and Theorem 1.3.6 to see that we have

‖a‖ = ‖a∗a‖
1
2 = (sup{|λ| | (λ1− a∗a) not invertible })

1
2 .

The right hand side clearly depends on the algebraic structure of A and we
are done.

Exercise 1.3.1. With a as in Lemma 1.3.1, prove that the sequence sN =∑N
n=1(1− a)n is Cauchy.
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Exercise 1.3.2. For any real number t ≥ 0, consider the following element
of M2(C):

a =

[
1 t
0 1

]
.

Find the spectrum of a, the spectral radius of a and the norm of a. (Curiously,
the last is the hardest. If you are ambitious, see if you can find two different
methods: one using the definition and one using the C∗-condition and the
last theorem.)

Exercise 1.3.3. 1. Let A = C[x], the ∗-algebra of complex polynomials
in one variable, x. Find the spectrum of any non-constant polynomial
in A.

2. Prove that there is no norm on A in which it is a C∗-algebra.

3. Let B be the ∗-algebra of rational functions over C. That is, it is the
field of quotients for the ring A of the last part. Find the spectrum of
any non-constant rational function in B.

4. Prove that there is no norm on B in which it is a C∗-algebra.

5. Find two things wrong with the following: if A is any ∗-algebra, then
the formula given in the proof of 1.3.8 defines a norm which makes A
into a C∗-algebra.

1.4 Commutative C∗-algebras

In section 1.2, we gave an example of a commutative, unital C∗-algebra
by considering C(X), where X is a compact Hausdorff space. In fact, all
commutative, unital C∗-algebras arise in this way. That is, the main goal of
this section will be to prove that every commutative, unital C∗-algebra A is
isomorphic to C(X), for some compact Hausdorff space X.

For the first part of this section, we will restrict our attention to commu-
tative, unital C∗-algebras, ending with the theorem above. Following on, we
will also consider non-commutative C∗-algebras and obtain some interesting
consequences.

Definition 1.4.1. Let A be an algebra over C. We define M(A) to be the
set of non-zero homomorphisms to C.
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We remark that the notation comes from the fact that a homomorphism
is a multiplicative linear map.

Lemma 1.4.2. Let A be a unital commutative C∗-algebra and let φ be in
M(A).

1. φ(a) is in spec(a), for every a in A.

2. The map φ is bounded and ‖φ‖ = 1.

3. For all a in A, we have φ(a∗) = φ(a).

Proof. Consider the kernel of φ. It is clearly an ideal in A and since φ is
non-zero, it is a proper ideal and hence contains no invertible elements. For
any a in A, φ(a)1− a is clearly in the kernel of φ and hence is not invertible.
Thus, φ(a) is in spec(a) and |φ(a)| ≤ r(a) ≤ ‖a‖, from which it follows that φ
is bounded and ‖φ‖ ≤ 1. On the other hand, a non-zero multiplicative map
must send the unit to a non-zero idempotent and the complex numbers has
only one such element: φ(1) = 1. Noting that ‖1‖2 = ‖1∗1‖ = ‖1‖ implies
that ‖1‖ = 1 and hence ‖φ‖ ≥ |φ(1)| = 1.

For the last part, any a in A may be written b+ ic, where b = (a+ a∗)/2
and c = (ia∗− ia)/2 are both self-adjoint. It suffices then, to prove that φ(b)
is real, whenever b = b∗. By using a power series for the exponential function,
one sees that, for any real number t, ut = eitb is a well-defined element of A.
Moreover an easy continuity argument shows that u−t = u∗t and utu−t = 1.
From this it follows that ‖ut‖ = ‖utu∗t‖1/2 = 1. As φ is continuous, we have

1 ≥ |φ(ut)| = |eitφ(b)|,

for all real numbers t. It follows that φ(b) is real as desired.

Lemma 1.4.3. Let A be a unital commutative C∗-algebra. The set M(A) is
a weak-∗ compact subset of the unit ball of the dual space A∗.

Proof. The Alaoglu Theorem (2.5.2, page 70 of []) asserts that the unit ball
is weak-∗ compact, so it suffices to prove that M(A) is closed. The weak-∗
topology is defined so that a net φα converges to φ if and only if the net
φα(a) converges to φ(a), for all a in A. But then it is clear that if each φα is
multiplicative, so is φ.
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This space M(A) will be our candidate compact, Hausdorff space. That
is, we will show that A is isomorphic to C(M(A)). First, we stress that the
topology on M(A) is the weak-* topology from the dual space of A. Let us
remark that we can already see a map from the former to the latter: for any
a in A, the formula â(φ) = φ(a) means that we can think of a as a function
on M(A). It is the map a→ â that will be our isomorphism.

Lemma 1.4.4. Let a be an element in a unital commutative C∗-algebra A.
Evaluation at a is a continuous map from M(A) onto spec(a).

Proof. Continuity is direct consequence of the definition of the weak-∗ topol-
ogy. Secondly, for any φ in M(A), φ(a) is in spec(a) from Lemma 1.4.2.

Finally, we need to see that the map is onto. That is, let λ be in spec(a). A
simple Zorn’s Lemma argument shows that λ1−a is contained in a maximal
proper ideal of A, say I. We claim that I is closed. Its closure is clearly
an ideal. Moreover, it cannot contain the unit since it is invertible, the
invertibles are open and I contains no invertible. Thus, the closure of I is
also a proper ideal and hence by maximality, it is equal to I. The quotient
A/I is then a field and also a Banach algebra, using the quotient norm. Let b
be any element of this Banach algebra. As its spectrum is non-empty (1.3.4),
we have a complex number λ such that λ1 − b is not invertible. As we are
in a field, we have λ1− b = 0. Hence, we see that every element of A/I is a
scalar multiple of the unit. That is, A/I ∼= C. The quotient map from A to
C is then a non-zero homomorphism which sends a to λ, since λ1 − a is in
I.

The next result strengthens the conclusion, in that the evaluation map
at a is actually injective, by adding the hypothesis that the commutative
C∗-algebra is generated by a, a∗ and 1. It can either be described as the
intersection of all C∗-subalgebras which contain a, or as the closure of the ∗-
algebra which is formed by taking the linear span of the unit and all products
of a and its adjoint. From the latter description, it is clear that this algebra
is commutative exactly when a commutes with its adjoint.

Lemma 1.4.5. Let a be an element in a unital, commutative C∗-algebra,
A, and assume that A is the Banach algebra generated by a, a∗ and 1. Then
evaluation at a is homeomorphism from M(A) to spec(a).

Proof. We know already that the map is continuous and surjective. It re-
mains only to see that it is injective. But if φ and ψ are in M(A) and
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φ(a) = ψ(a), then it follows from 1.4.2 that φ(a∗) = ψ(a∗) and also that
φ(1) = 1 = ψ(1), and hence φ = ψ since a, a∗ and the unit generate A as a
Banach algebra.

We are now ready to prove our main result.

Theorem 1.4.6. Let A be a commutative, unital C∗-algebra. The function
sending a in A to â in C(M(A)) defined by

â(φ) = φ(a), φ ∈M(A),

is an isometric ∗-isomorphism from A to C(M(A)).

Proof. The fact that â is a continuous function is a simple consequence of
the definition of the weak-∗ topology. It is easy to see that the map ˆ is a
homomorphism. That it is a ∗-homomorphism is a consequence of Lemma
1.4.2. Our next aim is to see that ˆ is isometric. First, suppose that a is
self-adjoint. From 1.3.6, we have

‖a‖ = r(a) = sup{|φ(a)| | φ ∈M(A)} = sup{|â(φ)| | φ ∈M(A)} = ‖â‖.

For an arbitrary element, we then have

‖a‖ = ‖a∗a‖
1
2 = ‖ ˆa∗a‖

1
2 = ‖â∗â‖

1
2 = ‖â‖.

We must finally show thatˆis onto. The range is clearly a unital ∗-algebra.
We will prove that the range separates the points of M(A). Assuming that
this is true for the moment, we can apply the Stone-Weierstrass Theorem
(4.3.4, page 146 of []) which states that a unital ∗-subalgebra of C(M(A))
which separates the points is dense. Moreover, sinceˆ is isometric and A is
complete, the range is also closed and we are done.

As for the claim that the range separates the points, let φ 6= ψ be two
elements of M(A). The fact that they are unequal means that there exists
an a in A such that φ(a) 6= ψ(a). In other words, â(φ) 6= â(ψ) and so â
separates φ and ψ.

Now, let us again consider the situation where is B a unital (not necessar-
ily commutative) C∗-algebra and let a be an element of B. We may consider,
A, the C∗-subalgebra of B generated by a, a∗ and 1. This subalgebra is com-
mutative exactly when the three generators commute with each other, and
this is exactly when a is normal: a∗a = aa∗. Alternately, an element a in
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B is normal if and only if there exists a commutative, unital C∗-subalgebra
a ∈ A ⊆ B.

We can apply the last Theorem to the C∗-algebra A, as before, and
Lemma 1.4.5 provides us with a fine description of M(A). However, an
interesting issues arises. If a is some element of A, it is conceivable that it
has an inverse in B, but that inverse is not in A. In other words, whether
or not a is invertible depends on whether we regard it as an element of A
or B. In fact, this turns out not to be an issue: the answers are always
the same. We will prove that in full generality - i.e. without assuming A is
commutative - in the next section. But for the moment, we need to worry
about it in the special case where A is commutative.

This same issue also means that the spectrum of a depends on whether
we think of it in A or B. Let us briefly introduce some notation to deal with
this. For a in A, let specA(a) be the set of complex numbers λ such that
λ1− a has no inverse in A and let specB(a) be the set of complex numbers λ
such that λ1− a has no inverse in B. Obviously, the existence of an inverse
in A implies one in B and so specB(a) ⊆ specA(a).

Proposition 1.4.7. Let B be a unital C∗-algebra and let A be a commutative
C∗-subalgebra of B which contains the unit of B. An element a of A has an
inverse in A if and only if it has an inverse in B. In consequence, we have
specA(a) = specB(a).

Proof. First, it is clear that if a has an inverse in A, it also has one in B.
Hence, we have specA(a) ⊇ specB(a). So let us assume that a has an inverse
in B. It follows that a∗ does also ((a∗)−1 = (a−1)∗) and so does a∗a. We know
from part 1 of Lemma 1.4.2 and Lemma 1.4.4 that specA(a∗a) = {φ(a∗a) |
φ ∈M(A)}. On the other hand, it follows from part 3 of Lemma 1.4.2

φ(a∗a) = φ(a∗)φ(a) = φ(a)φ(a)

is a non-negative real number. Also, part 2 of Lemma 1.4.2 implies that
φ(a∗a) ≤ ‖a∗a‖. It follows that

specB(a∗a) ⊆ specA(a∗a) ⊆ [0, ‖a∗a‖].

As we know that a∗a is invertible, 0 is not in the spectrum so

specB(a∗a) ⊆ [δ, ‖a∗a‖]
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for some positive number δ.
As λ1− (‖a∗a‖1− a∗a) = − ((‖a∗a‖ − λ)1− a∗a), we see that

specB(‖a∗a‖1− a∗a) = ‖a∗a‖ − specB(a∗a) ⊆ [0, ‖a∗a‖ − δ].

The element ‖a∗a‖1− a∗a is clearly self-adjoint, so we conclude that

‖(‖a∗a‖1− a∗a)‖ ≤ ‖a∗a‖ − δ < ‖a∗a‖.

It follows from part 2 of Lemma 1.4.2 that, for any φ in M(A), we have

|φ(‖a∗a‖1− a∗a)| < ‖a∗a‖.

The left-hand-side is simply

φ(‖a∗a‖1− a∗a) = ‖a∗a‖ − |φ(a)|2.

From these facts, we conclude that φ(a) 6= 0. Another application of Lemmas
1.4.2 amd 1.4.4 implies that 0 is not in specA(a) and so a is invertible in A.

Now we return to the situation that a is a normal element of the unital
C∗-algebra B and we attempt to exploit the commutative C∗-algebra A gen-
erated by a, a∗, 1, using the results we have so far. For any element of A, we
can return to writing spec(a).

A very curious thing happens: the map a→ â of 1.4.6 is much less useful
than its inverse! If f is any function in C(spec(a)), using Lemma 1.4.5 to
identify spec(a) withM(A), there is an element of A whose image underˆis
exactly f . We will denote this element by f(a).

Definition 1.4.8. Let B be a unital C∗-algebra and let a be a normal element
of B. Let A be the C∗-subalgebra of B generated by a and the unit. For each
f in C(spec(a)), we let f(a) be the unique element of A such that

φ(f(a)) = f(φ(a)),

for all φ in M(A).

The following now amounts to a restatement of 1.4.6 ( and 1.4.5).

Corollary 1.4.9. Let B be a unital C∗-algebra and let a be a normal ele-
ment of B. The map sending f to f(a) is an isometric ∗-isomorphism from
C(spec(a)) to the C∗-subalgebra of B generated by a and the unit. Moreover,
if f(z) =

∑
k,l ak,lz

kzl is any polynomial in z and z, then

f(a) =
∑
k,l

ak,la
k(a∗)l.
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We take a slight detour by noting the following result. There is a more
basic proof of this fact, but with what we have here, it becomes quite simple.

Corollary 1.4.10. Let a be a normal element of the unital C∗-algebra B.
Then a is self-adjoint if and only if spec(a) ⊆ R.

Proof. Under the isomorphism of 1.4.9, the restriction of the function f(z) =
z to the spectrum of a is mapped to a. Then a is self-adjoint if and only if
f |spec(a) = f̄ |spec(a), which holds if and only if spec(a) ⊆ R.

Corollary 1.4.11. Let A and B be unital C∗-algebras and let ρ : A→ B be a
unital C∗-homomorphism. If a is a normal element of A, then spec(ρ(a)) ⊆
spec(a) and f(ρ(a)) = ρ(f(a)), for any f in C(spec(a)).

Proof. As we observed earlier, it is clear that ρ must carry invertible elements
to invertible elements and the containment follows at once.

For the second part, let C and D denote the C∗-subalgebras of A and
B which are generated by a and the unit if A and ρ(a) and the unit of B,
respectively. It is clear then that ρ|C : C → D is a unital ∗-homomorphism.
Suppose that ψ is in M(D). Then ψ ◦ ρ is in M(C) and we have

ψ(ρ(f(a))) = ψ ◦ ρ(f(a)) = f(ψ ◦ ρ(a)) = f(ψ(ρ(a))).

By definition, this means that ρ(f(a)) = f(ρ(a)).

Exercise 1.4.1. Let X be a compact Hausdorff space. For each x in X,
define φx(f) = f(x). Prove that φx is in M(C(X)) and that x → φx is a
homeomorphism between X and M(C(X)). (Hint to show φ is surjective:
the Reisz representation theorem identifies the linear functionals on C(X)
for you. You just need to identify which are multiplicative.)

Exercise 1.4.2. Suppose that X and Y are compact Hausdorff spaces and
ρ : C(X)→ C(Y ) is a unital ∗-homomorphism.

1. Prove that there exists a continuous function h : Y → X such that
ρ(f) = f ◦ h, for all f in C(X).

2. Prove that this statement may be false if ρ is not unital.

3. Give a necessary and sufficient condition on h for ρ to be injective.
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4. Give a necessary and sufficient condition on h for ρ to be surjective.

Exercise 1.4.3. Let B be the C∗-algebra of bounded functions on [0, 1] (with
the supremum norm). Let Q = {k2−n | k ∈ Z, n ≥ 0} ∩ [0, 1).

1. Let A be the linear span of all functions of the form χ[s,t), χ[t,1], where
s, t are in Q. Prove that A is a ∗-algebra.

2. Let A be the closure of A is the supremum norm, which is a C∗-algebra.
Prove that A contains C[0, 1].

3. Prove that for all f in A and s in Q,

lim
x→s+

f(x), lim
x→s−

f(x)

both exist.

4. Let h : M(A) → [0, 1] be the map given in the last exercise and the
inclusion C[0, 1] ⊆ A. Describe M(A) and h.

Exercise 1.4.4. Let B be a unital C∗-algebra and suppose a is a self-adjoint
element and 1

4
> ε > 0 such that ‖a− a2‖ < ε.

1. Let f(x) = x− x2. Prove that

|f(x)| ≥ min

{
|x|
2
,
|1− x|

2

}
,

for all x in R.

2. Prove that spec(a) ⊆ [−2ε, 2ε] ∪ [1− 2ε, 1 + 2ε].

3. Find a continuous function g on spec(a) with values in {0, 1} such that
|g(x)− x| < 2ε, for all x in spec(a). Also explain why there is no such
function if spec(a) is replaced by [0, 1].

4. Prove that there is a projection p in B such that ‖a− p‖ < 2ε.
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1.5 Further consequences of the C∗-condition

In this section, we will prove three more important results on the structure
of C∗-algebras.

The first is a nice and somewhat surprising extension of our earlier result
that any ∗-homomorphism between C∗-algebras is necessarily a contraction
(Corollary 1.3.7). If we additionally assume the map is injective, then it is
actually isometric.

Lemma 1.5.1. Let A and B be unital C∗-algebras and ρ : A → B be an
injective, unital ∗-homomorphism. Then for any normal element a in A, we
have spec(a) = spec(ρ(a)).

Proof. As ρ maps invertible elements to invertible elements, it is clear that
spec(ρ(a)) ⊆ spec(a).

Let us suppose that the containment spec(ρ(a)) ⊆ spec(a) is proper.
Then we may find a non-zero continuous function f defined on spec(a) whose
restriction to spec(ρ(a)) is zero. Then we have f(a) 6= 0 while, using Corol-
lary 1.4.9, we have

ρ(f(a)) = f(ρ(a)) = 0

since f |spec(ρ(a)) = 0. This contradicts the hypothesis that ρ is injective.

Theorem 1.5.2. If A and B are unital C∗-algebras and ρ : A → B is an
injective ∗-homomorphism, then ρ is an isometry; that is, ‖ρ(a)‖ = ‖a‖, for
all a in A.

Proof. The equality ‖ρ(a)‖ = ‖a‖ for a self-adjoint element a follows from
Theorem 1.3.6 and Lemma 1.5.1. For arbitrary a, we have

‖a‖2 = ‖a∗a‖ = ‖ρ(a∗a)‖ = ‖ρ(a)∗ρ(a)‖ = ‖ρ(a)‖2

and we are done.

Earlier, we defined the spectrum of an element of an algebra. The fact
that the definition depends on the algebra in question is implicit. As a very
simple example, the function f(x) = x2 + 1 is invertible when considered in
the ring of continuous functions on the unit interval, C[0, 1], but not as an
element of the ring of polynomials, C[x]. Rather surprisingly, this does not
occur in C∗-algebras. More precisely, we have the following.
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Theorem 1.5.3. Let B be a unital C∗-algebra and let A be a C∗-subalgebra
of B containing its unit. If a is any element of A, then its spectrum in B
coincides with its spectrum in A.

Proof. It suffices to show that if a is any element of A which has an inverse
in B, then that inverse actually lies in A. In the case that a is normal, this
follows from Lemma 1.5.1 applied to the inclusion map of A in B.

For arbitrary a, if a is invertible, then so is a∗ (its inverse is (a−1)∗) and
hence a∗a is also invertible. As a∗a is self-adjoint and hence normal and
since it clearly lies in A, (a∗a)−1 also lies in A. Then we observe a−1 =
(a∗a)−1(a∗a)a−1 = (a∗a)−1a∗ which obviously lies in A.

The property of the conclusion of this last theorem is usually called spec-
tral permanence.

There is a simple, but useful consequence of this fact and Theorem 1.4.9,
usually known as the Spectral Mapping Theorem.

Corollary 1.5.4. Let a be a normal element of a unital C∗-algebra B. For
any continuous function f on spec(a), we have spec(f(a)) = f(spec(a)).
That is, the spectrum of f(a) is simply the range of f .

Proof. We have already noted the fact that for any compact Hausdorff space
X and for any f in C(X), the spectrum of f is simply the range of f , f(X).
We apply this to the special case of f in C(spec(a)) to see that the spectrum of
f is f(spec(a)). Since the map from C(spec(a)) to the C∗-algebra generated
by a is an isomorphism and it carries f to f(a) (by definition), we see that
spec(f) = spec(f(a)). The conclusion follows from the fact that the spectrum
of a is the same in the C∗-algebra B as it is in the C∗-subalgebra.

Exercise 1.5.1. Show that Theorem 1.5.3 is false if A and B are simply
algebras over C. In fact, find a maximal counter-example: A ⊆ B such
that for every element a of A (which is not a multiple of the identity), its
spectrum in A is as different as possible from its spectrum in B.

1.6 Positivity

Let us begin by recalling two things. The first is the definition of a positive
element in a C∗-algebra given in 1.1.3: an element a in a C∗-algebra is positive
if a = b∗b, for some b in A. Observe that this means that a is necessarily
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self-adjoint. Secondly, we recall Corollary 1.4.10: a normal element a of a
unital C∗-algebra is self-adjoint if and only if spec(a) ⊆ R. Our goal now
is to provide a similar “spectral” characterization of positivity for normal
elements.

Our main result (Theorem 1.6.5) states that a self-adjoint element a in a
unital C∗-algebra is positive if and only if spec(a) ⊆ [0,∞). Along the way,
we will prove a number of useful facts about positive elements in a unital
C∗-algebra.

Lemma 1.6.1. Let a be a self-adjoint element of a unital C∗-algebra A.

1. Let f(x) = max{x, 0} and g(x) = max{−x, 0}, for x in R. Then
f(a), g(a) are both positive. We have

a = f(a)− g(a),

af(a) = f(a)2,

ag(a) = −g(a)2,

f(a)g(a) = 0.

2. If spec(a) ⊆ [0,∞), then a is positive.

Proof. It is clear that f and g are continuous functions on the spectrum of
a, each is real-valued, f(x) − g(x) = x, xf(x) = f(x)2, xg(x) = −g(x)2 and
f(x)g(x) = 0,, for all x in R. Corollary 1.4.9 then implies that f(a), g(a)
are self-adjoint elements of A, satisfying the desired equations. Since f(x)
is positive, it has a square root and it follows that f(a) = (

√
f(a))2 =

(
√
f(a))∗(

√
f(a)) is positive. The same argument shows g(a) is positive.

For the second statement, it suffices to notice in the proof above that if
spec(a) ⊆ [0,∞), then g(a) = 0.

The following statement has a very easy proof which is a nice application
of the spectral theorem. Moreover, the result is a very useful tool in dealing
with elements with positive spectrum.

Lemma 1.6.2. Let a be a self-adjoint element of a unital C∗-algebra A. The
following are equivalent.

1. spec(a) ⊆ [0,∞).

2. For all t ≥ ‖a‖, we have ‖t− a‖ ≤ t.
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3. For some t ≥ ‖a‖, we have ‖t− a‖ ≤ t.

Proof. Since the spectrum of a is a subset of the reals and the spectral radius
of a is its norm, spec(a) ⊆ [−‖a‖, ‖a‖]. We consider the function ft(x) = t−x,
for values of t ≥ ‖a‖. The function is positive and monotone decreasing on
[−‖a‖, ‖a‖]. Hence, the norm of the restriction of ft to the spectrum of a is
just its value at the infimum of spec(a). In view of Corollary 1.4.9, ‖t−a‖ is
also the value of ft at the infimum of spec(a). Finally, notice that ft(x) ≤ t
if and only if x ≥ 0. Putting this together, we see that the minimum of
spec(a) is negative if and only if ‖t − a‖ > t. Taking the negations of both
statements, spec(a) ⊆ [0,∞) if and only if ‖t − a‖ ≤ t. This holds for all
t ≥ ‖a‖.

Here is one very useful consequence of this result.

Proposition 1.6.3. If a and b are self-adjoint elements of the unital C∗-
algebra A and spec(a), spec(b) ⊆ [0,∞), then spec(a+ b) ⊆ [0,∞).

Proof. Let t = ‖a‖+ ‖b‖ which is evidently at least ‖a+ b‖. Then we have

‖t− (a+ b)‖ = ‖(‖a‖ − a) + (‖b‖ − b)‖
≤ ‖(‖a‖ − a)‖+ ‖(‖b‖ − b)‖
≤ ‖a‖+ ‖b‖
= t,

where we have used the last lemma in moving from the second line to the
third. The conclusion follows from another application of the last lemma.

Before getting to our main result, we will need the following very basic
fact regarding the spectrum.

Lemma 1.6.4. Let a, b be two elements of a unital algebra A. Then we have

spec(ab) \ {0} = spec(ba) \ {0}.

Proof. It clearly suffices to prove that if λ is a non-zero complex number
such that λ − ab is invertible, then λ − ba is invertible also. Consider x =
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λ−1 + λ−1b(λ− ab)−1a. We see that

x(λ− ba) = (λ−1 + λ−1b(λ− ab)−1a)(λ− ba)

= 1− λ−1ba+ λ−1b(λ− ab)−1(λa− aba)

= 1− λ−1ba+ λ−1b(λ− ab)−1(λ− ab)a
= 1− λ−1ba+ λ−1ba

= 1.

A similar computation which we omit shows that (λ− ba)x = 1 and we are
done.

We are now ready to prove our main result.

Theorem 1.6.5. Let a be a self-adjoint element of a unital C∗-algebra A.
Then a is positive if and only if spec(a) ⊆ [0,∞).

Proof. The ’if’ direction has already been done in Lemma 1.6.1. Let us now
assume that a = b∗b, for some b in A. Using the notation of 1.6.1, consider
c = bg(a). Then we have c∗c = g(a)b∗bg(a) = g(a)ag(a) = −g(a)3. Write
c = d + ie, where d, e are self-adjoint elements of A. A simple computation
shows that

cc∗ = d2 + e2 − c∗c = d2 + e2 + g(a)3.

As the functions x2 and g(x)3 are positive, it follows from Corollary 1.5.4
that each of d2, c2 and g(a)3 has spectrum contained in [0,∞). By Lemma
1.6.3, so does cc∗. On the other hand, again using Corollary 1.5.4, we have
spec(c∗c) = spec(−g(a)3) ⊆ (−∞, 0].

We now appeal to Lemma 1.6.4 (using a = c, b = c∗) to conclude that
spec(c∗c) = spec(cc∗) = {0}. But this means that −g(a)3 = c∗c = 0 and it
follows that g(a) = 0. This implies that the restriction of g to the spectrum
of a is zero, which means spec(a) ⊆ [0,∞) and we are done.

It is worth mentioning the following rather handy consequence.

Corollary 1.6.6. If a is a normal element in a unital C∗-algebra B and f
is a real-valued function on spec(a), then f(a) is self-adjoint. Similarly, if f
is positive, then f(a) is positive.

Proof. We know that spec(f(a)) = f(spec(a)) from Theorem 1.5.4. More-
over, since f(a) lies in the C∗-algebra generated by a and the unit, which
is commutative, it itself is normal. The two statements now follow from
Corollary 1.4.10 and Corollary 1.6.5.
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Exercise 1.6.1. Let A be a unital C∗-algebra and suppose a is in A. Let
f(x) =

√
x, x ≥ 0 and define |a| = f(a∗a).

1. Show that if a is invertible, so is |a|.

2. Show that if a is invertible, then u = a|a|−1 is unitary.

3. Prove that if a is invertible, u and |a| commute if and only if a is
normal.

The expression a = u|a| is usually called the polar decomposition of a.

1.7 Finite-dimensional C∗-algebras

In this section, we investigate the structure of finite-dimensional C∗-algebras.
The main objective will be the proof of the following theorem, which is a very
satisfactory one.

Theorem 1.7.1. Let A be a unital, finite-dimensional C∗-algebra. Then
there exist positive integers K and N1, . . . , NK such that

A ∼= ⊕Kk=1MNk(C).

Moreover, K is unique and N1, . . . , NK are unique, up to a permutation.

The theorem is also valid without the hypothesis of the C∗-algebra being
unital (in fact, every finite dimensional C∗-algebra is unital, as a consequence
of the theorem), but we do not quite have the means to prove that yet, so
we content ourselves with the version stated above.

At this point, the reader has a choice. The first option is to simply accept
the result above as a complete classification of finite-dimensional C∗-algebras
and then move on to the next section. The other option, obviously, is to keep
reading to the completion of the section and see the proof. This brings up
the question: is it worth it? Aside from the simple satisfaction of having
seen a complete proof, there are two points in what follows which should be
drawn to the reader’s attention.

The first point is some simple calculus for rank-one operators on Hilbert
space. This is not particularly deep, but the notation is useful and some
simple facts will be assembled which will be used again later, beyond the
finite-dimensional case.
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The second point is that the proof of the main result is built around
the existence of projections in a finite-dimensional C∗-algebra. In general,
C∗-algebras may or may not have non-trivial projections. As an example,
C(X), where X is a compact Hausdorff space, has no projections other than
0 and 1 if and only if X is connected. However, the principle which is worth
observing is that an abundance of projections in a C∗-algebra can be a great
help in understanding its structure.

Before we get to a proof of this, we will introduce some useful general
notation for certain operators on Hilbert space.

Definition 1.7.2. If H is a Hilbert space and ξ, η are vectors in H, then we
define ξ ⊗ η∗ : H → H by

ξ ⊗ η∗(ζ) =< ζ, η > ξ, ζ ∈ H.

It is worth noting that if H is just CN , for some positive integer N , then
we can make use of the fact that the matrix product of an i× j matrix and a
j×k matrix exists. With this in mind, if ξ and η are in CN , which we regard
as N × 1 matrices, then ξTη is a 1× 1 matrix while ξηT is an N ×N matrix.
(Here ξT denotes the transpose of ξ.) The formula above just encodes the
simple consequence of associativity

(ξηT )ζ = ξ(ηT ζ).

Lemma 1.7.3. Let ξ, η, ζ, ω be vectors in the Hilbert space H and let a be in
B(H). We have

1. ξ ⊗ η∗ is a bounded linear operator on H and ‖ξ ⊗ η∗‖ = ‖ξ‖‖η‖.

2. (ξ ⊗ η∗)H = span{ξ}, provided η 6= 0.

3. (ξ ⊗ η∗)∗ = η ⊗ ξ∗,

4. (ξ ⊗ η∗)(ζ ⊗ ω∗) =< ζ, η > ξ ⊗ ω∗,

5. a(ξ ⊗ η∗) = (aξ)⊗ η∗,

6. (ξ ⊗ η∗)a = ξ ⊗ (a∗η)∗.
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Moreover, if ξ1, ξ2, . . . , ξn is an orthonormal basis for H, then

n∑
i=1

aξi ⊗ ξ∗i = a,

for any a in B(H). In particular, the linear span of {ξi ⊗ ξ∗j | 1 ≤ i, j ≤ n}
is B(H) and

n∑
i=1

ξi ⊗ ξ∗i = 1.

We start toward a proof of the main theorem above by assembling some
basic facts about finite-dimensional C∗-algebras. The main point of the fol-
lowing result is that general normal elements can be obtained as linear com-
binations of projections.

Lemma 1.7.4. Let A be a unital finite-dimensional C∗-algebra.

1. Every normal element in A has finite spectrum.

2. Every normal element of A is a linear combination of projections.

Proof. For a normal, from 1.4.9, we know that C(spec(a)) is isomorphic to
a C∗-subalgebra of A, which must also be finite-dimensional. It follows that
spec(a) is finite.

For each λ in spec(a), let pλ be the element of C(spec(a)) which is 1 on
λ and zero elsewhere. As spec(a) is finite, this function is continuous. As
a function, this is clearly a self-adjoint idempotent, so the same is true of
pλ(a). Moreover, it follows that∑

λ∈spec(a)

λpλ(z) = z,

for all z in spec(a). It follows from 1.4.9 that∑
λ∈spec(a)

λpλ(a) = a.

Roughly speaking, we now know that a finite-dimensional C∗-algebra has
a wealth of projections. Analyzing the structure of these will be the key
point in our proof.
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Lemma 1.7.5. Let A be a C∗-algebra. The relation defined on projections
by p ≥ q if pq = q (and hence after taking adjoints qp = q also) is a partial
order.

We leave the proof as an easy exercise.

Lemma 1.7.6. Let A be a C∗-algebra.

1. For projections p, q in A, p ≥ q if and only if pAp ⊃ qAq. In particular,
if pAp = qAq, then p = q

2. If pAp has finite dimension greater than 1, then there exists q 6= 0 with
p ≥ q.

3. If A is unital and finite-dimensional, then it has minimal non-zero
projections in the order ≤.

Proof. First, suppose that p ≥ q. Then we have qAq = pqAqp ⊆ pAp.
Conversely, suppose that pAp ⊃ qAq. Hence, we have q = qqq ∈ qAq ⊆ pAp,
so q = pap, for some a in A. Then pq = ppap = pap = q. For the last
statement, if pAp = qAq, then it follows from the first part that p ≤ q and
q ≤ p, hence p = qp = q.

A moment’s thought shows that pAp is a ∗-algebra. It contains ppp = p
which is clearly a unit for this algebra. If it is finite-dimensional, then it is
closed and hence is a C∗-subalgebra. We claim that if a self-adjoint element
of pAp, say a, has only one point in its spectrum, then that element is a scalar
multiple of p. Let spec(a) = {λ}. Then functions f(z) = z and g(z) = λ are
equal on spec(a). So by Corollary 1.4.9, f(a) = g(a). On the other hand,
Corollary 1.4.9 also asserts that f(a) = a while g(a) = λp. Our claim follows
and this means that if every self-adjoint element of pAp has only one point
in its spectrum that pAp is spanned by p and one dimensional. So if pAp has
dimension greater than one, we must have a self-adjoint element, a, in pAp
with at least two points in its spectrum. Choose a surjective function, f ,
from spec(a) to {0, 1}. It is automatically continuous on spec(a), q = f(a)
is a projection which is non-zero. As q is in pAp, we have pq = q.

For the last statement, we first notice that since A is unital, it contains
non-zero projections. Suppose that p is any non-zero projection in A, so
pAp has dimension at least one. If this dimension is strictly greater than
one, we may find q as in part 2. So q is non-zero and since q 6= p, qAq is
a proper linear subspace of pAp, so dim(qAq) < dim(pAp). Continuing in



32 CHAPTER 1. BASICS OF C∗-ALGEBRAS

this fashion, we may eventually find q such that dim(qAq) = 1. Hence, q is
minimal in the order ≤ among non-zero projections.

We will consider non-zero projections p which are minimal with respect
to the relation ≥. From the last result, we have pAp = Cp, for any such
projection.

Lemma 1.7.7. Suppose that p1, p2, . . . , pK are minimal, non-zero projections
in A with piApj = 0, for i 6= j. Then p1, . . . , pK are linearly independent.
A finite set of minimal projections satisfying the hypothesis will be called
independent.

Proof. If some pi can be written as a linear combination of the others, then
we would have

Cpi = piApi = piA(
∑
j 6=i

αjpj) ⊆
∑
j 6=i

piApj = 0,

a contradiction.

Lemma 1.7.6 guarantees the existence of minimal, non-zero projections
in a unital, finite-dimensional C∗-algebra A. Lemma 1.7.7 shows that an
independent set of these cannot contain more than dim(A) elements and it
follows that we may take a maximal independent set of minimal, non-zero
projections and it will be finite.

Theorem 1.7.8. Let A be a finite-dimensional C∗-algebra and let
p1, p2, . . . , pK be a maximal set of independent minimal non-zero projections
in A.

1. For each 1 ≤ k ≤ K, Apk is a finite-dimensional Hilbert space with
inner product < a, b > pk = b∗a, for all a, b in Apk.

2. For each 1 ≤ k ≤ K, ApkA (meaning the linear span of elements of
the form apka

′ with a, a′ in A) is a unital C∗-subalgebra of A.

3. ⊕Kk=1ApkA = A,

4. For each 1 ≤ k ≤ K, define the map πk : A → B(Apk) defined by
πk(a)b = ab, for a in A and b in Apk. Then πk is a ∗-homomorphism
and its restriction to AplA is zero for l 6= k and an isomorphism for
l = k.
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Proof. For the first statement, if a, b are in Apk, then a = apk, b = bpk and
so b∗a = (bpk)

∗apk = pkb
∗apk ∈ pkApk = Cpk, so the scalar < a, b > as

described exists. This is clearly linear in a and conjugate linear in b. It is
clearly non-degenerate, for if < a, a >= 0, then a∗a = 0 which implies a = 0.

Choose Bk to be an orthonormal basis for Apk which means that for any
a in Apk, we have∑

b∈Bk

bb∗a =
∑
b∈Bk

b < a, b > pk =
∑
b∈Bk

< a, b > bpk =
∑
b∈Bk

< a, b > b = a.

Next, we define

qk =
∑
b∈Bk

bb∗ =
∑
b∈Bk

bpkb
∗.

It is clear that qk is self-adjoint, in ApkA and, from above, qka = a, for any
a in Apk.

Now if a, a′ are in A, we have

qk(apka
′) = (qkapk)a

′ = apka
′

and
(apka

′)qk = (qk(a
′)∗pka

∗)∗ = ((a′)∗pka
∗)∗ = apka

′,

so that qk is a unit forApkA. This completes the proof of part 2. In particular,
we note that qkpk = pk.

Since pkApl = 0 for all k 6= l, we see that ApkA ·AplA = 0 as well. From
this, we also see that qkApl = 0 and qkAplA = 0 for k 6= l. In particular, the
projections qk are pairwise orthogonal.

Consider q =
∑K

k=1 qk which is clearly a central projection. We claim
that it is the identity for A. If not, there is an element b in A with bq 6= b
and so b− bq is a non-zero element in the set

q⊥ = {a ∈ A | qa = 0}.

It is a simple matter to verify that q⊥ is a C∗-subalgebra of A and is obviously
finite-dimensional. If it contains a non-zero element, then it contains a non-
zero minimal projection, say p. Then for any k = 1, 2, . . . , K, we have

pqk ≤ pq = 0

and so pqk = 0. It then follows that

pApk ⊆ pApkA = pqkApkA = 0.
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The set of projections p, p1, . . . , pK is an independent set of non-zero minimal
projections, contradicting the maximality of p1, . . . , pK . We conclude that q
is the identity of A, as desired. In consequence, we have

A =

(∑
k

qk

)
A = ⊕Kk=1qkA = ⊕Kk=1ApkA.

Now, we must establish the last part. We know already that AqlA acts
trivially on Apk, if l 6= k. The only thing remaining to verify is that πk is an
isomorphism from ApkA to B(Apk). Every element of Apk is in the span of
Bk. It follows that every element of pkA = (Apk)

∗ is a linear combination the
the adjoints of elements of Bk. Therefore apka

′ = (apk)(a
′pk)

∗ is in the span
of bc∗, b, c ∈ Bk. For any scalars αb,c, b, c ∈ Bk and b0, c0 in Bk, we compute

< πk

(∑
b,c

αb,cbc
∗

)
c0, b0 > pk =

∑
b,c

αb,c < bc∗c0, b0 > pk =
∑
b,c

αb,cb
∗
0bc
∗c0.

Since Bk is an orthonormal basis, b∗0b is zero unless b = b0, in which case it
is pk. Similarly, c∗c0 is zero unless c = c0, in which case it is also pk. We
conclude that

< πk

(∑
b,c

αb,cbc
∗

)
c0, b0 > pk = αb0,c0pk.

If πk(
∑

b,c αb,cbc
∗) = 0, it follows that each coefficient αb,c is zero and from

this it follows that the restriction of πk to ApkA is injective.
We now show πk is onto. Let a, b be in Apk. We claim that πk(ab

∗) =
a⊗ b∗. For any c in Apk, we have

(a⊗ b∗)c =< c, b > a =< c, b > apk = a(< c, b > pk) = a(b∗c) = πk(ab
∗)c.

We have shown that the rank one operator a ⊗ b∗ is in the range of πk and
since the span of such operators is all of B(Apk), we are done.

Theorem 1.7.9. If N is a positive integer, then the centre of MN(C) is the
scalar multiples of the identity. If N1, N2, . . . , NK are positive integers, then
the centre ⊕Kk=1MNk(C) is isomorphic to CK and is spanned by the identity
elements of the summands.
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Proof. We may assume thatN ≥ 2, since the other case is trivial. We identify
MN(C) and B(CN). Suppose that a is in the centre of B(CN) and let ξ be
any vector in CN . Then we have

(aξ ⊗ ξ∗) = a(ξ ⊗ ξ∗) = (ξ ⊗ ξ∗)a = ξ ⊗ (a∗ξ)∗.

Applying both sides to the vector ξ, we see that

aξ < ξ, ξ >=< a∗ξ, ξ > ξ.

It follows that, for every vector ξ there is a scalar r such that aξ = rξ. If ξ
and η are two linearly independent vectors we know that there are scalars,
r, s, t, such that

r(ξ + η) = a(ξ + η) = aξ + aη = sξ + tη.

By linear independence, we see that r = s = t. We have shown that for every
vector ξ, aξ is a scalar multiple of ξ. Moreover, the scalar is independent of
ξ. Thus a is a multiple of the identity.

The second statement follows immediately from the first.

Let us complete the proof of Theorem 1.7.1. In fact, almost everything
is done. We know that from part 3 of Theorem 1.7.8 that A = ⊕kApkA and
from part 4 of the same theorem that, for each k, πk : ApkA→ B(Apk) is an
isomorphism. Therefore, we have

⊕Kk=1πk : A = ⊕Kk=1ApkA→ ⊕Kk=1B(Apk)

is an isomorphism.
It only remains for us to prove the uniqueness of K and N1, N2, . . . , NK .

We see from the last result that K is equal to the dimension of the centre of
A. Next, the units of the summands of A are exactly the minimal non-zero
projections in the centre and if qk is the unit of summand MNk , then Nk is
the square root of the dimension of qkA.

Exercise 1.7.1. Let A be a C∗-algebra. Let e be in A and satisfy e∗e is a
projection. Prove that

1. ee∗e = e. (Hint: compute (ee∗e− e)∗(ee∗e− e).)

2. ee∗ is also a projection.
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Exercise 1.7.2. Let A be a C∗-algebra and let n ≥ 1. Suppose that we have
elements of A, ei,j, 1 ≤ i, j ≤ n which satisfy

ei,jek,l =

{
ei,l j = k
0 j 6= k

and e∗i,j = ej,i, for all i, j, k, l. Assuming that at least one ei,j is non-zero,
prove that the span of the ei,j, 1 ≤ i, j,≤ n, is a C∗-subalgebra of A and is
isomorphic to Mn(C). (Hint: first show that all ei,j are non-zero, then show
they are linearly independent.) Such a collection of elements is usually called
a set of matrix units.

Exercise 1.7.3. Suppose that a1, a2, . . . , aN are elements in a C∗-algebra A
and satisfy:

1. a∗1a1 = a∗2a2 = · · · = a∗NaN is a projection,

2. aia
∗
i aja

∗
j = 0 for all 1 ≤ i 6= j ≤ N .

Prove that ei,j = aia
∗
j , 1 ≤ i, j ≤ N is a set of matrix units.

1.8 Non-unital C∗-algebras

The main result in this section establishes a very close connection between
non-unital and unital C∗-algebras.

Theorem 1.8.1. Let A be a C∗-algebra. There exists a C∗-algebra Ã which
is unital, contains A as a closed two-sided ideal and Ã/A ∼= C. Moreover,
this C∗-algebra is unique.

Proof. Let Ã = C⊕ A, as a vector space. We define the product on Ã by

(λ, a)(µ, b) = (λµ, λb+ µa+ ab),

for a, b in A and λ, µ in C. We also define

(λ, a)∗ = (λ̄, a∗),

for a in A and λ in C. It is clear that (1, 0) is a unit for this algebra. The
map sending a in A to (0, a) is obviously an injective ∗-homomorphism of
A into Ã, whose image is an ideal. We will usually suppress this map in
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our notation; this means that, for a in A, (0, a) and a mean the same thing.
Moreover, the quotient of Ã by A is obviously isomorphic to C.

We turn now to the issue of a norm. In fact, it is quite easy to see that
by defining

‖(λ, a)‖1 = |λ|+ ‖a‖,

for (λ, a) in Ã, we obtain a Banach algebra with isometric involution. Getting
the C∗-condition (which does not hold for this norm) is rather trickier.

Toward a definition of a good C∗-norm, let us make a nice little observa-
tion. If we recall only the fact that A is a Banach space, we can study B(A),
the algebra of bounded linear operators on it. Recalling now the product on
A, the formula π(a)b = ab, for a, b in A, defines π(a) as an operator on A.
The Banach algebra inequality ‖ab‖ ≤ ‖a‖‖b‖, simultaneously shows that
π(a) is in B(A) and ‖π(a)‖ ≤ ‖a‖. It is easy to see that π : A → B(A) is a
homomorphism. Finally, we consider

‖π(a)a∗‖ = ‖aa∗‖ = ‖a‖2 = ‖a‖‖a∗‖,

which implies that ‖π(a)‖ = ‖a‖. In short, the norm on A can be seen as
the operator norm of A acting on itself.

We are going to use a minor variation of that: since A is an ideal in Ã,
we can think of Ã as acting on A.

We define a norm by

‖(λ, a)‖ = sup{|λ|, ‖(λ, a)b‖, ‖b(λ, a)‖ | b ∈ A, ‖b‖ ≤ 1},

for all (λ, a) in Ã. Notice that (λ, a)b = λb+ ab is in A so the norm involved
on the right is that of A. It is easy to see the set on the right is bounded
(by ‖(λ, a)‖1), so the supremum exists. We claim that ‖(0, a)‖ = ‖a‖, for
all a in A. The inequality ≤ follows from the fact that the norm on A is a
Banach algebra norm. Letting b = ‖a‖−1a∗ yields the inequality ≥ (at least
for non-zero a).

We next observe that ‖(λ, a)‖ = 0 implies (using b = ‖a‖−1a∗) that
|λ| = ‖aa∗‖ = 0 which in turn means that (λ, a) = (0, 0). It is easy to see
that ∗ is isometric. Next, it is trivial that ‖(λ, a)‖ ≤ |λ|+‖a‖ and since both
C and A are complete, so is Ã in this norm. We leave the details that the
norm satisfies the Banach space conditions to the reader.

This leaves us to verify the C∗-condition. Let (λ, a) be in Ã. The inequal-
ity ‖(λ, a)∗(λ, a)‖ ≤ ‖(λ, a)‖2 follows from the Banach property and that ∗ is
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isometric. For the reverse, we first note that note that ‖(λ, a)∗(λ, a)‖ ≥ |λ|2.
Next, for any b in the unit ball of A, we have

‖(λ, a)∗(λ, a)b‖ ≥ ‖b∗‖‖(λ, a)∗(λ, a)b‖
≥ ‖b∗(λ, a)∗(λ, a)b‖
= ‖(λ, a)b‖2.

Taking the supremum over all b in the unit ball yields ‖(λ, a)∗(λ, a)‖ ≥
‖(λ, a)‖2.

The last item is to prove the uniqueness of Ã. Suppose that B satisfies
the desired conditions. We define a map from Ã as above to B by ρ(λ, a) =
λ1B + a, for all λ ∈ C and a ∈ A. It is a simple computation to see
that ρ is a ∗-homomorphism. Let q : B → B/A be the quotient map.
Since A is an ideal and is not all of B, it cannot contain the unit of B.
Thus q(1B) 6= 0. Let us prove that ρ is injective. If ρ(λ, a) = 0, then
0 = q ◦ ρ(λ, a) = q(λ1B + a) = λq(1B) and we conclude that λ = 0. It
follows immediately that a = 0 as well and so ρ is injective. It is clear that
A is contained in the image of ρ and that q ◦ ρ is surjective as well. Since
B/A is one-dimensional, we conclude that ρ is surjective. The fact that ρ is
isometric follows from Theorem 1.5.2.

We conclude with a few remarks concerning the spectral theorem in the
case of non-unital C∗-algebras. Particularly, we would like generalizations of
Theorem 1.4.6 and Corollary 1.4.9. To generalize Theorem 1.4.6, we would
simply like to drop the hypothesis that the algebra be unital.

Before beginning, let us make a small remark. If x0 is a point in some
compact Hausdorff space X, there is a natural isomorphism {f ∈ C(X) |
f(x0) = 0} ∼= C0(X \ {x0}) which simply restricts the function to X \ {x0}.

Theorem 1.8.2. Let A be a commutative C∗-algebra, let Ã be as in Theorem
1.8.1 and let π : Ã → C be the quotient map with kernel A. Then π is in
M(Ã). Moreover, the restriction of the isomorphism of 1.4.6 to A is an
isometric ∗-isomorphism between A and C0(M(Ã) \ {π}).

Proof. We give a sketch only. The first statement is clear. Secondly, if
a is in A, then â(π) = π(a) = 0, by definition of π. So ˆ maps A into
C0(M(Ã) \ {π}) (using the indentification above) and is obviously an iso-
metric ∗-homomorphism. The fact that it is onto follows from the facts that
A has codimension one in Ã while the same is true of C0(M(Ã) \ {π}) in
C(M(Ã)).
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We note the obvious corollary.

Corollary 1.8.3. If A is a commutative C∗-algebra then there exists a locally
compact Hausdorff space X such that A ∼= C0(X). Moreover, X is compact
if and only if A is unital.

Generalizing Corollary 1.4.9 is somewhat more subtle. If a is a normal
element of any (possibly non-unital) C∗-algebra B, we can always replace
B by B̃ and apply 1.4.9. So the hypothesis that B is a unital C∗-algebra
is rather harmless. The slight catch is that the isomorphism of 1.4.9 has
range which is the C∗-subalgebra generated by a and the unit, which takes
us outside of our original B, if it is not unital. The appropriate version here
strengthens the conclusion by showing that, for functions f in C(spec(a))
satisfying f(0) = 0, f(a) actually lies in the C∗-subalgebra generated by
a. This fact is quite useful even in situations where B is unital, since it
strengthens the conclusion of Theorem 1.4.9. This is, in fact, how it is stated.

Theorem 1.8.4. Let a be a normal element of the unital C∗-algebra B.
The isomorphism of 1.4.9 restricts to an isometric ∗-isomorphism between
C0(spec(a) \ {0}) and the C∗-subalgebra of B generated by a.

Proof. Again, we provide a sketch. First, assume that 0 is not in the spectrum
of a, so a is invertible. Notice that C0(spec(a)\{0}) = C(spec(a)). We would
like to simply apply 1.4.9, but we need to see that the C∗-algebra generated
by a and the unit is the same as that generated by a alone. Now, let f be
the continuous function on spec(a) ∪ {0} which is 1 on spec(a) and 0 at 0.
Let ε > 0 be arbitrary and use Weierstrass’ Theorem to approximate f by a
polynomial p(z, z̄) to within ε. It follows that p(z, z̄)−p(0, 0) is a polynomial
with no constant term which approximates f to within 2ε. Then p(a, a∗)
is within 2ε of f(a) = 1. On the other hand, the formula of 1.4.9 shows
that p(a, a∗) is in the C∗-subalgebra generated by a alone. In this case, the
conclusion is exactly the same as for 1.4.9.

Now we assume that 0 is in the spectrum of a. Let f be in C0(spec(a) \
{0}). We may view f as a continuous function of spec(a) by defining f(0) = 0.
Again let ε > 0 be arbitrary and use Weierstrass’ Theorem to approximate
f by a polynomial p(z, z̄) to within ε. It follows that p(z, z̄) − p(0, 0) is a
polynomial with no constant term which approximates f to within 2ε. Again,
we see that f(a) can be approximated to within 2ε by an element of the C∗-
algebra generated by a alone. From this we see that C0(spec(a) \ {0}) is
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mapped to the C∗-subalgebra generated by a. The rest of the conclusion is
straightforward.

Exercise 1.8.1. If A is a unital C∗-algebra, then Ã ∼= C⊕A as C∗-algebras
( see Example 1.2.5). Write the isomorphism explicitly, since it isn’t the
obvious one!

Exercise 1.8.2. Let X be a locally compact Hausdorff space and let A =
C0(X). Prove that M(Ã) is homeomorphic to X ∪ {∞}, the one-point com-
pactification of X. Discuss the overlap of this exercise and the last one.

1.9 Ideals and quotients

In this section, we consider ideals in a C∗-algebra. Now ideals come in many
forms; they can be either one-sided or two-sided and they may or may not be
closed. We will concentrate here on closed, two-sided ideals. Generally, one-
sided ideals are rather difficult to describe. (For a simple tractable case, see
Exercise 1.9.2 below.) Ideals that are not closed can be even worse, although
in specific situations, there are ones of interest that arise. For an example,
the set of all finite rank operators in B(H) is an ideal which is not closed. For
another example, consider a locally compact, non-compact Hausdorff space
X. The set of all compactly supported continuous functions on X is an ideal
in C0(X).

If A is a C∗-algebra and I is a closed subspace, then we may form the
quotient space A/I. We remark that the norm on the quotient A/I is defined
by

‖a+ I‖ = inf{‖a+ b‖ | b ∈ I}.

For the proofs that this is a well-defined norm and makes A/I into a Banach
space, we refer the reader to [?].

If, in addition, I is also a two-sided ideal, then A/I is also an algebra,
just as usual in a first course in ring theory and it is an easy matter to check
that our norm above is actually a Banach algebra norm. At this point, A/I
might fall short of being a C∗-algebra on two points. The first is having a
∗-operation. There is an obvious candidate, (a+ I)∗ = a∗+ I, but to see this
is well-defined, we need to know that I is closed under ∗. The second point
is seeing that the norm satisfies C∗-condition. This all turns out to be true
and we state our main result.
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Theorem 1.9.1. Let A be a C∗-algebra and suppose that I is a closed (mean-
ing as a topological subset), two-sided ideal. Then I is also closed under the
∗-operation and A/I, with the quotient norm, is a C∗-algebra.

In the course of the proof, we will need the following technical result.

Lemma 1.9.2. Let a be an element in a C∗-algebra A. For any ε > 0, there
is a continuous function f on [0,∞) such that e = f(a∗a) is in A, is positive,
‖e‖ ≤ 1 and ‖a− ae‖ < ε.

Proof. We note from Theorem 1.13.1 that spec(a∗a) ⊆ [0,∞). Define the
function f on [0,∞) by f(t) = t(ε + t)−1. Since f(0) = 0, we may apply
Theorem 1.7.5 to see that f(a∗a) is contained in the C∗-algebra generated
by a∗a and hence in A. It is clear that 0 < f(t) < 1, for all 0 ≤ t < ∞
and so e = f(a∗a) is well-defined, positive and norm less than or equal to
one. Notice in what follows, when we write expressions like 1 − e, this can
be regarded as an element of Ã, even if A is non-unital. We have

‖a− ae‖2 = ‖a(1− e)‖
= ‖a(1− f(a∗a))‖2

= ‖(1− f(a∗a))a∗a(1− f(a∗a))‖
= ‖g(a∗a)‖
≤ ‖g‖∞,

where g(t) = t(1 − f(t))2. It is a simple calculus exercise to check that g
attains its maximum (on the positive axis) at t = ε and its maximum is
ε/4.

We now turn to the proof of the main result.

Proof. Let a be in I. We will show that a∗ is also. Let ε > 0 and apply
the last lemma to a. Since a is in I, so is a∗a. We claim that e = f(a∗a) is
in I, also. This point is a little subtle in applying 1.7.5 since we do not yet
know that I is a C∗-algebra. However, we are applying the function to the
self-adjoint element a∗a. By approximating the function by polynomials in
a∗a we see that the C∗-algebra generated by this element is the same as the
closed algebra generated by the element and hence is contained in I.

Since e is self-adjoint and the ∗ operation is isometric, we have

‖a∗ − ea∗‖ = ‖a− ae‖ ≤ ε.
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Since e is in I, so is ea∗. We see then that a∗ is within ε of an element of I.
As I is closed and ε is arbitrary, we conclude that a∗ is in I.

We now prove that the norm satisfies the C∗-condition.
Let a be in A. First, we show that the ∗ operation is isometric since

‖a∗ + I‖ = inf{‖a∗ + b‖ | b ∈ I}
= inf{‖a∗ + b∗‖ | b ∈ I}
= inf{‖a+ b‖ | b ∈ I}
= ‖a+ I‖.

Now it suffices to prove that ‖a+ I‖2 ≤ ‖a∗a+ I‖. We claim that

‖a+ I‖ = inf{‖a+ b‖ | b ∈ I} = inf{‖a(1− e)‖ | e ∈ I, e ≥ 0, ‖e‖ ≤ 1}.

We first observe that any element e satisfying e ≥ 0 (meaning that e is
positive) and norm less than 1 must have spectrum contained in [0, 1]. It
follows that the norm of 1− e also has norm less than 1.

As a(1−e) = a−ae and ae is in I for any e satisfying the given conditions,
we see immediately that

inf{‖a+ b‖ | b ∈ I} ≤ inf{‖a(1− e)‖ | e ∈ I, e ≥ 0, ‖e‖ ≤ 1}.

For the reverse, let b be in I let ε > 0 and use the Lemma to obtain e as
desired with ‖b− be‖ < ε. Then we have

‖a+ b‖ ≥ ‖(a+ b)(1− e)‖ ≥ ‖a(1− e)‖ − ‖b− be‖ ≥ ‖a(1− e)‖ − ε.

As ε > 0 was arbitrary, we have established the reverse inequality.
Having the claim, we now check that for a given e with conditions as

above, we have

‖a(1− e)‖2 = ‖(1− e)a∗a(1− e)‖ ≤ ‖a∗a(1− e)‖.

Taking infimum over all such e yields the result.

As a final remark, we note that if I is a closed, two-sided ideal in A,
the natural quotient map π(a) = a + I, a ∈ A from A to A/I is a ∗-
homomorphism. The proof is a triviality, but this can often be a useful
point of view.
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Exercise 1.9.1. 1. Let X be a compact, Hausdorff space and let A =
C(X). Let Z ⊆ X be closed and

I = {f ∈ C(X) | f(z) = 0, for all z ∈ Z}.

First prove that I is a closed, two-sided ideal in A. Next, since I and
A/I are both clearly commutative C∗-algebras (although the former may
not be unital) find M(I) and M(A/I).

2. Let A be as above. Prove that any closed two-sided ideal I in A arises
as above. (Hint: A/I is commutative and unital; use Exercise 1.4.2 on
the quotient map.)

Exercise 1.9.2. Let n ≥ 2 and A = Mn(C).

1. Suppose that I is a right ideal in A. Show that ICn = {aξ | a ∈ I, ξ ∈
Cn} is a subspace of Cn. (Hint: if ξ, η are unit vectors and a is a
matrix, then aξ = a(ξ ⊗ η∗)η.)

2. Prove the correspondence between the set of all right ideals in A and
the set of all linear subspaces of Cn in the previous part is a bijection.

3. Prove that A is simple; that is, it has no closed two-sided ideals except
0 and A.

Exercise 1.9.3. Let ρ : A → B be a ∗-homomorphism between two C∗-
algebras. Prove that ρ(A) is closed and is a C∗-subalgebra of B. (Hint:
Theorem 1.9.1 and Theorem 1.5.2.)

1.10 Traces

As a C∗-algebra is a Banach space, it has a wealth of linear functionals, basi-
cally thanks to the Hahn-Banach Theorem. We can ask for extra properties
in a linear functional. Indeed we did back in Chapter 1.4 when we looked
at homomorphisms which are simply linear functionals which are multiplica-
tive. That was an extremely successful idea in dealing with commutative
C∗-algebras, but most C∗-algebras of interest will have none.

It turns out that there is some middle ground between being a linear
functional and a homomorphism. This is the notion of a trace.
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Definition 1.10.1. Let A be a unital C∗-algebra. A linear functional φ on
A is said to be positive if φ(a∗a) ≥ 0, for all a in A. A trace on A is a
positive linear functional τ : A→ C with τ(1) = 1 satisfying

τ(ab) = τ(ba),

for all a, b in A. This last condition is usually called the trace property. The
trace is said to be faithful if τ(a∗a) = 0 occurs only for a = 0.

Notice that the trace property is satisfied by any homomorphism, but we
will see that it is strictly weaker. For the moment, it is convenient to regard
it as something stronger than mere linearity (or even positivity) but weaker
than being a homomorphism.

Example 1.10.2. If A is commutative, every positive linear functional, φ,
with φ(1) = 1, is a trace.

Theorem 1.10.3. Let H be a Hilbert space of (finite) dimension n. If
{ξ1, . . . , ξn} is an orthonormal basis for H, then

τ(a) = n−1

n∑
i=1

< aξi, ξi >,

for any a in B(H), defines a faithful trace on B(H). The trace is unique. If
we identify B(H) with Mn(C), then this trace is expressed as

τ(a) = n−1

n∑
i=1

ai,i

for any a in Mn(C).

Proof. First, it is clear that τ is a linear functional. Next, we see that, for
any a in B(H), we have

τ(a∗a) = n−1

n∑
i=1

< a∗aξi, ξi >= n−1

n∑
i=1

< aξi, aξi >= n−1

n∑
i=1

‖aξi‖2.

It follows at once that τ is positive. Moreover, if τ(a∗a) = 0, then aξi = 0,
for all i. As a is zero on a basis, it is the zero operator. We also see from
this, using a = 1, that τ(1) = 1.
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It remains for us to verify the trace property. We do this by first consid-
ering the case of rank one operators. We observe that, for any ξ, η in H, we
have

τ(ξ ⊗ η) = n−1

n∑
i=1

< (ξ ⊗ η)ξi, ξi >

= n−1

n∑
i=1

< ξi, η >< ξ, ξi >

= n−1 <
n∑
i=1

< ξ, ξi > ξi, η >

= n−1 < ξ, η > .

Now let ξ, η, ζ, ω be in H and a = ξ ⊗ η∗, b = ζ ⊗ ω∗. We have ab =< ζ, η >
ξ⊗ω∗ and ba =< ξ, ω > ζ ⊗ η∗. It follows then from the computation above
that

τ(ab) = < ζ, η > τ(ξ ⊗ ω∗)
= n−1 < ζ, η >< ξ, ω >

= < ξ, ω > τ(ζ ⊗ η∗)
= τ(ba).

Since the linear span of such operators is all of B(H), the trace property
holds.

We finally turn to the uniqueness of the trace. Suppose that φ is any
trace on B(H). We will show that φ and τ agree on ξi ⊗ ξ∗j , first considering
the case i 6= j. Let a = ξi ⊗ ξ∗i and b = ξi ⊗ ξ∗j . It follows that ab = b while
ba = 0. Therefore, we have φ(b) = φ(ab) = φ(ba) = 0 = τ(b). Next, for any
i, j, let v = ξi ⊗ ξ∗j . Then v∗v = ξj ⊗ ξ∗j while vv∗ = ξi ⊗ ξ∗i . Therefore, we
have φ(ξi ⊗ ξ∗i ) = φ(ξj ⊗ ξ∗j ). Finally, we have

1 = φ(1) = φ

(
n∑
i=1

ξi ⊗ ξ∗i

)
= nφ(ξ1 ⊗ ξ∗1).

Putting these together, we see that

φ(ξi ⊗ ξ∗i ) = φ(ξ1 ⊗ ξ∗1) = n−1 = τ(ξi ⊗ ξ∗i ).

We have shown that τ and φ agree on a spanning set, ξi ⊗ ξ∗j , 1 ≤ i, j ≤ n,
hence they are equal.
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We mention in passing the following handy fact. Basically, it is telling us
that, when applied to projections, the trace recovers the geometric notion of
the dimension of the range.

Theorem 1.10.4. Let τ be the unique trace on B(H), where H is a finite
dimensional Hilbert space. If p is a projection, then dim(pH) = τ(p)dim(H).

Proof. Choose an orthonormal basis {ξ1, . . . , ξn} for H is such a way that
{ξ1, . . . , ξk} is a basis for pH. We omit the remaining computation.

Exercise 1.10.1. Prove that, for n > 1, there is no non-zero
∗-homomorphism from Mn(C) to C. In fact, give two different proofs, one
using 1.10.3 above, and one using Exercise 1.9.2.

1.11 Representations

The study of C∗-algebras is motivated by the prime example of closed ∗-
algebras of operators on Hilbert space. With this in mind, it is natural to
find ways that a given abstract C∗-algebra may act as operators on Hilbert
space. Such an object is called a representation of the C∗-algebra.

Definition 1.11.1. Let A be a ∗-algebra. A representation of A is a pair,
(π,H), where H is a Hilbert space and π : A→ B(H) is a ∗-homomorphism.
We also say that π is a representation of A on H.

Now the reader should prepare for a long list of simple properties, con-
structions and results concerning representations.

The first important notion for representations is that of unitary equiva-
lence. One should consider unitarily equivalent representations as being ’the
same’.

Definition 1.11.2. Let A be a ∗-algebra. Two representations of A,
(π1,H1), (π2,H2), are unitarily equivalent if there is a unitary operator u :
H1 → H2 such that uπ1(a) = π2(a)u, for all a in A. In this case, we write
(π1,H1) ∼u (π2,H2) or π1 ∼u π2.

The most important operation on representations of a fixed ∗-algebra is
the direct sum. The following definition is stated in some generality, but at
first pass, the reader can assume the collection of representations has exactly
two elements.
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Definition 1.11.3. Let A be a ∗-algebra and (πι,Hι), ι ∈ I, be a collection
of representations of A. Their direct sum is (⊕ι∈Iπι,⊕ι∈IHι), where ⊕ι∈IHι

consists of tuples, ξ = (ξι)ι∈H satisfying
∑

ι∈I ‖ξι‖2 <∞ and

(⊕ι∈Iπι(a)ξ)ι = πι(a)ξι, ι ∈ I.

Definition 1.11.4. Let A be a ∗-algebra and let (π,H) be a representation
of A. A subspace N ⊂ H is said to be invariant if π(a)N ⊂ N , for all a in
A.

For the most part, we will be interested in subspaces that are also closed.
It is a fairly simple matter to find a closed invariant subspace for an

operator on a Hilbert space whose orthogonal complement is not invariant
for that same operator. However, when dealing with an entire self-adjoint
collection of operators, this is not the case.

Proposition 1.11.5. Let A be a ∗-algebra and let (π,H) be a representation
of A. A closed subspace N is invariant if and only if N⊥ is.

Proof. For the ’only if’ direction, it suffices to consider ξ in N⊥ and a in A
and show that π(a)ξ is again in N⊥. To this end, let η be in N . We have

< π(a)ξ, η >=< ξ, π(a)∗η >=< ξ, π(a∗)η >= 0,

since π(a∗)N ⊂ N .
The ’if’ direction follows since (N⊥)⊥ = N .

In the case of the Proposition above, it is possible to define two represen-
tations of A by simply restricting the operators to either N or N⊥. That is,
we define

π|N (a) = π(a)|N , a ∈ A.
Moreover, the direct sum of these two representations is unitarily equivalent
to the original. That is, we have

(π,H) ∼u (π|N ,N )⊕ (π|N⊥ ,N⊥).

One can, in some sense, consider the notion of reducing a representation to
an invariant subspace and its complement as an inverse to taking direct sums.

Definition 1.11.6. A representation, (π,H), of a ∗-algebra, A, is non-
degenerate if the only vector ξ in H such that π(a)ξ = 0 for all a in A,
is ξ = 0. Otherwise, the representation is degenerate.
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The following is a trivial consequence of the definitions and we leave the
proof for the reader.

Proposition 1.11.7. A representation (π,H) of a unital ∗-algebra is non-
degenerate if and only if π(1) = 1.

In fact, we can easily restrict our attention to non-degenerate represen-
tations, as the following shows.

Theorem 1.11.8. Every representation of a ∗-algebra is the direct sum of a
non-degenerate representation and the zero representation (on some Hilbert
space).

A particularly nice class of representations are those which are cyclic. For
the moment, we only give the definition, but their importance will emerge in
the next section.

Definition 1.11.9. Let (π,H) be a representation of a ∗-algebra A. We say
that a vector ξ in H is cyclic if the linear space π(A)ξ is dense in H. We
say that the representation is cyclic if it has a cyclic vector.

Notice that every cyclic representation is non-degenerate as follows. Let
ξ be the cyclic vector. If π(a)η = 0, for all a in A, then we have

< π(a)ξ, η >=< ξ, π(a∗)η >=< ξ, 0 >= 0.

As π(a)ξ is dense in H, we conclude that η = 0.

The next notion is a somewhat obvious one following our discussion of
invariant subspaces. An irreducible representation is one that cannot be
decomposed into smaller ones.

Definition 1.11.10. A representation of a ∗-algebra is irreducible if the only
closed invariant subspaces are 0 and H. It is reducible otherwise.

The following furnishes a handy link between irreducible representations
and cyclic ones.

Proposition 1.11.11. A non-degenerate representation of a ∗-algebra is ir-
reducible if and only if every non-zero vector is cyclic.
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Proof. First assume that (π,H) is irreducible. Let ξ be a non-zero vector,
then π(A)ξ is evidently an invariant subspace and its closure is a closed
invariant subspace. If it is 0, then the representation is degenerate, which is
impossible. Otherwise, it must be H, meaning that ξ is a cyclic vector for π.

Conversely, suppose that π is non-degenerate, but reducible. Let N be
a closed invariant subspace which is neither 0 nor H. If ξ is any non-zero
vector in N , then π(A)ξ is clearly contained in N and hence cannot be dense
in H. Hence, we have found a non-zero vector which is not cyclic.

Next, we give a more useful criterion for a representation to be reducible.

Proposition 1.11.12. A non-degenerate representation of a ∗-algebra is ir-
reducible if and only if the only positive operators which commute with its
image are scalars.

Proof. Let (π,H) be a representation of the ∗-algebra A.
First, we suppose that there is a non-trivial closed invariant subspace, N .

Let p be the orthogonal projection onto N . That is, pξ = ξ, for all ξ in N
and pξ = 0, for all ξ in N⊥. It is easy to check that p = p∗ = p2, which
means that p is positive. Moreover, as both N and N⊥ are non-empty, this
operator is not a scalar. We check that it commutes with π(a), for any a in
A. If ξ is in N , we know that π(a)ξ is also and so

(pπ(a))ξ = p(π(a)ξ) = π(a)ξ = π(a)(pξ) = (π(a)p)ξ.

On the other hand, if ξ is in N⊥, then so is π(a)ξ and

(pπ(a))ξ = p(π(a)ξ) = 0 = π(a)(0) = π(a)(pξ) = (π(a)p)ξ.

Since every vector inH is the sum of two as above, we see that pπ(a) = π(a)p.
Conversely, suppose that h is some positive, non-scalar operator on H,

which commutes with every element of π(A). If the spectrum of h consists
of a single point, then it follows from 1.4.9 that h is a scalar. As this is not
the case, the spectrum consists of at least two points. We may then find
non-zero continuous functions f, g on spec(h) whose product is zero. Since
f is non-zero on the spectrum of h, the operator f(h) is non-zero. Let N
denote the closure of its range, which is a non-zero subspace of H. On the
other hand, g(h) is also a non-zero operator, but it is zero on the range of
f(h) and hence on N . This implies that N is a proper subspace of H.
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Next, we claim that, as h commutes with π(A), so does f(h). Let a be
in A. For any ε > 0, we may find a polynomial p(x) such that ‖p− f‖∞ < ε
in C(spec(h)) and this means that ‖p(h) − f(h)‖ < ε. On the other hand,
it is clear that p(h) will commute with π(a), since h does. Finally, we claim
that N is invariant under π(a). In fact, it suffices to check that the range of
f(h) is invariant. But if ξ is in H, we have

π(a)(f(h)ξ) = π(a)f(h)ξ = f(h)π(a)ξ ∈ f(h)H,

and we are done.

Exercise 1.11.1. Fix a positive integer n and consider A = Mn(C). For
K ≥ 1, let

HK = ⊕Kk=1Cn.

Define πK by

πK(a)(ξ1, ξ2, . . . , ξK) = (aξ1, aξ2, . . . , aξK).

This is a non-degenerate representation of A on HK.

1. Give a necessary and sufficient condition on a vector (ξ1, ξ2, . . . , ξK)
for it to be a cyclic vector for πK.

2. For which values of K is the representation πK cyclic?

3. For which values of K is the representation πK irreducible? (You should
be able to give two proofs; one using the definition and one applying
Proposition 1.11.11.)

Exercise 1.11.2. Fix n ≥ 1 and let A = Mn(C). There is an obvious
representation which we call ρ of A on Cn:

ρ(a)ξ = aξ, a ∈ A, ξ ∈ Cn.

We are using the usual multiplication of matrices (or matrix and vector).
Now let (π,H) be any non-degenerate representation of A. (If you like,

you may start by assuming that H is finite dimensional, although it makes
little difference.)

1. Use the fact that A is simple (Exercise 1.9.2) to show that π(e1,1) 6= 0.



1.11. REPRESENTATIONS 51

2. Let ξ be any unit vector in π(e1,1)H. Prove that

ξ, π(e2,1)ξ, . . . , π(en,1)ξ

is an orthonormal set.

3. Prove that
π(A)ξ = span{ξ, π(e2,1)ξ, . . . , π(en,1)ξ}.

4. Letting Hξ denote the subspace of the last part, prove that π|Hξ is uni-
tarily equivalent to ρ.

5. Let B be an orthonormal basis for π(e1,1)H. Prove that, for any ξ 6= η
in B, Hξ and Hη are orthogonal.

6. Prove that ⊕ξ∈BHξ = H.

7. Prove that (π,H) is unitarily equivalent to ⊕ξ∈B(ρ,Cn).

Exercise 1.11.3. Prove that if (π,H) is an irreducible representation of a
commutative C∗-algebra, then H is one-dimensional.

Exercise 1.11.4. Let A = C[0, 1]. Consider the representation
(π, L2([0, 1], λ)), where λ is Lebesgue measure and (π(f)ξ)(x) = f(x)ξ(x),
for f in A, ξ in L2([0, 1], λ) and x in [0, 1]. (If you like, you may assume
that ξ actually lies is C[0, 1], although we regard it as a vector in L2([0, 1], λ).
This makes things somewhat easier.)

1. Give a necessary and sufficient condition on a vector ξ in L2([0, 1], λ)
to be a cyclic vector.

2. Prove that π is faithful; that is, it is injective.

3. Prove that this representation is not the direct sum of a collection of
irreducible representations.

4. Find a countable collection of irreducible representation of A whose
direct sum is injective.

Exercise 1.11.5. Suppose (π,H) is finite-dimensional irreducible represen-
tation of a C∗-algebra A. Prove that π(A) = B(H). (Hint: Theorem 1.7.1,
Theorem 1.7.9 and Proposition 1.11.12.)
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1.12 The GNS construction

In the last section, we have discussed a number of properties of representa-
tions of a given C∗-algebra. Of course, what is missing at the moment is that
we don’t know we have any. We turn to this problem now.

The situation is similar to the one we encounter with groups. As groups
naturally appear as symmetries, one looks for ways that abstract groups may
act that way. The simplest way of obtaining something of this type is to take
advantage of the group product to let the group act as permutations of itself.
The result in this case is Cayley’s Theorem.

The same basic idea works here: the multiplication allows one to see
the elements of a C∗-algebra acting as linear transformations of itself. The
problem is, of course, that the C∗-algebra is a fine vector space, but does not
usually have the structure of a Hilbert space. To produce an inner product
or bilinear form, we use the linear functionals on the C∗-algebra in a clever
way, called the GNS (for Gelfand-Naimark-Segal) construction.

One added bonus is that we will see that every abstract C∗-algebra is
isomorphic to a closed ∗-subalgebra of B(H), for some Hilbert space. (Note,
however, that neither the Hilbert space nor the isomorphism are unique.)

The key property for the functionals we will consider is a notion of posi-
tivity, which was already introduced when we discussed traces. Probably this
is not very surprising, given the important part that positivity has played in
the theory so far.

Let us recall the first part of Definition 1.10.1 and add a little more.

Definition 1.12.1. Let A be a C∗-algebra. A linear functional φ on A is
positive if φ(a∗a) ≥ 0, for all a in A. In the case that A is unital, the linear
functional φ is a state if it is positive and, in addition, φ(1) = 1.

We begin with a rather remarkable simple characterization of states.

Proposition 1.12.2. Let φ be a linear functional on a unital C∗-algebra A
with φ(1) = ‖φ‖ = 1. Then φ is a state.

Proof. We begin by showing that if a is self-adjoint, then φ(a) is real. Sup-
pose that =(φ(a)) 6= 0 and without loss of generality, assume it is positive.
Then select 0 < r < =(φ(a)) ≤ ‖a‖. The function f(s) =

√
‖a‖2 + s2 − s is

clearly greater than r at s = 0. By multiplying and dividing by
√
‖a‖2 + s2+

s and simplifying, we see that f(s) tends to 0 as s tends to infinity. Thus we
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can find s such that f(s) = r. A simple geometric argument shows that the
disc with centre −is and radius s + r then contains the spectrum of a, but
does not contain φ(a). That is, ‖a − is‖ ≤ r + s while |φ(a) − is| > r + s.
But now we can compute

|φ(a− is)| = |φ(a)− isφ(1)| = |φ(a)− is| > r + s,

since φ(1) = 1,and this contradicts ‖φ‖ = 1.
Now we let a be positive and show that φ(a) ≥ 0. From Lemma 1.13.2,

we know that ‖‖a‖ − a‖ ≤ ‖a‖. Applying φ to ‖a‖ − a and using the facts
that φ(1) = 1 = ‖φ‖, we have

|‖a‖ − φ(a)| ≤ ‖a‖,

which implies that φ(a) ≥ 0. We have shown that φ is positive, as desired.

Lemma 1.12.3. Let φ be a positive linear functional on a unital C∗-algebra
A.

1. For all a, b in A, we have

|φ(b∗a)|2 ≤ φ(a∗a)φ(b∗b).

2. For all a in A, we have φ(a∗) = φ(a).

3. φ(1) = ‖φ‖.

4. For all a, b in A, we have

φ(b∗a∗ab) ≤ ‖a‖2φ(b∗b).

Proof. Let a, b be in A. For any complex number λ, we know that

0 ≤ φ((λa+ b)∗(λa+ b)) = |λ|2φ(a∗a) + λ̄φ(a∗b) + λφ(b∗a) + φ(b∗b).

The first and last terms are obviously positive, so the sum of the middle two
is real. Using b = 1 and λ = i shows that the imaginary parts of φ(a) and
φ(a∗) are opposite, while b = 1 and λ = 1 shows the real parts of φ(a) and
φ(a∗) are equal. The second part follows.
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Since the identity element of A has norm one, we have |φ(1)| ≤ ‖φ‖ and
as 1∗1 = 1, φ(1) is positive. From the equation above, and the second part
applied to b∗a, we see that

−2<(λφ(b∗a)) ≤ |λ|2φ(a∗a) + φ(b∗b).

If φ(a∗a) = 0, the fact that this holds for arbitrary λ means that φ(b∗a) = 0
also. For φ(a∗a) 6= 0, choose z ∈ C such that |z| = 1, zφ(b∗a) = |φ(b∗a)| and

using λ = −zφ(a∗a)−
1
2φ(b∗b)

1
2 leads us to

|φ(b∗a)| ≤ φ(a∗a)
1
2φ(b∗b)

1
2 ,

and the proof of the first statement is complete.
For the third part, ‖1‖ = 1, so that |φ(1)| ≤ ‖φ‖. Using b = 1 in part 1,

we have

|φ(a)| ≤ φ(a∗a)
1
2φ(1) ≤ ‖φ‖

1
2‖a∗a‖

1
2φ(1)

1
2 = ‖φ‖

1
2‖a‖φ(1)

1
2 .

Taking supremum over all a of norm one, we get

‖φ‖ ≤ ‖φ‖
1
2φ(1)

1
2

and it follows that ‖φ‖ ≤ φ(1). This completes the proof of part 3.
For the last part, we consider the functional ψ(c) = φ(b∗cb), for any

c in A. This is clearly another positive linear functional and so we have
‖ψ‖ = ψ(1) = φ(b∗b). Then we have

φ(b∗a∗ab) = ψ(a∗a) ≤ ‖ψ‖‖a∗a‖ = φ(b∗b)‖a‖2.

We are now ready to give our main result of this section.

Theorem 1.12.4. Let A be a unital C∗-algebra and let φ be a state on A.

1. The set
Nφ = {a ∈ A | φ(a∗a) = 0}

is a closed left ideal in A.

2. The bilinear form < a+Nφ, b+Nφ >= φ(b∗a) is well-defined and non-
degenerate on A/Nφ and the completion of A/Nφ is a Hilbert space,
denoted Hφ.
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3. The formula
πφ(a)(b+Nφ) = ab+Nφ,

for a, b in A extends to define πφ(a) as a bounded linear operator on
Hφ.

4. The function πφ is a representation of A on Hφ.

5. The vector ξφ = 1 + Nφ ∈ A/Nφ ⊂ Hφ is a cyclic vector for πφ with
norm one.

Proof. The fact that Nφ is closed follows easily from the fact that φ is con-
tinuous. Next, suppose that a is in A and b is in Nφ. The fact that ab is in
Nφ follows immediately from the last part of the last Lemma.

For the second part, it follows from part one of the last Lemma that
φ(b∗a) = 0 if either a or b is in Nφ and so the bilinear form is well defined.
It is also clearly positive definite.

The fact that Nφ is a left ideal means that, for any a in A, the formula
given for πφ(a) yields a well-defined linear transformation on A/Nφ. The fact
that it is continuous (and hence extends to a bounded linear operator on Hφ)
follows immediately from the last part of the last Lemma.

It is clear that πφ is linear and multiplicative. Let us check it preserves
adjoints. For a, b, c in A, we have

< πφ(a∗)b+Nφ, c+Nφ > = < a∗b+Nφ, c+Nφ >

= φ(c∗(a∗b)) = φ((ac)∗b)

= < b+Nφ, ac+Nφ >

= < b+Nφ, πφ(a)c+Nφ >

= < πφ(a)∗b+Nφ, c+Nφ > .

Since this holds for arbitrary b and c in A, we conclude that πφ(a∗) = πφ(a)∗.
For the last part, if b is any element of A, it is clear that

πφ(b)ξφ = b · 1 +Nφ = b+Nφ.

It follows then that πφ(A)ξφ contains A/Nφ and is therefore dense in Hφ.
Finally, we compute

‖ξφ‖ = ‖1 +Nφ‖ = φ(1∗1)1/2 = φ(1)1/2 = 1.
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Definition 1.12.5. Let A be a unital C∗-algebra and let φ be a state on A.
The triple (Hφ, πφ, ξφ) is called the GNS representation of φ.

In brief, the GNS construction takes a state and produces a representation
and a unit cyclic vector. In fact, it may be reversed as follows.

Theorem 1.12.6. Let A be a unital C∗-algebra and suppose that π is a
representation of A on the Hilbert space H with cyclic vector, ξ, of norm
one. Then

φ(a) =< π(a)ξ, ξ >,

for all a in A, defines a state on A. Moreover, the GNS representation of
φ is unitarily equivalent to π in the sense that there is a unitary operator
u : H → Hφ satisfying uπ(a)u∗ = πφ(a), for all a in A and uξ = ξφ.

We have shown a correspondence between states and cyclic representa-
tions. Under this, the irreducible representations are characterized by a nice
geometric property, namely that they are extreme points among the set of
states. Such points are often called pure states.

Theorem 1.12.7. Let φ be a state on the unital C∗-algebra A. The GNS
representation (πφ,Hφ) is irreducible if and only if φ is not a non-trivial
convex combination of two other states. That is, if there are states φ0 and
φ1 and 0 < t < 1 such that φ = tφ0 + (1− t)φ1, then φ0 = φ1 = φ.

Proof. First, we suppose that φ = tφ0 +(1− t)φ1 with φ0 6= φ1 and 0 < t < 1
and show that the GNS representation is not irreducible. Define a bilinear
form on A/Nφ by (a+Nφ, b+Nφ) = tφ0(b∗a). We have

|(a+Nφ, b+Nφ)|2 = t2|φ0(b∗a)|2

≤ |tφ0(a∗a)||tφ0(b∗b)|
≤ |φ(a∗a)||φ(b∗b)|
= ‖a+Nφ‖2‖b+Nφ‖2.

It follows that our bilinear form is well-defined on the quotient A/Nφ and
also extends to one on Hφ. Moreover, there exists a unique positive bounded
linear positive operator h on Hφ such that

tφ0(b∗a) = (a+Nφ, b+Nφ) =< h(a+Nφ), b+Nφ > .
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We will show that h is not a scalar multiple of the identity and commutes
with πφ(a), for all a in A. It will then follow from Proposition 1.11.12 that
πφ is not irreducible.

If h is a multiple of the identity, then using b = 1 in the formula above,
we see that φ is a multiple of φ0. As both are states and take the same value
at the unit, they are then equal. Since φ = tφ0 + (1 − t)φ1, we also have
φ1 = φ, and this is a contradiction.

Now, let a, b, c be in A. We have

< πφ(a)h(b+Nφ), c+Nφ > = < h(b+Nφ), πφ(a)∗(c+Nφ) >

= < h(b+Nφ), a∗c+Nφ >

= tφ0((a∗c)∗b)

= tφ0(c∗ab)

= < h(ab+Nφ), c+Nφ >

= < hπφ(a)(b+Nφ), c+Nφ > .

As this equality holds on a dense set of pairs of vectors b + Nφ, c + Nφ, we
conclude that πφ(a)h = hπφ(a). This completes the proof.

In the other direction, suppose that πφ is reducible. That is, we may find
a non-trivial invariant subspace N ∈ Hφ. Write ξφ = ξ0 + ξ1, where ξ0 is in
N and ξ1 is orthogonal to N . We claim that neither is zero, for if ξ1 = 0,
then ξφ = ξ0 is in N . As this subspace is invariant, we see that πφ(A)ξ is
contained in N . On the other hand, since ξφ is cyclic, this subspace must be
dense in Hφ which is a contradiction. The other case is similar.

Define

φi(a) = ‖ξi‖−2 < πφ(a)ξi, ξi >,

for a in A and i = 0, 1. Then φ0 and φ1 are states on A. We also claim that
φ = ‖ξ0‖2φ0 + ‖ξ1‖2φ1. To see this, we have

φ(a) = < πφ(a)ξφ, ξφ >

= < πφ(a)(ξ0 + ξ1), (ξ0 + ξ1) >

= < πφ(a)ξ0, ξ0 > + < πφ(a)ξ1, ξ0 >

+ < πφ(a)ξ0, ξ1 > + < πφ(a)ξ1, ξ1 >

= ‖ξ0‖2φ0(a)+ < πφ(a)ξ1, ξ0 >

+ < πφ(a)ξ0, ξ1 > +‖ξ1‖2φ1(a).
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The two central terms are both zero since N and N⊥ are both invariant
under πφ(a) and ξ0 is in the former and ξ1 is in the latter.

We claim that φ0 6= φ1. First, let C = min{‖ξ0‖, ‖ξ1‖} > 0. Since the
vector ξφ is cyclic, we may find a in A with ‖πφ(a)ξφ − ξ0‖ < 2−1C. Writing
πφ(a)ξφ = πφ(a)ξ0+πφ(a)ξ1 and noting the first vector is in N and the second
is in N⊥, we see that

‖πφ(a)ξ0 − ξ0‖, ‖πφ(a)ξ1‖ < 2−1C.

Then we have

|φ0(a)− 1| ≤ |‖ξ0‖−2 < πφ(a)ξ0, ξ0 > −‖ξ0‖−2 < ξ0, ξ0 > |
≤ ‖ξ0‖−2‖πφ(a)ξ0 − ξ0‖‖ξ0‖
< ‖ξ0‖2−1C

≤ 2−1.

We also have

|φ1(a)| ≤ |‖ξ1‖−2 < πφ(a)ξ1, ξ1 > |
≤ ‖ξ1‖−2‖πφ(a)ξ1‖‖ξ1‖
< ‖ξ1‖2−1C

≤ 2−1.

We conclude that φ0(a) 6= φ1(a) and we are done.

We have already done everything we will need about representations, but
there remains one extremely important application of the GNS construction
and it would be negligent not to cover it. Let us begin by stating the result.

Theorem 1.12.8. Let A be a C∗-algebra. Then there exists a Hilbert space
H and C∗-subalgebra B ⊂ B(H) which is ∗-isomorphic to A.

The importance should be obvious: every abstract C∗-algebra is isomor-
phic to a C∗-algebra of operators. In some sense, that statement is probably
a little backwards. The real importance of this result is the definition of a
C∗-algebra as an abstract object. That is, it is possible to give a definition
which does not rely on operators on Hilbert space.

Obviously the C∗-algebra B is unique up to isomorphism, but one might
imagine trying to make some stronger uniqueness result along the lines of
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having a unitary operator between the two Hilbert spaces which conjugates
one algebra to the other. Any such statement is hopelessly wrong, in general.

Let us indicate briefly the proof of Theorem 1.12.8, beginning with the
following Lemma.

Lemma 1.12.9. Let A be a unital C∗-algebra and let a be a self-adjoint
element of A. There exists an irreducible representation π of A such that
‖π(a)‖ = ‖a‖.

Proof. Let B be the C∗-subalgebra of A generated by a and the unit. It is
unital and commutative. We know that M(B) is homeomorphic to spec(a)
via φ → φ(a) and that spec(a) is a compact subset of the real numbers.
Choose φ0 in M(B) such that |φ0(a)| = sup{|x| | x ∈ spec(a)} = ‖a‖. Of
course, we have φ0(1) = 1.

Next, we appeal to the Hahn-Banach Theorem [?] to find a linear func-
tional φ on A which extends φ0 and has ‖φ‖ = ‖φ0‖. It follows at once
that

φ(1) = φ0(1) = 1 = ‖φ0‖ = ‖φ‖.

By Lemma 1.11.3, φ is a state. We also have

|φ(a)| = |φ0(a)| = ‖a‖.

At this point, if we let πφ be the GNS representation of φ, then since ξφ
is a unit vector, we have

‖πφ‖ ≥ | < πφ(a)ξφ, ξφ > | = |φ(a)| = ‖a‖.

The reverse inequality follows since πφ is contractive. The only thing we are
missing is that πφ should be irreducible. To achieve this, we consider the set
of all states φ which satisfy |φ(a)| = |φ0(a)| = ‖a‖. We have shown this set
is non-empty. It is also not hard to prove it is a weak-∗ closed, convex subset
of the unit ball of the dual space of A. Then the Krein-Milman theorem
asserts that it is the closed convex hull of its extreme points. In particular,
it has extreme points and if φ is chosen from among them, we can show that
such a point is also extreme among the set of states and so we have that πφ
is irreducible by 1.12.7.

For the proof of Theorem 1.12.8, we proceed as follows. For each a in
the unit ball of A, we find an irreducible representation πa of A such that
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‖πa(a∗a)‖ = ‖a∗a‖. Of course, it follows that ‖πa(a)‖ = ‖a‖, as well. We
finally take the direct sum over all a in the unit ball of A of the representations
πa. It follows that this representation is isometric and we are done by letting
B denote its range.

Exercise 1.12.1. Let X be a compact, Hausdorff space and let A = C(X).
The Riesz representation theorem states that every linear functional φ on A
is given as

φ(f) =

∫
X

f(x)dµ(x),

for some finite Borel measure µ on X.

1. Give a necessary and sufficient condition on µ as above for the associ-
ated φ to be a state.

2. Prove that Nφ is a closed two-sided ideal in A.

3. Describe Hφ is terms of µ.

4. Prove that Nφ is also the kernel of πφ.

Exercise 1.12.2. Let A = MN(C) and let τ be the trace of Theorem 1.9.1.
Let π be the obvious representation of A on CN : π(a)ξ = aξ. Describe the
relationship between π and πτ . (More explicitly, describe πτ in terms of π,
up to unitary equivalence. Hint: let {ξ1, ξ2, . . . , ξN} be an orthonormal basis
for CN . First observing that τ is faithful, what is Nτ? Then use the fact
that {ξi ⊗ ξ∗j | 1 ≤ i, j ≤ N} is a linear basis for A. Can you find invariant
subspaces for πτ?)

1.13 von Neumann algebras

The first thing to say on the topic is that this course is not about von Neu-
mann algebras. Certainly one can easily give such a course; they are a deep
and fascinating subject. We are not trying to give such a course here, but
it would seem to be negligent if a reader were to come out of this course
without knowing a little bit about them. Our approach will be to give a
general sense of what they are, why they are similar to C∗-algebras and why
they are different.



1.13. VON NEUMANN ALGEBRAS 61

The starting point is the study of the algebra of bounded linear opera-
tors on a Hilbert space H and its subalgebras. The case that H is finite-
dimensional is too restrictive, but we will assume that H is separable, for
technical reasons.

Let A be a subalgebra of B(H). The first question is whether we would
like to assume that A is ∗-closed. That is, if a is in A, is a∗ also? There is
a substantial amount of work done on non-self-adjoint subalgebras, but we
will not discuss that at all here. Let us go on, assuming that A∗ = A.

The next issue is to consider A with the relative topology of B(H) and
whether we should insist that A is closed. This gets us into deep waters
almost at once: B(H) has eight different topologies! (We’ll name a couple in
a minute.) Of course, the norm topology stands out as special and the study
of C∗-algebras takes this as its starting point. In this context, an important
idea is that there is an abstract definition of a C∗-algebra which does not
refer to anything about operators or Hilbert spaces and we have shown that
every C∗-algebra is isometrically ∗-isomorphic to a C∗-subalgebra of B(H).

Turning to some of the other topologies on B(H), let us just mention a
couple of them. First, there is the weak operator topology. A sequence of
operators, an, n ≥ 1, converges to an operator a in this topology if
limn < anξ, η >=< aξ, η >, for all vectors ξ, η in H. As a concrete example,
let us consider the Hilbert space `2 of square summable sequences. Define
the unilateral shift operator

S(ξ1, ξ2, . . .) = (0, ξ1, ξ2, . . .),

whose adjoint is
S∗(ξ1, ξ2, . . .) = (ξ2, ξ3, . . .),

for any (ξ1, ξ2, . . .) in `2.

Exercise 1.13.1. The sequence Sn, n ≥ 1, converges to 0 in the weak oper-
ator topology, but not in norm.

Another example is the strong operator topology. Here a sequence an
converges to a if limn ‖anξ − aξ‖ = 0 (or limn anξ = aξ in H), for all ξ in H.

Exercise 1.13.2. The sequence Sn, n ≥ 1, does not converge to 0 in the
strong operator topology.

While this topology looks fairly natural, it has some unexpected problems:
the map a→ a∗ is not continuous!
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Exercise 1.13.3. The sequence (S∗)n, n ≥ 1, converges to 0 in the strong
operator topology.

On the positive side, a convex set in B(H) is strongly closed (meaning
closed in the strong operator topology) if and only if it is weakly closed.

Before we get too carried away or get too concerned about these matters,
we mention that the situation is not unlike what one finds in a measure
theory. There are a number of different types of convergence for functions
on a measure space.

Definition 1.13.1. A von Neumann algebra is a strongly closed (weakly
closed), unital ∗-subalgebra of B(H).

The point here is that one uses the weak or strong operator topologies
in an essential way in the study of von Neumann algebras. Moreover, there
is no way to give a ’non-spatial’ version of this definition: A von Neumann
algebra acts on a specific Hilbert space.

Let us give a few (very simple) examples.

Example 1.13.2. B(H).

Example 1.13.3. Let (X,M , µ) be a standard measure space. Let
L2(X,M , µ) be the Hilbert space of square summable measurable functions on
X and let L∞(X,M , µ) act as multiplication operators on this Hilbert space.
Then this is a commutative von Neumann algebra.

The weak operator topology is weaker than the norm topology. Hence,
every von Neumann algebra is also a C∗-algebra. One needs to be a little
careful with that statement. For example, if one refers to a “separable von
Neumann”, it is usually assumed that this refers to the weak operator topol-
ogy. Indeed, the only von Neumann algebras which are separable in the norm
topology are finite-dimensional.

Our analysis begins with that of a single self-adjoint or normal operator.
Recall that Theorem 1.4.9 was obtained for a normal element of a C∗-algebra,
not necessarily acting on a Hilbert space. If this operator is acting on a
Hilbert space, we get considerably more information.

If X is a compact, Hausdorff space, we define B(X) to be the set of
bounded Borel functions on X.
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Theorem 1.13.4. Let a be a normal operator on the Hilbert space H and
let W ∗(a) denote the smallest von Neumann algebra that contains a and
the identity operator. Then there is a contractive ∗-homomorphism from
B(spec(a)) to W ∗(a) which extends the map of Theorem 1.4.9. We denote
the image of f by f(a). Moreover, if fn is a bounded increasing sequence
of real-valued functions in B(spec(a)) with f = lub{fn | n ≥ 1}, then f(a)
is the least self-adjoint operator such that f(a) ≥ fn(a), for all n ≥ 1, and
fn(a) converges to f(a) in the strong operator topology.

Let us look at what’s good and what’s less than good in this new version.
Obviously, the big improvement is in the domain of our map. No longer are
we restricted to continuous functions on the spectrum, but we can use Borel
functions. In particular, we can use the characteristic function of any Borel
subset of the spectrum of a and since such functions are projections, their
images will be so also. This means that W ∗(a) contains a wealth of projec-
tions. We’ve already seen in finite-dimensional C∗-algebras that projections
are very useful and that goes here as well, even more so. The map also comes
with some nice continuity properties. On the range side, the continuity is
in terms of the strong operator topology (not surprisingly). The only real
downside is that this map is not a ∗-isomorphism. It is not difficult to see
why. It turns out (although we won’t prove it) that if f is the characteris-
tic function of a single point λ, then f(a) is non-zero if and only if λ is an
eigenvalue of the operator a.

The theory of von Neumann algebras started with a seminal series of
papers by Murray and von Neumann. Their starting point was the realization
that the existence of many projections was crucial. Of course, there are
certainly too many projections, so they introduced a notion of equivalence:
in a von Neumann algebra M, projections p, q are equivalent if there exists
v in M such that v∗v = p and vv∗ = q. It is not difficult to check this is
an equivalence relation which we denote by p ∼ q amd we let [p] denote the
equivalence class of p. In our section on finite-dimensional C∗-algebras, we
also introduced a notion of order on projections. This can be adapted to the
equivalence relation as follows. If p, q are projections, we write p � q if there
exist p′ ∼ p, q′ ∼ q and p′q′ = q′p′ = q′. Of course, it is necessary to see this
is well-defined and a partial order of the equivalence classes of projections in
M.

Next, we make a very simple observation: if two projections p, q satisfy
pq = 0, then their sum p + q is again a projection. Once again, we need to
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extend this notion to equivalence classes: for any projections p, q in M, if
there exist p ∼ p′ and q ∼ q′ such that p′q′ = 0, then we define [p] + [q] =
[p′ + q′]. Once again, we need to see this yields a well-defined, partially
defined binary operation of the set of equivalence classes of projections.

A von Neumann algebraM is called a factor if its centre consists only of
scalar multiples of the identity. These are the von Neumann algebras which
irreducible; i.e. they cannot be broken down into simpler pieces. We will not
give a precise statement only because it is slightly technical.

In the case of a factor acting on a separable Hilbert space, Murray and
von Neumann showed that the set of equivalence classes of projections, with
their order and partially defined addition, had exactly one of the following
types:

1. {0, 1, . . . , N}, for some positive integer N .

2. {0, 1, 2, . . . ,∞},

3. [0, 1],

4. [0,∞],

5. {0,∞}.

von Neumann algebras in the first class are called Type IN and each is
isomorphic to MN(C). Those in the second class are called Type I∞ and each
is isomorphic to B(H), where H is a separable, infinite-dimensional Hilbert
space. Those in the third and fourth classes are called Type II1 and II∞,
respectively. (The reader should note that if one looks only at the order,
these are isomorphic. But the addition in the latter is defined on all pairs,
which is not the case in the former.) Finally, the last class are called Type
III. Here, every non-zero projection is equivalent to the identity.

More is actually true, the isomorphism between the set of equivalence
classes of projections and the sets above is actually made by a trace functional
on the algebra, which is essentially unique. Since this functional is obviously
taking on the value ∞, there are some technical subtleties which we will not
discuss here.



Chapter 2

Group C∗-algebras

In this chapter, we consider the construction of C∗-algebras from groups.
The first section gives some preliminary ideas about unitary representations
of groups. We then discuss the complex group algebra of a group. This is
a purely algebraic construction which is a forerunner to the C∗-algebras we
will consider later.

The reader will notice ( at a certain point) that many statements begin
with ’if G is a discrete group ...’. In rigorous terms, this simply means
that we are considering a group and giving it the discrete topology. Of
course, that doesn’t really make much sense. What this should convey to the
reader is that there is a notion of a topological group and whatever result or
definition is about to be stated has a version for topological groups. What is
about to appear is for the special case when the group’s topology is discrete.
Often this is a significant simplification; in the general case there may be
some statement about a function on the group being continuous, which is
automatically satisfied when the group is discrete. In the last section of the
chapter, we will spend a little time discussing the general case.

2.1 Group representations

The first item to tackle before our construction of a C∗-algebra is the notion
of a unitary representation of a group. The subject of group representations
is vast and deep. Here, we give a few basic definitions and results.

Definition 2.1.1. Let G be a discrete group. A unitary representation of
G is a pair (u,H), where H is a complex Hilbert space and u is a group ho-

65
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momorphism from G to the group of unitary operators on H, usually written
U(H), with product as group operation. We usually write ug for the image of
an element g in G under the map u. We also say that u is a unitary repre-
sentation of G on H. Unitary representations (u,H) and (v,K) are unitarily
equivalent if there is a unitary operator w : H → K such that wugw

−1 = vg,
for all g in G.

Recall that a unitary operator u satisfies u∗u = uu∗ = I, the identity
operator. Hence, if (u,H) is a unitary representation of G, we have ug−1 =
(ug)

−1 = u∗g, for any g in G. In particular, the range of the function u, while
not even a linear space, is, at least, ∗-closed.

For any Hilbert space H, there is the trivial representation of G on H
which sends each group element to the identity operator. A rather more
interesting example is the left regular representation of G.

Definition 2.1.2. Let G be a discrete group. Its left regular representation
is the unitary representation of G on the Hilbert space `2(G) defined by

λgξ(h) = ξ(g−1h),

for all g, h in G and ξ in `2(G).

Throughout the chapter we will let δh be the function that is 1 at h
and zero elsewhere, for some fixed group element h. Notice that the set
δh | h ∈ G} forms an orthonormal basis for `2(G). Also observe that for any
g, h in G, we have λgδh = δgh.

Definition 2.1.3. Let (u,H) be a unitary representation of the discrete group
G. A closed subspace N ⊂ H is invariant for u if ugN ⊂ N , for all g in G.
We say that the representation is irreducible if its only invariant subspaces
are 0 and H and is reducible otherwise.

We have an exact analogue of the direct sum of representations of a ∗-
algebra.

Definition 2.1.4. If (uα,Hα), α ∈ A is a collection of unitary represen-
tations of a group G, then their direct sum (⊕αuα,⊕αHα) is the unitary
representation defined by (⊕αuα)g = ⊕α(uα)g, for all g in G.

The following result is an analogue of Proposition 1.10.1 for invariant
subspaces for representations of ∗-algebras. In fact, the only property of the
representation which the proof of 1.10.1 used is that the range is ∗-closed.
Hence, the same proof works equally well here.
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Proposition 2.1.5. If N is an invariant subspace for the unitary repre-
sentation (u,H), then so is N⊥. In this case, u is unitarily equivalent to
u|N ⊕ u|N⊥.

2.2 Group algebras

The following is a basic definition from algebra. For the moment, we do not
need to assume the group is finite, but rather our construction has an obvious
finiteness condition built in.

Definition 2.2.1. Let G be a group. Its (complex) group algebra, denoted
CG, consists of all formal sums

∑
g∈G agg, where each ag is a complex number

and ag = 0, for all but finitely many g in G. Defining agg · ahh = agahgh,
for all g, h ∈ G and ag, ah ∈ C and extending by linearity, CG becomes a
complex algebra. Moreover, defining g∗ = g−1 and extending to be conjugate
linear, CG becomes a complex ∗-algebra.

If we adopt the notation 1g = g, for any g in G, then G ⊂ CG. The
identity element of G is also the identity of this algebra. Moreover, each
element g in G is a unitary in CG.

Let us just note that(∑
g∈G

agg

)(∑
g′∈G

bg′g
′

)
=
∑
g,g′∈G

agbg′gg
′ =
∑
h∈G

(∑
g∈G

agbg−1h

)
h.

Proposition 2.2.2. Let G be a group. Its group algebra is commutative if
and only if G is abelian.

Theorem 2.2.3. Let G be a discrete group. If u : G → U(H) is a unitary
representation of G on the Hilbert space H, then u has a unique extension to
a unital representation of CG on H defined by

πu

(∑
g∈G

agg

)
=
∑
g∈G

agug,

for
∑

g∈G agg in CG. Moreover, if π : CG → B(H) is a unital representa-
tion, then its restriction to G is a unitary representation of G. Finally, the
representation u is irreducible if and only if πu is.
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Proof. The first part of the statement is immediate from the definition and
some simple calculations which we leave to the reader.

For the last statement, we proceed as follows. For each group element g,
we may regard g as an element of CG. We define ug = π(g). We must verify
that ug is unitary. To this end, we use the facts that π is a ∗-representation
and that g∗ = g−1 in CG to obtain

π(g)∗π(g) = π(g∗)π(g) = π(g−1)π(g) = π(g−1g) = π(1) = 1.

A similar computation proves that π(g)π(g)∗ = 1 as well, so π(g) is uni-
tary. The fact that u is a homomorphism follows from the fact that π is
multiplicative.

For the last statement, if u is reducible, then there is a non-trivial invari-
ant subspace for all of the operators ug, g ∈ G. But then that subspace is also
clearly invariant for any linear combination of these operators, hence for every
element of πu(CG). Conversely, if the collection of operators πu(a), a ∈ CG
has a common non-trivial invariant subspace, then ug = π(g), for every group
element g, also leaves this space invariant.

Proposition 2.2.4. Let G be a discrete group. Let (λ, `2(G)) be the left
regular representation of G. The associated representation of CG is[

πλ

(∑
g∈G

agg

)
ξ

]
(h) =

∑
g∈G

agξ(g
−1h),

for all
∑

g∈G agg in CG, h in G and ξ in `2(G).

Theorem 2.2.5. Let G be a group. The left regular representation πλ of CG
is injective.

Proof. Let a =
∑

g∈G agg be an element of CG and assume that it is in the
kernel of πλ. Fix g0 in G and let δg0 , δe be as described earlier. An easy
computation shows that

0 =< πλ(a)δg0 , δe >=< πλ(
∑
g∈G

agg)δg0 , δe >=
∑
h

∑
g

agδg0(g
−1h)δe(h) = ag0 .

As g0 was arbitrary, we conclude a = 0.

Theorem 2.2.6. Let G be a group. The map from CG to C defined by
τ(
∑

g∈G agg) = ae, for any
∑

g∈G agg in CG, is a faithful trace. (Recall that
a trace τ is faithful if τ(a∗a) = 0 only if a = 0.)
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Proof. First of all, it is clear that τ is conjugate linear. Next, we check that
it is positive and faithful. For any a =

∑
g∈G agg in CG, we have

a∗a =

(∑
g∈G

agg

)∗(∑
h∈G

ahh

)

=

(∑
g∈G

agg
−1

)(∑
h∈G

ahh

)
=

∑
g,h

agahg
−1h.

Hence τ(a∗a) is the coefficient of e which is the sum over g−1h = e, or g = h:

τ(a∗a) =
∑
g∈G

agag =
∑
g∈G

|ag|2 ≥ 0,

and τ(a∗a) = 0 implies a = 0.
Finally, we verify the trace property. Consider simply τ(gh), where g and

h are in G. This is clearly one when g−1 = h and zero otherwise. Exactly
the same argument applies to τ(hg) and so we see that τ(gh) = τ(hg), for
any g, h in G. The trace property follows from linearity.

Exercise 2.2.1. Let G be a discrete group and τ be the trace on the group
algebra as above. What is the result of applying the GNS construction to the
trace? (Warning: nice answer, trivial proof.)

2.3 Finite groups

We are aiming to construct a C∗-algebra from a discrete group. So far, the
group algebra is doing well. What it lacks is a norm. This turns out to be
quite a subtle and deep problem. The simplest case is when the group is
finite, which we consider now.

Theorem 2.3.1. Let G be a finite group. Then there is a unique norm on
CG in which it is a C∗-algebra.

Proof. The formula ‖a‖ = ‖πλ(a)‖ (operator norm) defines a semi-norm on
CG, where πλ is the left regular representation as above. The fact that it
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is a norm follows from the last theorem. It satisfies the C∗-condition since
πλ is a ∗-homomorphism and the operator norm satisfies the C∗-condition.
Finally, it is complete in this norm because CG is finite dimensional. The
uniqueness is just a restatement of 1.3.8.

With the information that we already have available from Section 1.7
about the structure of finite-dimensional C∗-algebras, we can completely de-
scribe the C∗-algebra of a finite group, at least in principle. Recall that
two elements g1, g2 of G are conjugate if there is an element h such that
hg1h

−1 = g2. Conjugacy is an equivalence relation and the equivalence class
of an element g, {hgh−1 | h ∈ G}, is called a conjugacy class.

Theorem 2.3.2. Let G be a finite group with conjugacy classes
C1, C2, . . . , CK. For each 1 ≤ k ≤ K, define

ck =
∑
g∈Ck

g ∈ CG.

The set {c1, . . . , cK} is linearly independent and its span is the centre of CG.
In particular, CG is isomorphic to ⊕Kk=1Mnk(C) and

K∑
k=1

n2
k = #G.

Proof. It is clear that G is a linear basis for CG, so CG is finite dimensional.
Hence by Theorem 1.6.1, CG is isomorphic to ⊕Kk=1Mnk(C) for some positive
integers n1, . . . , nK .

Now suppose that a =
∑

g agg is in the centre of CG. Let h be any other
element of G. Considering h as an element of CG, it is invertible and its
inverse is h−1. As a is in the centre of G, we have∑

g

agg = a = hah−1 =
∑
g

aghgh
−1 =

∑
g

ah−1ghg.

For any g in G, comparing coefficients, we have ag = ah−1gh. This means
that the function a is constant on conjugacy classes in G. Hence it is a linear
combination of the ck.

Conversely, the same computation shows that each ck commutes with
every group element h. Since the group elements span the group algebra,
each ck is in the centre.

The fact that the set of all ck is linearly independent is clear.
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Example 2.3.3. CS3
∼= M2 ⊕ C⊕ C.

It is a simple matter to check that there are three conjugacy classes: the
identity, the three transpositions and the two cycles of length three. So we
need to find n1, n2, n3 whose squares sum to 6.

Exercise 2.3.1. Give another proof of Example 2.3.3 which doesn’t consider
conjugacy classes but only linear dimension and Theorem 2.2.2.

Exercise 2.3.2. Describe CS4 in terms of Theorem 1.6.1.

2.4 The C∗-algebra of a discrete group

We begin with a quick review of the last section. To any discrete group,
we can associate its group algebra. Unitary representations of the group
correspond to unital representations of the group algebra in an easy way.
And we found an injective representation of the group algebra by considering
the left regular representation. When the group is finite, the group algebra is
finite dimensional and this allows us to find an injective map from the group
algebra into the operators on a Hilbert space. Using this, the operator norm
on the image makes it into a C∗-algebra. A key point in this development
is that the algebra is finite-dimensional. If it were not, we would not know
that the group algebra is complete in the given norm. This is a subtle and
important point, but it is not insurmountable. We just need to do some
analysis.

The first step is to give the group algebra a norm. Even though it will
not be complete, nor will the completion be a C∗-algebra, this is still a useful
step.

Definition 2.4.1. Let G be a discrete group. The `1-norm on CG is defined
by

‖
∑
g∈G

agg‖1 =
∑
g∈G

|ag|,

where ag, g ∈ G are complex numbers with only finitely many non-zero.

Now we have reached a notational impasse. Elements of the group algebra
are typically denoted by

∑
g∈G agg while the norm we have defined above is

usually defined on functions from the group to the complex numbers. Of
course, it is very easy to go back and forth between the two. The element
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above is associated with the function sending g in G to the complex number
ag, for all g in G.

Theorem 2.4.2. Let G be a discrete group. The completion of CG in the
`1-norm is

`1(G) = {a : G→ C |
∑
g∈G

|a(g)| <∞}.

Moreover, the product

(ab)(g) =
∑
h∈G

a(h)b(h−1g),

for a, b in `1(G) and g in G, is well-defined, associative, extends the product
on CG and makes `1(G) a Banach algebra. The involution

a∗(g) = a(g−1)

a in `1(G) and g in G, is isometric, conjugate linear and satisfies (ab)∗ =
b∗a∗, for all a, b in `1(G).

Proof. The proof of the first statement is a standard fact in functional anal-
ysis. We refer the reader to []. To see that the product is well-defined, we
note that the functions in `1(G) are bounded since they are summable and
then the sum

∑
h∈G a(h)b(h−1g) is the product of a summable sequence and

a bounded one and so is summable. To see it is in `1(G), for any a, b in `1(G),
we have∑
(h,g)∈G×G

|a(h)b(h−1g)| =
∑
h∈G

|a(h)|
∑
g∈G

|b(h−1g)| =
∑
h∈G

|a(h)|‖b‖1 = ‖a‖1‖b‖1.

It follows that ‖ab‖1 ≤ ‖a‖1‖b‖1. It is clear that the involution is isometric.
It is clearly conjugate linear and satisfies (ab)∗ = b∗a∗ on functions that
are supported on a single element. By taking linear combinations, it is also
satisfied for finitely supported functions. It then holds on all elements of
`1(G) by continuity.

Theorem 2.4.3. Let G be a discrete group. The linear functional τ(a) =
a(e), a ∈ `1(G) is bounded and is a trace on `1(G).

Proof. We note that for any a in `1(G), we have ‖a‖ ≥ |a(e)| = |τ(a)|, so
τ is bounded. Since we have already proved that it is a trace on CG and is
continuous, the trace property extends to `1(G).
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We now observe a relatively easy, but rather important result.

Theorem 2.4.4. Let G be a discrete group. There are bijective correspon-
dences between

1. (u,H), unitary representations of G,

2. (π,H), non-degenerate representations of CG,

3. (π,H), non-degenerate representations of `1(G).

The correspondences from the third to the second and from the second to the
first are both obtained by restriction. Moreover, these correspondences pre-
serve the irreducible representations. Finally, every representation of `1(G)
is contractive.

Proof. We are using the facts that G ⊂ CG ⊂ `1(G) to take restrictions.
Going back, unitary representations of G extend to unital representations of
CG by linearity exactly as we saw already in 2.2.3. Unital representations of
CG extend to `1(G) by continuity as follows.

Suppose that π is a unital representation of CG. If a is in `1(G), we define

π(a) =
∑
g∈G

a(g)π(g).

Of course, the reason the sum converges is simply because the coefficients
are absolutely summable and since π is a ∗-homomorphism, π(g) is unitary
and hence has norm one, for every g in G. In fact, we have

‖π(a)‖ = ‖
∑
g∈G

a(g)π(g)‖ ≤
∑
g∈G

|a(g)|‖π(g)‖ =
∑
g∈G

|a(g)| = ‖a‖1

and this also proves that π is contractive.
If π is a representation of `1(G) having a non-trivial invariant subspace,

then its restriction to CG has the same non-trivial invariant subspace. Sim-
ilarly, the restriction of a reducible representation CG to G will also be
reducible. In the other direction, if a unitary representation of G has a non-
trivial invariant subspace, then extending it to CG by linearity has the same
non-trivial invariant subspace. Moreover, if an is any sequence in CG con-
verging to a in `1(G) and π(an), n ≥ 1 all leave N invariant, then so does
π(a).
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We are now ready to turn to the issue of the norm on CG.

Definition 2.4.5. Let G be a discrete group. We define a norm on CG by

‖a‖ = sup{‖π(a)‖ | π, a representation of CG},

for any a in CG. We denote the completion of CG in this norm by C∗(G),
which we refer to as the group C∗-algebra of G.

Theorem 2.4.6. The norm given in Definition 2.4.5 is well-defined and
C∗(G) is a C∗-algebra containing CG as a dense ∗-subalgebra.

Proof. Begin by noting that every representation π of CG has a unique ex-
tension to `1(G) and that every representation of `1(G) is contractive. This
implies that ‖π(a)‖ ≤ ‖a‖1 and so the set on the right is bounded and the
supremum exists, for any element a of CG. Next, the left regular represen-
tation of CG is faithful and so this norm is also faithful.

The fact that on CG it satisfies ‖ab‖ ≤ ‖a‖‖b‖, a,∈ CG and the C∗-
condition follow from the fact that it is the supremum of norms all satisfying
these conditions. It is then easy to see its completion is a C∗-algebra.

Let us begin by observing a couple of simple things about our C∗-algebra.

Proposition 2.4.7. If G is a discrete group, then C∗(G) is a unital C∗-
algebra and it is abelian if and only if G is abelian.

Proof. The identity of the group G is also the identity of the group algebra
CG and is therefore the identity of any completion. We have also already
seen in Proposition 2.2.2 that G is abelian if and only if CG is abelian. It is
easy to see that a dense subalgebra of a C∗-algebra is abelian if and only if
the whole C∗-algebra is also.

Let us remark that Theorem 2.4.4 can be extended to include non-degenerate
representations of C∗(G) as well. The relationship between `1(G) and C∗(G)
is somewhat subtle. Since the C∗-algebra norm of 2.4.5 is less than or equal
to the norm on `1(G), there is a natural ∗-homomorphism from the latter
to the former which extends the identity map on CG. This is even injective
(see Exercise 2.4.2).

In general, the collection of representations involved in the definition of
the norm can be rather unwieldy. It will turn out to be extremely helpful if
we can restrict to a more tractable subclass. The following theorem is very
useful in this way. Its proof is a trivial consequence of Theorem 2.2.4 and
Lemma 1.11.9.
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Theorem 2.4.8. Let G be a discrete group. For any element a in CG, we
have

‖a‖ = sup{‖πu(a)‖ | u an irreducible representation of G}.

However, C∗(G) is not the end of the story: recall that we have one
extremely natural representation of CG, the left regular representation.

Definition 2.4.9. Let G be a discrete group. We define the reduced norm
on CG by

‖a‖r = ‖πλ(a)‖,

for any a in CG. We denote the completion of CG in this norm by C∗r (G),
which we refer to as the reduced group C∗-algebra of G.

It is worth stating the following easy result.

Theorem 2.4.10. Let G be a discrete group. There exists a canonical ∗-
homomorphism ρ : C∗(G) → C∗r (G) which extends the identity map on the
group algebra CG.

Proof. If λ denotes the left regular representation, then πλ is among the col-
lection of representations of CG considered when defining the norm. Hence,
we have ‖a‖r = ‖πλ(a)‖ ≤ ‖a‖. The rest follows from the definitions.

Our last main result is to see that the trace functional on the group
algebra will extend to both full and reduced group C∗-algebras. In fact, this
is a consequence of a nice little formula which expresses the trace in terms
of the left regular representation.

Theorem 2.4.11. Let G be a discrete group. For each a in CG, we have

τ(a) =< πλ(a)δe, δe > .

The trace τ extends continuously to both C∗(G) and C∗r (G) and the same
formula holds for a in either of these. Both extensions are traces on the
respective C∗-algebras.



76 CHAPTER 2. GROUP C∗-ALGEBRAS

Proof. We compute

< πλ(a)δe, δe > = < πλ(
∑
g∈G

a(g)g)δe, δe >

=
∑
g∈G

a(g) < λ(g)δe, δe >

=
∑
g∈G

a(g) < δg, δe >

= a(e)

= τ(a).

It follows immediately from this that

|τ(a)| ≤ ‖πλ(a)‖ = ‖a‖r ≤ ‖a‖,

and so τ extends as claimed. The fact that τ satisfies the trace properties on
dense subalgebras of C∗r (G) and C∗(G) implies the extensions will also.

There is a general condition on a group to be amenable. It is a little tech-
nical and there are many equivalent forms, but the name is fairly descriptive:
these are the groups which are most easily analyzed. If a group is amenable,
then the full and reduced norms agree and the full and reduced C∗-algebras
are identical, or more accurately, the map ρ of 2.4.10 is an isomorphism. In
fact, the converse also holds.

Later, we will see an example of a non-amenable group, and just how
different the two C∗-algebras can be.

Exercise 2.4.1. Let G be a discrete group. For each group element g, we
let δg be the function which is 1 at g and 0 elsewhere. We regard this as an
element of `2(G). Let a be in B(`2(G)).

1. Prove that if a is in the closure of πλ(CG), then (aδe)(g) =< aδh, δgh >,
for all g, h in G.

2. Prove that if a is in the centre of the closure of πλ(CG), then the
function aδe is constant on conjugacy classes in G.

3. In the last two problems, which topologies can you use when taking the
closure?
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4. Prove that if every conjugacy class in G is infinite, except that of the
identity, then C∗r (G) has a trivial centre.

5. Prove that the groups F2 and S∞ have the infinite conjugacy class prop-
erty.

Exercise 2.4.2. As we noted above, the identity map on CG extends to a
∗-homomorphism from `1(G) to C∗(G). Prove that the composition of this
map with ρ of 2.4.10 is injective. (Hint: try to mimic the proof of Theorem
2.2.5.)

2.5 Abelian groups

The simplest case of a group C∗-algebra to consider is when the group is
abelian. As we’ve seen (Proposition 2.4.7), this means that the C∗-algebra
will be abelian also and we have a very complete understanding of them
(Theorem 1.4.6).

Definition 2.5.1. Let G be a discrete abelian group. Its dual group, denoted
Ĝ, consists of all group homomorphisms χ : G→ T.

Here is a result that follows immediately from Theorem 2.2.3 and Exercise
1.11.3, but it is worth stating in any case.

Theorem 2.5.2. If G is a discrete, abelian group, then Ĝ is exactly the set
of irreducible representation of G (with Hilbert space C in each case.)

We comment that often notationally, the value of χ in Ĝ on an element
g of G is written as < g, χ >. This tends to emphasize a symmetry which
we will explore further once we remove the hypothesis that G is discrete in
Section 2.8.

Theorem 2.5.3. Let G be a discrete abelian group. Its dual group, Ĝ, is a
group when endowed with the pointwise product of functions. Moreover, the
collection of sets

U(χ0, F, ε) = {χ ∈ Ĝ | |χ(g)− χ0(g)| < ε, g ∈ F},

where χ0 is in Ĝ, F ⊂ G is finite and ε > 0, forms a neighbourhood base for
a topology on Ĝ. In this, Ĝ is compact and Hausdorff.
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Proof. The first statement is clear. For the second, from its definition, it is
clear that Ĝ is a subset of TG. The sets we have defined above are simply
the intersections of a fairly standard basis for the product topology on TG
with Ĝ. Moreover, it is a trivial consequence of the definitions that Ĝ is a
closed subset of TG. As TG is both Hausdorff and compact, so is Ĝ.

It is worth pausing a moment to see what happens in the case of one of
the simplest abelian groups, the integers.

Proposition 2.5.4. The map which sends χ to χ(1) is an isomorphism and
homeomorphism from Ẑ to T.

Proof. Since Z is cyclic, any χ in Ẑ is uniquely determined by its value at
1, the generator of Z. This means our map is injective. Similarly, the fact
that Z is free means that, for any z in T, there is a homomorphism χ with
χ(1) = z: specifically, the map ξ(n) = zn. This means our map is onto. It
follows easily from the definitions that it is a group isomorphism.

The map is clearly continuous and since both spaces are compact and
Hausdorff, it is a homeomorphism as well.

Of course, since C∗(G) is unital and abelian, it must be isomorphic to
C(X), for some compact Hausdorff space X. Probably, some readers will
already have guessed that X is Ĝ.

Theorem 2.5.5. If G is a discrete abelian group, then C∗(G) is isomorphic
to C(Ĝ). The isomorphism takes a group element g ∈ CG ⊂ C∗(G) to the
function ĝ(χ) = χ(g).

Proof. We know that C∗(G) is isomorphic to C(M(C∗(G))). Moreover, this
map sends group element g to the function ĝ(φ) = φ(g). We will be done
if we can identify M(C∗(G)) with Ĝ. First, if φ is in M(C∗(G)), we may
restrict it to G ⊂ CG ⊂ C∗(G). The fact that φ is multiplicative means that
φ|G is a group homomorphism. This means that restriction defines a map
from M(C∗(G)) to Ĝ. Two multiplicative linear functionals that agree on
G are clearly equal since the elements of G span a dense subset of C∗(G), so
this map is injective.

Now we claim this map is surjective. Let χ be in Ĝ. If we regard χ as a
unitary representation on a one-dimensional Hilbert space, then by Theorem
2.2.3, it is the restriction of a unique representation of CG on this same
Hilbert space. It is obviously continuous in the C∗-algebra norm on CG and



2.6. THE INFINITE DIHEDRAL GROUP 79

hence extends to C∗(G). But such a map is simply a multiplicative linear
functional. This establishes the claim.

It is clear from the definition that the map is continuous, but as both
spaces are compact and Hausdorff, it is a homeomorphism as well.

Exercise 2.5.1. Let n be a positive integer. Find Ẑn, the dual group of the
cyclic group of order n.

Exercise 2.5.2. Using the answer to exercise 2.5.1 above and Theorem 2.5.5,
write each element of Zn as a continuous function on Ẑn. Also, find an
element of CZn (written as a linear combination of group elements) which is
a minimal central projection.

Exercise 2.5.3. Let

G = Z[1/2] =
{ n

2k
| n, k ∈ Z, k ≥ 0

}
.

Describe Ĝ. (Remark: the best one can do here is try to describe an element
χ in Ĝ in terms of its restrictions to the subgroups

Z ⊂ 1

2
Z ⊂ 1

4
Z ⊂ · · ·

in G.)

Exercise 2.5.4. With G as above, describe Ĝ/Z.

2.6 The infinite dihedral group

In this section, we are going to analyze the structure of the simplest infinite,
non-abelian group: the infinite dihedral group. It is the semi-direct product
of the group of integers, Z, by the cyclic group of order two, written here
as {1,−1} with multiplication as group operation, with the action given by
n · j = nj, for n in Z and j = ±1. We will find it most convenient to regard
it as the group with two generators, a, b, subject to the relations, b2 = e and
bab = a−1. We will denote the group by D∞.

Before stating the result, let us introduce some useful concepts. If X
is a compact Hausdorff space and A is any C∗-algebra, then we denote by
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C(X,A) the set of continuous functions from X to A. It becomes a ∗-algebra
by taking pointwise operations. The norm is given by

‖f‖ = sup{‖f(x)‖ | x ∈ X}.

It is a relatively easy matter to check that it is a C∗-algebra.
In the special case that A = Mn(C), for some positive integer n, it is

also easy to see that this is naturally isomorphic to Mn(C(X)), the n × n
matrices with entries from C(X). This is just the observation that a contin-
uous function into matrices can also be regarded as a matrix of continuous
functions.

In M2(C), we let D0 denote the subalgbera of diagonal matrices and D1 be

the set of all matrices of the form

[
α β
β α

]
, where α, β are complex numbers.

The reader can easily check thatD1 is a commutative C∗-subalgebra ofM2(C)

and is unitarily equivalent to D0 via the unitary

[
2−1/2 2−1/2

−2−1/2 2−1/2

]
.

With this notation, we are able to state our main result.

Theorem 2.6.1. There is an isomorphism

ρ1 : C∗(D∞)→ B1 = {f ∈ C([0, 1],M2(C)) | f(0), f(1) ∈ D1}

with

ρ1(a)(t) =

[
eiπt 0
0 e−iπt

]
ρ1(b)(t) =

[
0 1
1 0

]
.

Composing ρ1 with conjugation with the unitary which conjugates D1 with
D0, we also have an isomorphism

ρ0 : C∗(D∞)→ B0 = {f ∈ C([0, 1],M2(C)) | f(0), f(1) ∈ D0}

with

ρ0(a)(t) =

[
cos(πt) i sin(πt)
−i sin(πt) cos(πt)

]
ρ0(b)(t) =

[
1 0
0 −1

]
.
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Comparing the two different versions of the results, the C∗-algebra B0

seems a little easier to handle than B1. On the other hand, in the map ρ1,
we see more clearly the representations of the subgroups generated by a and
b, respectively. We will prove only the first statement and we will drop the
subscript 1 on ρ. The proof will take the rest of this section.

The idea of the proof idea is fairly simple: in the case that our discrete
group is abelian, we had an isomorphism between its C∗-algebra and C(Ĝ).
We first realized that Ĝ was the set of irreducible representations of the
group and our map simply sent a group element g to the function whose
value at a representation χ was χ(g). The same principle will work here,
with a few minor modifications. The space [0, 1] on the right is (almost) the
set of irreducible representations, (almost) all of which are two-dimensional.
Our map ρ will take a group element g to the function whose value at π is
just π(g).

We begin our proof with the easy steps. First, with ρ(a) and ρ(b) defined
as in the theorem, it is a simple matter to check that they lie in B1, are
both unitaries and satisfy the same relations as a, b in D∞. From this fact,
it follows that ρ extends to a ∗-homomorphism from CD∞ into B1.

Next, we check that the image of CD∞ is dense. Observe that since it
contains the unit and ρ(a) + ρ(a−1), the closure contains all matrices of the
form [

f(t) 0
0 f(t)

]
,

where f is any continuous function on [0, 1]. It also contains −iρ(a)+iρ(a−1)
and multiplying this by functions of the type above, we see the closure also
contains all matrices of the form[

f(t) 0
0 −f(t)

]
,

where f is a continuous function which vanishes at 0, 1. By taking sums, we
see the closure of the image contains all functions of the form[

f(t) 0
0 g(t)

]
,

where f, g are continuous functions with f(0) = g(0), f(1) = g(1). Finally,
by multiplying this by ρ(b) and taking sums, we see the closure of the range
contains all of B1. Our final task is to show that ρ is isometric and we will
be done.
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If t is any point of [0, 1], it is clear that the map sending an element a
of the group algebra CD∞ to ρ(a)(t) is a ∗-homomorphism to M2(C). That
means it is also a representation of CD∞ on a 2-dimensional Hilbert space.
We will call this representation πt. From the definition of the norm on CD∞
2.4.5, we have

‖a‖ ≥ sup{‖ρ(a)(t)‖ | t ∈ [0, 1]},
for every a in CD∞. Now, it is not true that all of these representations are
irreducible, but we will prove the following.

Lemma 2.6.2. Let (H, π) be an irreducible representation of D∞. Then
for some t in [0, 1] and some subspace N ⊂ C2 which is πt-invariant, π is
unitarily equivalent to the restriction of πt to N .

If we accept this for the moment, then by using 2.4.8, we have, for any a
in CD∞,

‖a‖ = sup{‖π(a)‖ | π irreducible } = sup{‖πt(a)‖ | t ∈ [0, 1]} = ‖ρ(a)‖

and so we see that ρ is isometric.
Let us give a proof of the lemma. The operator π(b) is a self-adjoint

unitary. The first case to consider is π(b) = 1. In this case, an operator on H
commutes with the image of π if and only if it commutes with π(a). The fact
that π is irreducible then means that its restriction to the subgroup generated
by a is also irreducible and since this group is abelian, our representation
must be 1-dimensional. Suppose that π(a) = z, for some z in T. The relation
bab = a−1 and π(b) = 1 means that π(a) = z must also be real. We conclude
that z = ±1. We have exactly two such irreducible representations π(a) =
1 = π(b) and π(a) = −1, π(b) = 1. Observe that the former is obtained by
restricting π0 to N = {(α, α) | α ∈ C} and the latter by restricting π1 to N .

Similar arguments deal with the second case when π(b) = −1. Here there
are two irreducible representations: π(a) = 1, π(b) = −1 and π(a) = −1 =
π(b). These are obtained by restricting π0 and π1 to N = {(α,−α) | α ∈ C}.

Now we turn to the case π(b) 6= ±1. This means that (π(b) + 1)/2 is a
non-zero projection. Let ξ be any unit vector in its range. From the fact
that (π(b) + 1)2−1ξ = ξ, an easy computation yields π(b)ξ = ξ as well.

The first observation is that the element of the group algebra a + a−1

clearly commutes with a and it is any easy calculation to see that it commutes
with b also. Its image under π is self-adjoint and of norm at most 2 (since
π(a) and π(a−1) are both unitaries). It follows that 2 + π(a) + π(a−1) is a
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positive operator commuting with the range of π. As π is irreducible, we
conclude that it is a scalar. Then (π(a) + π(a−1))/2 = (π(a) + π(a)∗)/2 is a
real number x in [−1, 1] times the identity operator. Choose t in [0, 1] such
that cos(πt) = x. That is, we have π(a) + π(a)∗ = 2x. Let y = sin(πt) and
z = x+ iy so that x2 + y2 = 1.

We observe the following fact that will be used several times

π(a)∗ − z = π(a)∗ − x− iy = x− π(a)− iy = −π(a) + z̄.

Notice that this also means that π(a)− z = −π(a)∗+ z̄. Next, we claim that
(π(a) − z)ξ and (π(a)∗ − z)ξ are orthogonal. Observing that since π(a) is
unitary, π(a)ξ is also a unit vector, we have

< (π(a)− z)ξ, (π(a)∗ − z)ξ > = < (π(a)− z)ξ, (−π(a) + z̄)ξ >

= − < π(a)ξ, π(a)ξ > + < π(a)ξ, z̄ξ >

+ < zξ, π(a)ξ > − < zξ, z̄ξ >

= −1 + z < π(a)ξ, ξ >

+z < ξ, π(a)ξ > −z2

= −1 + z < (π(a) + π(a)∗)ξ, ξ > −z2

= −1 + z < 2xξ, ξ > −z2

= −1 + 2zx− z2

= −1 + 2x2 + 2ixy − x2 + y2 − 2ixy

= 0.

We next want to compute the effects of the two operators π(a) and π(b)
on the two vectors (π(a)− z)ξ and (π(a)∗ − z)ξ. First, we have

π(a)(π(a)− z)ξ = π(a)(−π(a)∗ + z̄)ξ

= −π(a)π(a)∗ξ + z̄π(a)ξ

= −ξ + z̄π(a)ξ

= z̄(π(a)− z)ξ.

Also, we have

π(a)(π(a)∗ − z)ξ = π(a)π(a)∗ξ − zπ(a)ξ

= ξ − zπ(a)ξ

= z(z̄ − π(a))ξ

= z(π(a)∗ − z)ξ.
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Now we turn to the action of π(b) (which is simpler):

π(b)(π(a)− z)ξ = (π(b)π(a)− zπ(b))ξ

= (π(a)∗π(b)− zπ(b))ξ

= (π(a)∗ − z)π(b)ξ

= (π(a)∗ − z)ξ.

A similar computation shows that π(b)(π(a)∗ − z)ξ = (π(a)− z)ξ.
It is clear from these equations that the subspace spanned by these two

vectors is invariant under π. Since the unitary π(b) maps one to the other,
they must have the same length. If that happens to be zero, then π(a)ξ = zξ
and π(a)∗ξ = zξ. It follows that z = ±1 and that the span of ξ itself is
invariant under π. It is a simple matter to check that we have listed all
the 1-dimensional respresentation above and accounted for them with π0 and
π1 already. Otherwise, we may re-scale these vectors so that they are unit
length and, with respect to that basis, π is the same as πt. This completes
the proof of Theorem 2.6.1.

Leaving all these calculations aside, what have we learned from this ex-
ample? The set of all irreducible representations of a discrete group G is
usually denoted by Ĝ (which extends the definition we had before from the
abelian case). The first thing we see is that a thorough understanding of this
set is important to understand C∗(G). Secondly, we can loosely interpret
C∗(G) as C(Ĝ), even beyond the abelian case, if we allow the functions to
take values in matrix algebras. Underlying all of this is the fact that Ĝ can
be equipped with a natural topology. We did this in the abelian case and we
won’t discuss the general, but notice here that the space is non-Hausdorff:
it’s an open interval with two limit points at each end.

Finally, we remark that the short version of what we have done is to realize
that our group D∞ is composed of two abelian subgroups, Z and Z2. In short,
we are able to get complete information about the irreducible representations
of D∞ from the same information about the two constituents. This is called
the Mackey machine after George Mackey, one of the leading figures in the
theory of group representations. In brief, if one has a normal subgroup H in
a group G, there is a natural construction of irreducible representations of G
from those of H. More impressively, this will often be exhaustive.

Exercise 2.6.1. For n ≥ 3, let Dn be the dihedral group of order 2n. That
is,

Dn = {e, a, a2, . . . , an−1, b, ab, a2b, . . . , an−1b},
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where a, b satisfy an = e, b2 = e, bab = a−1.

1. List all the irreducible representations of Dn. (Hint: each of these also
gives an irreducible representation of D∞.)

2. Describe C∗(Dn).

2.7 The group F2

In this section, we investigate the C∗-algebras associated with the free group
on two generators, denoted F2. Here, the key point is that C∗-algebra is
plural: the full and reduced C∗-algebras are different. This is because F2 is
not amenable. Rather than go too far into that, we will mainly concentrate
on just how different these C∗-algebras are.

We will begin with a brief review of the group F2. We denote the gen-
erators by a and b. A word in a, b, a−1, b−1 is simply a finite string of these
symbols written sequentially. There is also a special word e which is the
empty word consisting of no symbols. Two words may be concatenated by
simply writing them side by side. Of course, the order matters. We denote
the concatenation of w1 and w2 by w1w2. Notice that ew = w = we for all w
and that concatenation is an associative operation. We define an equivalence
relation on the set of all words by first setting

w1w2 ∼ w1a
−1aw2 ∼ w1aa

−1w2 ∼ w1b
−1bw2 ∼ w1bb

−1w2,

for all words w1, w2 and then letting ∼ denote the transitive closure of this
relation. We also say that a word is reduced if it contains no pair a, a−1 or
b, b−1 adjacent. Each ∼-equivalence class contains a unique reduced word.
The collection of ∼-equivalence classes of words, with concatenation is our
group F2.

The main feature of the group (in fact, it is really the definition) is that,
given any group G with two elements g, h in G, there is a unique group
homomorphism α : F2 → G such that α(a) = g and α(b) = h.

As we said above, our aim is to show that the C∗-algebras C∗(F2) and
C∗r (F2) are very different. Compare them with the following two theorems.

Theorem 2.7.1. If A is a unital C∗-algebra containing unitaries u, v, then
there exists a unique unital ∗-homomorphism ρ : C∗(F2) → A such that
ρ(a) = u, ρ(b) = v. In particular, for every n ≥ 1, there is a surjective
∗-homomorphism ρ : C∗(F2)→Mn(C).
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Theorem 2.7.2. The C∗-algebra C∗r (F2) is simple; that is, it has no non-
trivial ideals. In particular, it has no finite-dimensional representations.

Theorem 2.7.3. The trace on C∗r (F2) is unique.

Let us start by proving Theorem 2.7.1. Choose π : A → B(H) which is
a faithful, unital representation. Then π(u) and π(v) are unitaries. That
means there is a group homomorphism α : F2 → U(H) which maps a to
π(u) and b to π(v). This means that α is a unitary representation of F2 and
extends to β, a unital representation of CF2 and also a unital representation
of C∗(F2). It is clear that the image of the former is contained in the ∗-
algebra generated by π(u) and π(v) while the image of the latter is in the
closure of this. In any case, both images are contained in π(A). We are done
when we let ρ = π−1 ◦ β.

For the second statement, it is a fairly simple matter to see that the
smallest C∗-algebra which contains

u =


1 0 · · · 0
0 e2πi/n · · · 0
...

...
0 0 · · · e2πi(n−1)/n


is the set of diagonal matrices. It follows that the smallest C∗-algebra which
contains this and

v =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
0 0 1
1 0 · · · 0


is Mn(C).

Now we turn to the reduced C∗-algebra, which is trickier. We start with
a fairly useful result that the trace is faithful.

Theorem 2.7.4. Let G be a discrete group. If c is in C∗r (G) and τ(c∗c) = 0,
then c = 0. That is, the trace on C∗r (G) is faithful.

Proof. In this proof, we identify C∗r (G) with its image under πλ. Let g be in
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G and compute

‖cδg‖2 = < cδg, cδg >

= < cλgδe, cλgδe >

= < λ∗gc
∗cλgδe, δe >

= τ(λ∗gc
∗cλg)

= τ(λgλ
∗
gc
∗c)

= τ(c∗c)

= 0.

We see that c is zero on a basis for `2(G) and hence is zero.

We next turn to some much more technical results. The next is partic-
ularly opaque. Of course, we will find it useful. To put the result in some
kind of informal way, the expression within the norm on left hand side of
the conclusion is a kind of averaging process being applied to the operator
c. The result shows that this substantially reduces the norm, under certain
hypotheses. The reader might want to try Exercise 2.7.4 as a little warm-up
in a different setting.

Lemma 2.7.5. Let H0,H1 be Hilbert spaces. Suppose that c is an operator

on H0 ⊕ H1 having the form

[
0 0
∗ ∗

]
,

[
0 ∗
0 ∗

]
or

[
0 ∗
∗ ∗

]
. Also suppose

that u1, . . . , uN are unitaries such that u∗mun has the form

[
∗ ∗
∗ 0

]
, for all

m 6= n. Then we have

‖ 1

N

N∑
n=1

uncu
∗
n‖ ≤

2√
N
‖c‖.

Proof. We first consider the case c =

[
0 0
∗ ∗

]
. If d =

[
∗ ∗
0 0

]
, then we

have c∗d = d∗c = 0 so

‖c+ d‖2 = ‖(c+ d)∗(c+ d)‖ = ‖c∗c+ d∗d‖ ≤ ‖c∗c‖+ ‖d∗d‖ = ‖c‖2 + ‖d‖2.

Next, it is easy to see that for all n > 1, we have

dn = (u∗1un)c(u∗1un)∗ =

[
∗ ∗
∗ 0

] [
0 0
∗ ∗

] [
∗ ∗
∗ 0

]
=

[
∗ ∗
0 0

]
.
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Summing over n > 1 yields a term of the same form. Combining these two
together, we have

‖
N∑
n=1

uncu
∗
n‖2 = ‖u1(c+

N∑
n=2

u∗1unc(u
∗
1un)∗)u∗1‖2

= ‖c+
N∑
n=2

u∗1unc(u
∗
1un)∗‖2.

Now we are in a position to apply our computation above with d being the
sum on the right. This yields

‖
N∑
n=1

uncu
∗
n‖2 ≤ ‖c‖2 + ‖

N∑
n=2

u∗1unc(u
∗
1un)∗‖2

= ‖c‖2 + ‖
N∑
n=2

uncu
∗
n‖2.

Continuing by induction, dividing by N2 and taking square roots yields the
answer, without the factor of 2.

The second case for c is obtained simply by taking adjoints of the first.
For the third, any such c can be written as p0c+p1c, where pi is the orthogonal
projection of H0 ⊕H1 onto Hi, i = 0, 1. We can apply the first and second
cases to p0c and p1c respectively to get

‖ 1

N

N∑
n=1

uncu
∗
n‖ ≤

1√
N
‖p0c‖2 +

1√
N
‖p1c‖2 ≤ 2√

N
‖c‖2.

We are going to apply this to the elements of the left regular representa-
tion of F2.

Lemma 2.7.6. For all w in F2, we have

lim
N→∞

1

N

N∑
n=1

λanλwλa−n =

{
λw w = ak, k ∈ Z
0 otherwise
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Proof. First of all, if w is a power of a, then for each n, λanλwλa−n = λw and
the conclusion is clear. If not, then w contains either a b or b−1. Then we
have w = akw0a

l, where w0 begins and ends in b or b−1 (including the case
that it is a power of b).

Let H0 be the span of all δw′ where w′ is empty or begins with a±1. Also
let H1 be the span of the remaining elements of the group, those which begin
with b±1.

We make two simple observations: λw0H0 ⊂ H1 and λaH1 ⊂ H0. It
follows that b = λw0 and ui = λai , 1 ≤ i ≤ n satisfy the hypotheses of
Lemma 2.7.5. Hence, we have

lim
N
‖ 1

N

N∑
n=1

λanλwλa−n‖ = lim
N
‖ 1

N

N∑
n=1

λanλakλw0λalλa−n‖

= lim
N
‖ 1

N

N∑
n=1

λanλw0λa−n‖

≤ lim
N

1√
N
‖λw0‖

= 0.

Lemma 2.7.7. For any c in C∗r (F2), we have

lim
M,N→∞

1

MN

M∑
m=1

N∑
n=1

λbnamcλa−mb−n = τ(c).

Proof. By some standard estimates, it suffices to check this on elements of
the group algebra CF2. Then by linearity, it suffices to check it for c = λw,
for some w in F2.

The first case to consider is when w is the identity element and then the
conclusion is clear. The second is that w = ak, for some k 6= 0. In this case,
λw commutes with each λan and so we get

lim
M,N→∞

1

MN

M∑
m=1

N∑
n=1

λbnamcλa−mb−n = lim
N→∞

1

N

N∑
n=1

λbncλb−n

and the conclusion is an application of the last Lemma (with b replacing a).



90 CHAPTER 2. GROUP C∗-ALGEBRAS

The final case is for w 6= ak, for any integer k. Then given ε > 0, we may
find N0 such that for all N ≥ N0, we have

‖ 1

N

N∑
n=1

λanλwλa−n‖ < ε.

Then for every m, we also have

‖ 1

N

N∑
n=1

λbmanλwλa−nb−m‖ < ε.

and hence

‖ 1

MN

M∑
m=1

N∑
n=1

λbnamcλa−mb−n‖ < ε,

provided N ≥ N0. This completes the proof.

We are now ready to prove Theorem 2.7.2. Suppose that C∗r (F2) has a
non-zero ideal I and let c be some non-zero element of that ideal. We know
from Theorem 2.7.4 that τ(c∗c) > 0. We also know that c∗c is also in the
ideal. Looking at the last Lemma, the expression on the left hand side (using
c∗c instead of c) lies in the ideal, for every value of M,N . As the ideal is
closed, τ(c∗c) > 0 is in the ideal. But this element is invertible and it follows
that I = C∗r (F2).

As for the proof of Theorem 2.7.3, if φ is any other trace on C∗r (F2), if
we apply it to 1

MN

∑M
m=1

∑N
n=1 λbnamcλa−mb−n we clearly get φ(c) because of

the trace property. On the other hand, applying it to the scalar τ(c) yields
τ(c). The conclusion follows from Lemma 2.7.7.

Exercise 2.7.1. Let u be the N ×N unitary matrix

u =


1 0 · · · 0
0 e2πi/N · · · 0
...

...
0 0 · · · e2πi(N−1)/N

 .
Define a map E : MN(C)→MN(C) by

E(a) =
1

N

N∑
n=1

unau−n,

for a in MN(C).
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1. Prove that the range of E is contained in the C∗-subalgebra D consisting
of diagonal matrices.

2. Prove that E(d) = d if d is diagonal. In consequence, E ◦ E = E.

3. Prove that E(a∗a) is positive for every a in MN(C).

4. Prove that E is faithful, meaning that if E(a∗a) = 0, for some a in
MN(C), then a = 0.

5. Prove that if a in MN(C) and c, d are in D, then E(cad) = cE(a)d.

6. Prove that ‖E‖ = 1.

Exercise 2.7.2. Let u, v be the N ×N unitary matrices

u =


1 0 · · · 0
0 e2πi/N · · · 0
...

...
0 0 · · · e2πi(N−1)/N

 , v =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
0 0 1
1 0 · · · 0

 .

Prove that, for any c in MN(C), we have

1

N2

N∑
m=1

N∑
n=1

vnumcu−mv−n = τ(c),

where τ is the usual trace on MN(C).

Exercise 2.7.3. Show that Theorem 2.7.3 is false for C∗(G).

2.8 Locally compact groups

In this section, we discuss, informally, a more general construction of the
group C∗-algebra. The starting point is the notion of a topological group.
By a topological group we mean a group G, endowed with a topology in which
the product, regarded as a map from G×G (with the product topology) to
G, and the inverse, regarded as a map from G to itself, are both continuous.
It is frequently assumed that G is Hausdorff.
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There are many examples. Of course, any group at all, given the discrete
topology will qualify. The real numbers with the usual operation of addition
and the usual topology is also an example. So is the circle group T. A more
exotic example is GL(n,R), the set of invertible real n × n matrices with
matrix multiplication as group operation.

The first fundamental new ingredient is a left-invariant measure called
the Haar measure.

Theorem 2.8.1. Let G be a locally compact, Hausdorff group. There exists a
positive regular Borel measure µ on G with the property that µ(gE) = µ(E),
for all Borel sets E ⊂ G and g ∈ G, where gE = {gh | h ∈ E}. Moreover
this measure is unique, up to a scalar multiple.

In the case that the group G is discrete, Haar measure is simply counting
measure.

A complete treatment of this subject would start with a proof of this
crucial fact, which is why we aren’t going to do that.

Let us take a little detour for a moment to return to the topic of discrete
abelian groups which was covered in section 2.5. Recall that we had an
isomorphism from C∗(G) to C(Ĝ); let us denote it by α for the moment. We
observed earlier that Ĝ is both a group and a compact, Hausdorff topological
space. It is a fairly easy thing to see that it is actually a topological group.
Hence, it has a Haar measure, µ. This measure is actually finite in this case,
so we assume µ(Ĝ) = 1. With this measure available, we have a very nice
description of the inverse of our isomorphism. Suppose that f is in C(Ĝ).
Then we have

α−1(f)(g) =

(∫
f(χ)χ(g)dµ(χ)

)
This should be recognizable. When G = Z and Ĝ = T, the right hand side
is the conventional Fourier series for f . Notice that we are defining α−1(f)
as a function on G. In fact, we have to be very careful with this and exactly
which f we use. Some care is needed when discussing the map above; the
same formula also defines a unitary operator between L2(Ĝ, µ) and `2(G).

We now return to the general case of topological groups which are not
necessarily abelian. There is an interesting and useful consequence of the
uniqueness of the Haar measure as follows. If we fix a group element g in G,
and look at the function defined on Borel sets E by µg(E) = µ(Eg), it is clear
that this is also a left-invariant measure. Hence there is a constant ∆(g) such
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that µg = ∆(g)µ. The function ∆ : G→ R+ is a group homomorphism (with
range having multiplication as group operation). The function is identically
one if and only if the left-invariant measure happens to be right-invariant as
well.

Our first step, when we had a discrete group, was to form the group
algebra. Of course, one can still do this, but instead we will consider Cc(G),
the continuous complex-valued functions of compact support on G, rather
than CG which are the functions of finite support. If G is discrete, this is
just CG as before. Notice here that the inclusion G ⊂ Cc(G) fails unless G
is discrete, since a function that is one at a single group element and zero
elsewhere will not be continuous if the group is not discrete.

We regard Cc(G) as a linear space in the obvious way and define the
product by the formula

ab(g) =

∫
h∈G

a(h)b(h−1g)dµ(h),

for all a, b in Cc(G) and g in G. We also define an involution by

a∗(g) = ∆(g)−1a(g−1),

for all a in Cc(G) and g in G.
We leave it for the reader to verify that Cc(G) is a ∗-algebra with this

product and involution. The computations are not a complete triviality since
one sees rather concretely exactly why the measure needs to be left-invariant
and also why the function ∆ makes its surprise entrance in the involution. Of
course, if G is discrete, the measure is simply counting measure, the integral
simply becomes a sum and our product is exactly the same as we saw in
Theorem 2.4.2. In addition, counting measure is clearly right-invariant as
well as left-invariant and this is why ∆ did not appear earlier in the Chapter.

The other important thing to notice here is that Cc(G) has no unit unless
G is discrete. Essentially, this is the same issue that Cc(G) does not contain
G.

We also define a norm on Cc(G) by the formula

‖a‖1 =

∫
g∈G
|a(g)|dµ(g),

for all a in Cc(G). The completion of Cc(G) in this norm is L1(G). Except
for the change of ` to L, this is the same as the discrete case. In fact, the
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formulae we have above also hold for the product and involution on L1(G)
making it a Banach algebra with an isometric involution.

The next item that requires modification is the notion of unitary represen-
tation. Usually in the case of a topological group G, a unitary representation
is (u,H), where H is a Hilbert space as before, u is a group homomorphism
from G to the unitary group on H and we require that u is continuous when
G is considered with its given topology and the unitaries are considered with
the strong operator topology. The left regular representation is defined ex-
actly as before, replacing `2(G) by L2(G, µ), where µ is Haar measure. The
fact that the operators λg, g ∈ G, are unitary is a direct consequence of the
fact that the Haar measure is left-invariant. It should also be checked that
this is continuous in the sense above.

Why is this the right thing to do? The crucial result which persists
from the discrete case here is that there are bijective correspondences be-
tween: unitary representations of G, non-degenerate representations of Cc(G)
(though not unital since Cc(G) has no unit in general) and non-degenerate
representations of L1(G). The passage from first to second to third is very
much as before. If (u,H) is a unitary representation of G, then, for any a in
Cc(G), the formula

πu(a) =

∫
g∈G

a(g)ug

defines a bounded linear operator. Also, this formula will extend continu-
ously to define πu on L1(G). It is in going back that subtleties arise. Of
course, Cc(G) ⊂ L1(G) is valid, but one cannot restrict to G ⊂ Cc(G) to
get from representations of the ∗-algebras back to unitary representations of
the group. Nevertheless, the definitions of the full and reduced norms and
the completions of the group algebras into C∗-algebras C∗(G) and C∗r (G)
proceeds as before.

In the special case that G is commutative, but not necessarily discrete,
we again know that C∗(G) will be isomorphic to C0(X), for some locally
compact space X. In fact, the space X is again the dual group:

Ĝ = {χ : G→ T | χ a continuous group homomorphism }.

The only new item here is the word ’continuous’ (which can obviously be
omitted with no change if the group happens to be discrete). Again, we have
the isomorphism C∗(G) ∼= C0(Ĝ). It is interesting to note that we can still
define, for any group element g, the function ĝ(χ) = χ(g), χ ∈ Ĝ. The only
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problem now with the map g → ĝ is that g is not an element of Cc(G), nor
is ĝ in C0(Ĝ), when G is not discrete.

Of course, we have been assuming implicitly here that Ĝ has a topology.
Let us just spell out exactly what that is, particularly since it will be nice to
see the parallel with the discrete case before. For each χ in Ĝ, K ⊂ G which
is compact and ε > 0, we define

U(K, ε) = {χ′ ∈ Ĝ | |χ′(g)− χ(g)| < ε, for all g ∈ K}.

These sets form a neighbourhood base for a topology on Ĝ. In this topology,
Ĝ is again a topological group.

As an example, we have R̂ ∼= R and the isomorphism, which we find
convenient to write here as a pairing, is given by

< r, s >= e2πirs, r, s ∈ R.

That is, if one fixes s, this defines a map χs(r) =< r, s > from R to the
circle which is a continuous group homomorphism. Moreover, s → χs is an
isomorphism between R and R̂.

It is again true here that the inverse of the isomorphism α from C∗(G)
to C0(Ĝ) is given by Fourier transform

α−1(f)(r) =

∫
R
f(s)e−2πirsds,

for f in Cc(R) and r in R, or for a general abelian topological group G,

α−1(f)(g) =

∫
Ĝ

f(χ)< g, χ >dµ(χ),

for f in Cc(Ĝ) and g in G.

Exercise 2.8.1. Let G be a locally compact Hausdorff group. Prove that if
Haar measure is counting measure, then G is discrete.

Exercise 2.8.2. Let G be the ax+ b group:

G =

{[
a b
0 1

]
| a > 0, b ∈ R

}
with matrix multiplication as group operation. (There is a little ambiguity
here: sometimes one takes a 6= 0 instead.)
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1. Prove that a−2dadb is the Haar measure on G. (That is, it is Lebesgue
measure on (0,∞)×R times the function (a, b)→ a−2.) In other words,
if we let E be the set of all matrices with a in [a1, a2] and b in [b1, b2],
then

µ(E) = (a−1
1 − a−1

2 )(b2 − b1).

2. Find ∆.



Chapter 3

Groupoid C∗-algebras

We have so far seen two very important constructions of C∗-algebras. To any
locally compact Hausdorff space X, we have C0(X). In fact, this construction
yields exactly the class of commutative C∗-algebras. The other construction
associates a C∗-algebra C∗(G) to any discrete group G. In fact, there is also
C∗r (G) as well, so this particular construction yields (potentially) two (or
more) C∗-algebras.

Our next objective is a construction which combines these two, in some
sense. In particular, these will both be seen as special cases of our new con-
struction. That sounds impressive, but we should warn readers that, rather
than expecting some elegant general structure which subsumes both, what we
construct, étale groupoids, really look a little more like some Frankenstein-
type monster, built out of parts of both.

The goal though is not so unreasonable and let us take a few minutes to
explain why, at least for people with some interest in topological dynamical
systems. (Ergodic theorists will probably already have realized that they
should be looking in the direction of von Neumann algebras.)

What is a topological dynamical system? A reasonable simple answer
is that is a continuous self-map, ϕ, of topological space, X. But that is
misleading, even if it is not deliberately so. It would be impossible to do
any mathematics that one could legitimately call dynamical systems without
iterating the map. From this point of view, the dynamical system really
consists of a collections of maps, ϕn, n ≥ 1, with the condition that ϕn◦ϕm =
ϕn+m, for all n,m ≥ 1. Here, one sees at once that the collection of maps
contains some algebraic structure. In this case, it is that of the semigroup
of natural numbers. Of course, in any general theory, groups are simpler

97
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than semigroups and so we would prefer to assume that ϕ is actually a
homeomorphism and consider the family of maps indexed by Z rather than
N. Even in this simple case, we can see that we would like to consider a
single C∗-algebra which is built from C0(X) and C∗(Z). Of course, the two
of these separately aren’t very much use since neither remembers on its own
what ϕ is.

3.1 Groupoids

We begin with the definition of a groupoid. As the name would suggest,
it is rather like that of a group. The key point is that the product of an
arbitrary pair of elements may not be defined. That is, we specify a subset
(called G2) of G × G and the product gh is only defined for pairs (g, h)
in G2. The first axiom is a fairly natural generalization of associativity.
One might reasonably expect the next axiom to concern the existence of an
identity. That is actually too much to ask. Instead, the other axiom is that
there is an inverse operation g → g−1. The condition is rather subtle, but
what it contains is that g−1g and gg−1 will serve as an identities for certain
elements. In particular, the former is a right identity for g and the latter is a
left identity. These may not be equal; indeed G may have a large collection
of identities.

Definition 3.1.1. A groupoid is a non-empty set G, together with a subset
G2 ⊂ G × G, a map from G2 to G (the image of (g, h) is denoted gh) and
an involution, g → g−1, satisfying the following conditions.

1. If g, h, k are in G with (g, h), (h, k) both in G2, then so are (gh, k) and
(g, hk) and we have (gh)k = g(hk). (We write the result as ghk.)

2. For all g in G, both (g, g−1) and (g−1, g) are in G2. If (g, h) is in G2,
then g−1gh = h. If (h, g) is in G2, then hgg−1 = h.

The following definitions will be useful. First, since there are multiple
identity elements, we prefer to call them units. The letters r, s stand for
range and source. The usefulness of this terminology will become apparent
later.

Definition 3.1.2. Let G be a groupoid. The set of units of G (or identities)
is

G0 = {g−1g | g ∈ G}.
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We define r, s : G→ G0 by r(g) = gg−1, s(g) = g−1g.

Lemma 3.1.3. Let G be a groupoid.

1. For any g in G, (r(g), g), (g, s(g)) are in G2 and r(g)g = gs(g) = g.

2. If g, h are elements of G, then (g, h) is in G2 if and only if s(g) = r(h).

3. If g, h are elements of G with (g, h) in G2, then (h−1, g−1) is in G2 and
(gh)−1 = h−1g−1.

4. If g, h are elements of G with (g, h) in G2, then r(gh) = r(g) and
s(gh) = s(h).

5. If g is in G0, then g−1 = g.

6. If g is in G0, then r(g) = s(g) = g.

Proof. The first statement is just a re-writing of the previous definition in
the special case g = h.

For the second part, if (g, h) is in G2, we know that (g−1, g), (h, h−1) are
also and

s(g) = g−1g = g−1(ghh−1) = (g−1gh)h−1 = hh−1 = r(h).

Conversely, suppose that s(g) = r(h). We know that (g, g−1) and (g−1, g)
are in G2, so (g, g−1g) is in G2. Since g−1g = s(g) = r(h) = hh−1, we have
(g, hh−1) is in G2. Similar arguments show that (hh−1, h) is in G2 and hence
(g, h) = (g, hh−1h) is in G2 as desired.

For the third part, from associativity, we know that (gh)h−1 is defined and
equals g. It follows then that ((gh)h−1)g−1 is also defined and equals gg−1.
On the other hand ((gh)−1, gh) is inG2 and it follows that ((gh)−1, ((gh)h−1)g−1)
is also and hence ((gh)−1, gg−1) is in G2. This in turn means ((gh)−1, g) is
in G2 and (gh)−1gg−1 = (gh)−1 is in G2. Hence, we have

(gh)−1 = (gh)−1gg−1 = (gh)−1((gh)h−1)g−1 = h−1g−1.

For the fourth part, we make use of the third part and compute

r(gh) = gh(gh)−1 = (gh)(h−1g−1) = (g(hh−1))g−1 = gg−1 = r(g).

The other part is done similarly.
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The fifth part follows at once from the third and the definition of G0.
For the last statement, if g is in G0, then g = h−1h and using part 4, we

have
s(g) = s(h−1h) = s(h) = h−1h = g.

The other part is done similarly.

The result above gives us a nice picture to have in mind of a groupoid.
Imagine that we represent the elements of G0 as vertices and each element
g in G as an edge, starting at s(g) and terminating at r(g). The product is
then a rule which assigns to each pair g, h with s(g) = r(h), a new edge gh
going from s(h) to r(g). There is a small problem with this: is an element
of G0 a vertex or an edge or both? I find it convenient to let G \G0 be the
edges. The success of this picture varies, case by case.

It is a good time to look at some examples.

Example 3.1.4. Any group G is a groupoid. Use G2 = G × G. Here
G0 = {e}.

Following up on this, it can be shown that a groupoid is a group if and
only if G0 contains a single element (Exercise ??). The picture we had above
for this groupoid is particularly unhelpful. We have a single vertex and a set
of edges, which are all loops. The only thing you can tell about the group
from the picture is the number of elements! Of course, the problem is that
the picture doesn’t really show the product very clearly.

Example 3.1.5. Let X be any set and R be an equivalence relation on X.
Define

R2 = {((x, y), (y, z)) | (x, y), (y, z) ∈ R}.
Then define the product as (x, y)(y, z) = (x, z) and the inverse as (x, y)−1 =
(y, x), for all (x, y), (y, z) in R. In this way, R is a groupoid with

r(x, y) = (x, y)(x, y)−1 = (x, y)(y, x) = (x, x),

s(x, y) = (y, y),

for all (x, y) in R and
R0 = {(x, x) | x ∈ X}.

We denote the set on the right by ∆X . In particular, for any set X, X ×X
(called the trivial equivalence relation) and ∆X (called the co-trivial equiva-
lence relation) are groupoids.
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In contrast to the situation for groups, our picture of an equivalence
relation is quite accurate and helpful.

Proposition 3.1.6. Let G be a groupoid. The set R = {(r(g), s(g)) ∈ G0 ×
G0 | g ∈ G} is an equivalence relation on G0. Moreover, if the map α(g) =
(r(g), s(g)) from G to R is injective then it is an isomorphism between the
groupoids G and R. In this case, we say that G is a principal groupoid.

Let us return to a couple more general examples. The next is quite an
important one.

Example 3.1.7. Let G be a group acting (on the right) on a set X. That
is, for each x in X and g in G, we have xg which is in X. These are such
that, for fixed g in G, the map x→ xg is a bijection and x(gh) = (xg)h, for
all g, h in G and x in X.

Consider the set X ×G and define

(X ×G)2 = {((x, g), (y, h)) | xg = y}.

Then the product and inverse are given by (x, g)(xg, h) = (x, gh) and (x, g)−1 =
(xg, g−1), respectively, for x in X, g, h in G. We note that

r(x, g) = (x, g)(x, g)−1 = (x, g)(xg, g−1) = (x, e), s(x, g) = (xg, e),

for x in X, g in G, and (X ×G)0 = X × {e}.

Example 3.1.8. Let X be a topological space. Consider the set of all paths in
X; i.e. continuous functions γ : [0, 1] → X. Two paths γ, γ′ are homotopic
if there is a continuous function F : [0, 1] × [0, 1] → X such that F (s, 0) =
γ(s), F (s, 1) = γ′(s), for all 0 ≤ s ≤ 1 and F (0, t) = γ(0) = γ′(0), F (1, t) =
γ(1) = γ′(1), for all 0 ≤ t ≤ 1. That is, one path may be continuously
deformed to the other, while holding the endpoints fixed. Homotopy is an
equivalence relation. Let [γ] denote the homotopy class of γ.

Let π(X) denote the set of all homotopy classes of paths in X. We define

π(X)2 = {([γ], [γ′]) | γ(1) = γ′(0)}.

The product is given by [γ][γ′] = [γγ′], where

(γγ′)(s) =

{
γ(2s) 0 ≤ s ≤ 1/2,

γ′(2s− 1) 1/2 ≤ s ≤ 1,

where γ, γ′ are paths. The inverse is given by γ−1(s) = γ(1 − s), 0 ≤ s ≤ 1.
This groupoid is called the fundamental groupoid of X.
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Now we present a couple of simple ways of constructing new groupoids
from old ones. The first is fairly familiar from group theory.

Example 3.1.9. If G and H are groupoids, then so is their product G×H
in an obvious way.

The next example is very unfamiliar from group theory.

Example 3.1.10. If Gι, ι ∈ I, are groupoids, then so is their disjoint union
G = tι∈IGι as follows. We define G2 = tι∈IG2

ι and the product is then
obvious.

In fact, that’s it!

Theorem 3.1.11. Every groupoid is isomorphic to the disjoint union of a
collection of products of groups and equivalence relations. More precisely, if
G is a groupoid, then

G ∼= tι∈IGι × (Xι ×Xι),

where Gι is a group and Xι is a set, for all ι.

Proof. Let R be the equivalence relation on G0 from 3.1.6. Choose I to be
a set which indexes the equivalence classes of R. That is, for each ι in I,
Xι ⊂ G0 is an equivalence class of R, these are pairwise disjoint for different
values of ι and the union over all ι in I is G0. For each value of ι, choose xι
in Xι. Also, for each x in Xι, we know that (x, xι) is in R, so we may choose
gx in G such that r(gx) = x and s(gx) = xι.

For each ι in I, define

Gι = {g ∈ G | r(g) = s(g) = xι}.

It is easy to see that Gι is a group with identity element xι.
We define a map α : tι∈IGι × (Xι ×Xι)→ G by

α(g, (x, y)) = gxgg
−1
y ,

for all g in Gι, x, y in Xι and ι in I. First, let us see that α is well-defined.
We know that s(gx) = xι = r(g) = s(g) = s(gy) = r(g−1

y ), and so the product
is well-defined.

We also define β : G→ tι∈IGι × (Xι ×Xι) by

β(g) = (g−1
r(g)ggs(g), (r(g), s(g))), g ∈ G.

It is a simple exercise to see that β is well-defined and is the inverse of α.
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Of course, this result looks like the end of the road for groupoids. In fact,
we will revive them in the next section by studying topological groupoids.

Exercise 3.1.1. Suppose that G is a groupoid with a single unit. Prove that
G is a group.

Exercise 3.1.2. Prove that the groupoid X×G of Example 3.1.7 is principal
if and only if the action is free (that is, the only x, g for which xg = x is
g = e).

Exercise 3.1.3. Suppose that g is an element of a groupoid G. Prove that
the right identity of g is unique. That is, if h is any element of G with (g, h)
in G2 and gh = g, then h = s(g).

Exercise 3.1.4. In example 3.1.8, let γ be any path in X. Find the simplest
possible paths which represent r[γ] and s[γ]. Give a complete description of
π(X)0.

Exercise 3.1.5. Find the spaces Xι and the groups Gι in Theorem 3.1.11
for the fundamental groupoid of a space X.

3.2 Topological groupoids

To get some interest back into our groupoids after Theorem 3.1.11, we intro-
duce topology into the picture.

Definition 3.2.1. A topological groupoid is a groupoid G with a topology
such that, when G2 is given the relative topology of G × G, it is closed and
the product (as a map from G2 to G) and the inverse (as a map from G to
itself) are both continuous.

Let us just note an obvious fact.

Lemma 3.2.2. If G is a topological groupoid, then the maps r and s are
continuous. If G is Hausdorff, then G0 is closed.

Proof. The map g ∈ G → g−1 ∈ G is continuous, hence so is g ∈ G →
(g, g−1) ∈ G2 ⊂ G × G. The map r is simply the composition of this map
with the product and hence is continuous. The situation for s is similar.
For the last statement, if gα is a net in G0 converging to g, then we know
from part 6 of Lemma 3.1.3 that gα = s(gα). Taking limits and using the
continuity of s we see that s(g) = g and hence g is in G0.
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Let us give a couple of examples.

Example 3.2.3. Let X be any topological space. The groupoid X ×X with
the product topology is a topological groupoid. Also, the groupoid ∆X with
the relative topology from X × X (which makes the map sending x in X to
(x, x) in ∆X a homeomorphism) is a topological groupoid.

Example 3.2.4. Let X be a compact space and G be a topological group
(or a discrete group, if you prefer). Assume that G acts on X continuously,
meaning that the map from X × G to X of Example 3.1.7 is continuous.
With the product topology and the groupoid structure of 3.1.7, X × G is a
topological groupoid. We will actually prove this below in Theorem 3.2.11.

Our next task is to define special classes of topological groupoids called
r-discrete groupoids and étale groupoids. The idea in both cases is essentially
the same (although the latter is a strictly stronger condition) and we discuss
it a little.

When considering the C∗-algebras C0(X), we would not have got very
far if we only considered spaces with the discrete topology. On the other
hand, our treatment of group C∗-algebras of Chapter 2 did not suffer a great
deal by assuming the group is discrete. What we try to impose with these
two new conditions is that, while the groupoid itself may be continuous, the
’group-like’ part of it is discrete. This idea comes out nicely in Theorem
3.2.11 where the groupoids X ×G associated with an action of the group G
on the space X satisfy both these hypotheses when the group G is discrete.

Definition 3.2.5. A topological groupoid is r-discrete if G0 is open in G.

The following result will be useful and helps to explain the terminology.

Lemma 3.2.6. Let G be an r-discrete groupoid. For every g in G0, r−1{g}
and s−1{g} are discrete.

Proof. Suppose that we have a net hα converging to h, all in r−1{g}. Then
r(hα) = r(h) = g, for all α. We know that s(h−1) = r(h) and so (h−1, hα) is
defined for all α. Moreover, by the continuity of the product, the net h−1hα
converges to h−1h, which is in G0. Since G0 is open, h−1hα is in G0 for all
sufficiently large α. Then we know that h−1hα = s(h−1hα) = s(hα) = h−1

α hα.
Right multiplying by h−1

α and taking inverse then implies hα = h, for all such
α.
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Definition 3.2.7. A map f : X → Y between two topological spaces is a
local homeomorphism if, for ever x in X, there is an open set U containing
x such that f(U) is open in Y and f |U : U → f(U) is a homeomorphism.

Notice the condition that f be open is important. Otherwise the inclusion
of a point in any space would satisfy the condition.

Definition 3.2.8. A topological groupoid is étale if the maps r, s are both
local homeomorphisms. Any set U ⊂ G which satisfies the conditions of
Definition 3.2.7 for the maps r, s : G→ G is called a G-set.

We note the following; its proof is easy.

Theorem 3.2.9. Let G be an étale groupoid. Any open subset of a G-set is
also a G-set. If Γ is the collection of G-sets, then Γ satisfies the following.

1. If γ is in Γ, then so is γ−1.

2. If γ1, γ2 are in Γ, then so is γ1γ2.

3. If γ1, γ2 are in Γ, then so is γ1 ∩ γ2.

Moroever, Γ is a neighbourhood base for the topology on G and Γ0 = {γ∩G0 |
γ ∈ Γ} is a neighbourhood base for the topology of G0.

While the definitions of r-discrete and étale are rather different looking,
let us show they are at least related.

Theorem 3.2.10. Every étale groupoid is r-discrete.

Proof. If g is in G, let U be any G-set containing g. Then r(U) is an open
set containing r(g) and is contained itself in G0. In this way, we see that G0

can be covered by open sets and hence is open.

Roughly speaking, the condition of r-discrete means that r is locally
injective at any point h. The condition that G is étale means it is also onto
an open set containing r(h).

Theorem 3.2.11. Let G be a topological group and X a topological space.
Assume that G acts on X (on the right) and that the map (x, g) ∈ X ×G→
xg ∈ X is continuous. Then X × G as a groupoid (3.1.7) with the product
topology is a topological groupoid. If G is discrete, then X × G is both r-
discrete and étale.
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Proof. We first show that (X×G)2 is closed. If ((xα, gα), (xαgα, hα)) is a con-
vergent net, then clearly xα converges to some x in X, gα converges to some
g in G and hα converges to some h in G. It follows from the continuity of the
action that xαgα converges to xg. Thus, our net converges to ((x, g), (xg, h)),
which is in X ×G and the limit of the products is the product of the limits.

From the fact that the inverse map on G is continuous and the hypoth-
esis on the continuity of the action, we see that (x, g) → (xg, g−1) is also
continuous.

Now we assume that G is discrete. We compute

r(x, g) = (x, g)(x, g)−1 = (x, g)(xg, g−1) = (x, e).

It follows that, for any g in G, the set {g} is open in G and the restriction
of r to the open set X × {g} is a homeomorphism to X × {e} = (X × G)0.
The case for the map s is similar. It follows that X × G is étale and hence
r-discrete as well.

We note the following useful but easy result.

Theorem 3.2.12. Let G be a topological groupoid and let H ⊂ G be a sub-
groupoid. Then H is also a topological groupoid (with the relative topology).
If G is r-discrete, then H is also. If H is open in G and G is étale, then H
is also étale.

Exercise 3.2.1. Let R = {(x, x), (−1, 1), (1,−1) | −1 ≤ x ≤ 1} which is
considered as an equivalence relation of [−1, 1] and with the relative topology
of [−1, 1]2. First, show that R is a topological groupoid. Is it r-discrete? Is
it étale?

Exercise 3.2.2. Let R = {(x, x), (x,−x) | −1 ≤ x ≤ 1} which is considered
as an equivalence relation of [−1, 1] and with the relative topology of [−1, 1]2.
Is R r-discrete? Is it étale?

Exercise 3.2.3. Let G = {1,−1} be the cyclic group of order two and con-
sider its action on X = [−1, 1] defined by x · i = ix, for x ∈ [−1, 1] and
i = ±1. Then X ×G is étale by Theorem 3.2.11. Does this fact and Propo-
sition 3.1.6 imply that the equivalence relation of Exercise 3.2.2 is étale?

Exercise 3.2.4. Consider the smallest topology on R of Exercise 3.2.2 which
includes the relative topology of [−1, 1]2 and the set ∆[−1,1]. With this topol-
ogy, is R r-discrete? Is it étale? Give two explanations of the last part: one
direct and one using the action of Exercise 3.2.3 and Theorem 3.2.12.
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Exercise 3.2.5. Let X = [0, 1]∪ [2, 3]. Let A be a subset of [0, 1] and define

R = ∆X ∪ {(x, x+ 2), (x+ 2, x) | x ∈ A},

with the relative topology of X ×X.

1. Prove that R is r-discrete.

2. Give a necessary and sufficient condition on the set A for R to be étale.

3.3 The C∗-algebra of an étale groupoid

This section is devoted to the construction of the C∗-algebra of an étale
groupoid. For convenience, and so that it parallels with the construction of
the C∗-algebra of a discrete group, we have divided this into a sequence of
subsections.

3.3.1 The fundamental lemma

Lemma 3.3.1. Let G be an étale groupoid. Let p denote the product map
from G2 to G. If U and V are G-sets, then p(U × V ∩ G2) is open in G2

and the restriction of p to U × V ∩ G2 is a homeomorphism to its image.
Moreover, p(U × V ∩G2) is a G-set.

Proof. Define W = s(U) ∩ r(V ), which is an open subset of G0, and let
U ′ = (s|U)−1(W ) ⊂ U and V ′ = (r|V )−1(W ) ⊂ V . It follows from the fact
that U and V are G-sets, that U ′ and V ′ are also. We have s(U ′) = r(V ′) =
W . In addition, it is an easy consequence of part 2 of Lemma 3.1.3 that
U × V ∩ G2 = U ′ × V ′ ∩ G2. Hence, by replacing U, V by U ′, V ′ we may
assume that our G-sets also satisfy s(U) = r(V ).

By definition, U×V ∩G2 is an open subset of G2. The map (r|V )−1◦s|U :
U → V is a homeomorphism, since it is the composition of two homeo-
morphisms. Moreover, the map f from U to U × V defined by f(g′) =
(g′, (r|V )−1 ◦ s|U(g′)) has range in G2 since r((r|V )−1 ◦ s|U(g′))) = s(g′). We
claim that its range is exactly U × V ∩ G2. We have already shown the
range is contained in this set. For the reverse inclusion, suppose (g, h) is in
U ×V ∩G2. Then g is in U , h is in V and s(g) = r(h) since (g, h) is in G2. It
follows that h = (r|−1

V ) ◦ (s|U)(g) and we are done. It is clear that f is injec-
tive. It follows at once from the facts that r|V and s|U are homeomorphisms
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that the map f is continuous. Consider π1, the natural projection onto U .
It is clear that π1 ◦ f is the identity on U . From this and the fact that f
is onto, we deduce that π1 is injective as well. Both are clearly continuous,
hence they are both homeomorphisms.

Let p denote the product map restricted to the domain U × V ∩G2 and
let its range be W . We first claim that r(W ) is open. We showed in Lemma
3.1.3 that r(gh) = r(g), for any (g, h) in G2. This fact can be re-written here
as r|W ◦ p = r|U ◦ π1 as functions on U × V ∩G2. The fact that p is onto is
simply the definition of W . We know that the range of the right hand side
is r(U). Hence r(W ) = r(U) is open.

Next we claim that r|W and p are homeomorphisms. The right hand side
of r|W ◦p = r|U ◦π1 is a bijection and p is onto, hence p and r|W are injective.
Both p and r|W are continuous and bijective. The fact that their composition
is a homeomorphism implies that both are homeomorphisms.

Now we claim that r|W is a homeomorphism to its image. But this follows
from the equation r|W ◦ p = r|U ◦ π1 and the fact that we have established
that the other three maps are homeomorphisms.

The proof that s(W ) is open and that s|W is a homeomorphism is done
in a similar way. This completes the proof.

3.3.2 The ∗-algebra Cc(G)

Definition 3.3.2. Let G be an étale groupoid which is locally compact and
Hausdorff. We denote by Cc(G) the set of compactly supported continuous
complex-valued functions on G. We also denote by C(G) those functions in
Cc(G) which are supported in some G-set.

Lemma 3.3.3. Let G be an étale groupoid which is locally compact and
Hausdorff. Every element of Cc(G) is a sum of functions in C(G).

Proof. Let a be in Cc(G). Using the fact that the support of a is compact
and that the G-sets form a neighbourhood base for the topology, we may
find a finite cover, U , of the support of a by G-sets. We may find a partition
of unity α of G which is subordinate to the cover U ∪ {G \ supp(a)}. Then
we have

a =
∑
U∈U

αUa.
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Theorem 3.3.4. Let G be an étale groupoid which is locally compact and
Hausdorff. Then Cc(G), with the obvious linear structure, and multiplication
and involution given by

a · b(g) =
∑

r(h)=r(g)

a(h)b(h−1g),

for a, b in Cc(G) and g in G,

a∗(g) = a(g−1),

for a in Cc(G) and g in G, is a ∗-algebra.

Proof. Our first observation is that, since the inverse map is a homeomor-
phism of G, the function a∗ is clearly again in Cc(G). Our next task is to
see that the product is well-defined. First, as a has compact support and we
know from Lemma 3.2.6 and Theorem 3.2.10 that r−1{r(g)} is discrete, the
term a(h) is non-zero for only finitely many values of h. Hence, the formula
for the product yields a well-defined function on G. Moreover, this multi-
plication clearly distributes over addition. Hence, in view of Lemma 3.3.3,
to see that the product ab is in Cc(G), it suffices for us to check that this
holds for a, b in C(G). Suppose that a is supported in the G-set U , while b is
supported in the G-set V . Consider the function c sending (h1, h2) in G2 to
a(h1)b(h2). This is supported in U×V ∩G2. Moreover, if ab is non-zero on g,
then so is c on some point of p−1{g} (p is the product map). It follows that
ab is supported on p(U×V ∩G2), which is a G-set and that ab◦p|U×V ∩G2 = c.
It follows from Lemma 3.3.1 that ab is in C(G).

Of course, there are a number of issues still to be addressed: associativity,
(ab)∗ = b∗a∗, etc. We leave these an as exercise for the reader.

We take a moment to observe that, in the case our groupoid is an equiv-
alence relation, the product and adjoint have a particularly simple form.

Theorem 3.3.5. If R is an equivalence relation on X and is equipped with
an étale topology, then for a, b in Cc(R), the product is given by

a · b(x, y) =
∑
z∈[x]R

a(x, z)b(z, y),

and the adjoint by
a∗(x, y) = a(y, x),

for all (x, y) in R.
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Proof. Looking at the formula in 3.3.4 for the product, we see that for (x, y)
in R,

a · b(x, y) =
∑

r(x,y)=r(w,z)

a(w, z)b((w, z)−1(x, y)).

As r(x, y) = (x, x) and r(w, z) = (w,w), the condition r(x, y) = r(w, z) is
simply that w = x. Then the condition that w, z) is in R simply means z is
in [x]R. Finally, in this case, (w, z)−1(x, y) = (z, w)(x, y) = (z, y) and we are
done.

The formula for the adjoint is immediate from the definitions.

Example 3.3.6. Let X be a compact Hausdorff space and consider ∆X as
a groupoid. Here, of course, r−1{(x, x)} = (x, x), for every unit (x, x). It
follows that the product on Cc(∆X) = C(∆X) is simply pointwise product of
functions. In this case, Cc(∆X) is commutative and isomorphic to C(X).

Example 3.3.7. We consider the equivalence relation X ×X on the set X.
In order for this to be r-discrete, X must have the discrete topology and for
X to be compact it must also be finite. So we assume X is a finite set with the
discrete topology and consider X ×X. The formula for the product becomes

ab(x, y) =
∑
z∈X

a(x, z)b(z, y),

for all (x, y) in X ×X. Moreover, we also have

a∗(x, y) = a(y, x),

for all (x, y) in X ×X. These formulae should look familiar; Cc(X ×X) is
isomorphic to MN(C), where N is the cardinality of X.

Example 3.3.8. If G is a discrete group, then Cc(G) = CG, and the struc-
ture as a ∗-algebra is the same as earlier.

Our next observation is fairly easy, but it is extremely helpful in under-
standing the construction. In example 3.3.7 above, we saw that the total
equivalence on a space with N points yields the ∗-algebra of N×N matrices.
But more is true; the algebra of continuous functions on this space (which is
just CN) occurs in a natural way as the subalgebra of diagonal matrices. In
fact, this is a general phenomenon for ∗-algebras of étale groupoids.
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Theorem 3.3.9. Let G be an étale groupoid which is locally compact and
Hausdorff. Assume that the unit space G0 is compact. Then the map ∆ :
C(G0)→ Cc(G) defined by

∆(f)(g) =

{
f(g) g ∈ G0

0 g /∈ G0

is a unital, injective ∗-homomorphism.

Proof. The only non-trivial aspect of the proof is the observation that, since
G0 is both open and compact, the function ∆(f) is continuous and compactly
supported. The remaining details are rather straightforward and we omit
them.

In particular, it is worth noting that Cc(G) is unital, when G0 is compact.
Also, the result in the more general case when the unit space is only locally

compact also holds, but the domain of ∆ is Cc(G
0). Of course, it would be

more satisfying with what we have seen to this point to have C0(G0) instead.
Before passing on to more analytic matters, we want to consider the

special case of particular interest: group actions.

Theorem 3.3.10. Let G be a discrete group acting continuously on the com-
pact Hausdorff space X. We regard X ×G as a groupoid 3.1.7 and consider
the ∗-algebra Cc(X ×G).

1. For each g in G, let ug denote the characteristic function of X × {g}.
Then ug is a unitary in Cc(G). Moreover, uguh = ugh, for all g, h in
G.

2. For any f in C(X) and g in G, we have

ug∆(f)u∗g = ∆(f g),

where f g(x) = f(xg), for all x in X. In particular,

ug∆(C(G0))u∗g = ∆(C(G0)).

3. For any f in Cc(X ×G), we may write

f =
∑
g∈G

∆(fg)ug,

where fg is in C(X), for each g in G and only finitely many are non-
zero.
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Proof. We begin by making the simple observation that in the product topol-
ogy X ×{g} is compact and open and so ug is indeed in Cc(X ×G), for any
g in G. Next, we compute

u∗g(x, h) = ug((x, h)−1) = ug(xh, h−1) = ug(xh, h
−1).

This has value one when h−1 = g and zero otherwise. In other words, it
equals ug−1 .

Next, we compute uguh as

uguh(x, k) =
∑
l∈G

ug(x, l)uh((x, l)
−1(x, k)) =

∑
l∈G

ug(x, l)uh(xl, l
−1k).

The first term in the sum is zero except for l = g, when it is one, so the
sum reduces to a single term uh(xg, g

−1k). This is zero unless g−1k = h or
k = gh, in which case it is one. We conclude that uguh = ugh.

That ug is unitary follows from the first two parts above.
For the second part, we will compute ug∆(f) and ∆(f g)ug and see that

they are equal. The conclusion then follows from this and the first statement.
We have

(ug∆(f))(x, h) =
∑

r(x,k)=r(x,h)

ug(x, k)∆(f)((x, k)−1(x, h))

=
∑
xk=xh

ug(x, k)∆(f)((xk, k−1h)).

From the definition of ∆(f), the sum reduces to a single term, when k = h.
Then from the definition of the first term, we get zero unless k = h = g, in
which case, the value is f(xg). On the other hand, we have

(∆(f g)ug)(x, h) =
∑

r(k)=r(h)

∆(f g)(x, k)ug((x, k)−1(x, h))

=
∑

r(k)=r(h)

∆(f g)(x, k)ug((xk, k
−1h)

= ∆(f g)(x, e)ug((xe, e
−1h)

= f g(x)ug(x, h)

= f(xg)ug(x, h).

Again the result is zero unless h = g and in this case it is f(xg).
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For the last part, for each g in G, let fg(x) = f(x, g). It follows from the
compactness of the support of f that this is non-zero for only finitely many
g. Moreover, ∆(fg)ug is the function that at (x, h) takes the value f(x, g)
when h = g and is zero otherwise. In fact, this was proved in the second
calculation of the second statement above. The conclusion follows at once.
This completes the proof.

Continuing our analogy of Cc(G) with the N × N matrices and C(G0)
being the diagonal matrices, we see here that the elements ug, g ∈ G should
be regarded as permutation matrices.

3.3.3 The left regular representation

We now want to define an analogue of the left regular representation of a
group for an étale groupoid G. As we are going to avoid the notion of a
representation of a groupoid itself, this will be at the level of the algebra
Cc(G). In fact, we will define one representation for each element of the unit
space. Our left regular representation will be the direct sum of all of these.

Theorem 3.3.11. Let u be a unit in the locally compact, Hausdorff étale
groupoid G. For each a in Cc(G) and ξ in `2(s−1{u}), the equation

(πuλ(a)ξ)(g) =
∑

r(h)=r(g)

a(h)ξ(h−1g),

for any g in s−1{u}, defines an element of `2(s−1{u}). Moreover, πuλ(a) is a
bounded linear operator on `2(s−1{u}) whose norm is bounded by a constant
depending on a, but not on u. The function πuλ : Cc(G)→ B(`2(s−1{u}) is a
representation of Cc(G).

Proof. First of all, observe that if r(g) = r(h) then h−1g is defined and
s(h−1g) = s(g) = u, so the terms in the sum are all defined. Secondly, as
a is compactly supported and r−1{r(g)} is discrete, the sum in the formula
has only finitely many non-zero terms. Hence the function (πuλ(a)ξ) is well-
defined for any g in G, in particular, on s−1{u}. It is also clearly linear in
a.

Now let us assume that a is in C(G) and is supported in the G-set U .
In this case, for a fixed g, r−1{r(g)} ∩ supp(a) is at most a single point,
hg = (r|U)−1(r(g)). Therefore we see that (πuλ(a)ξ)(g) is either zero or
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a(hg)ξ(h
−1
g g). Considered as a function of g, it is simply a permutation

of the original function ξ times another sequence which is bounded above by
‖a‖∞. Indeed, the `2-norm of this vector is bounded above by the `2-norm
of ξ times ‖a‖∞. Hence we see the result is in `2(s−1{u}). As any func-
tion in Cc(G) is a sum of elements of C(G), we see that πuλ(a) indeed maps
`2(s−1{u}) to itself and is a bounded linear operator.

We now verify that πuλ is a representation. For any a, b in Cc(G), we show
that πuλ(a)πuλ(b) = πuλ(ab). To verify this, it suffices to let each side act on a
vector in `2(s−1{u}). It suffices to check ξ = δg0 , for some fixed g0 in s−1{u},
since these form an orthonormal basis. Here, we again use the notation δg0
to mean the function that is one at g0 and zero elsewhere. In this case, we
have

(πuλ(a)δg0)(g) =
∑

r(h)=r(g)

a(h)δg0(h
−1g) = a(gg−1

0 ).

From this we see that

πuλ(a)δg0 =
∑
s(g)=u

a(gg−1
0 )δg.

The map taking g with s(g) = u to gg−1
0 is well-defined and s(gg−1

0 ) = r(g0).
The map taking h with s(h) = r(g0) to hg0 is also well-defined and s(hg0) =
s(g0) = u. It is easily seen that these maps are inverses, so we may also write

πuλ(a)δg0 =
∑

s(g)=r(g0)

a(g)δgg0 .

We first compute

πuλ(a)πuλ(b)δg0 = πuλ(a)

 ∑
s(g)=u

b(gg−1
0 )δg


=

∑
s(h)=u

∑
s(g)=u

a(hg−1)b(gg−1
0 )δh.

On the other hand, we also have

πuλ(ab)δg0 =
∑
s(h)=u

(ab)(hg−1
0 )δh

=
∑
s(h)=u

 ∑
r(k)=r(hg−1

0 )

a(k)b(k−1hg−1
0 )

 δh.
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We observe that r(hg−1
0 ) = r(h). Considering h fixed for the moment, the

map that sends g in s−1{u} to hg−1 has range in r−1{r(h)}. The map that
sends k in r−1{r(h)} to k−1h has range in s−1{u}. Moreover, the composition
of these two maps in either order is the identity. It follows that each is a
bijection. We conclude that∑

s(g)=u

a(hg−1)b(gg−1
0 ) =

∑
r(k)=r(hg−1

0 )

a(k)b(k−1hg−1
0 ).

This completes the proof that πuλ(a)πuλ(b) = πuλ(ab).
Finally, let us check that πuλ(a∗) = πuλ(a)∗. Let g0, g1 be in s−1{u}. We

compute

< πuλ(a∗)δg0 , δg1 > = <
∑
s(g)=u

a∗(gg−1
0 )δg, δg1 >

=
∑
s(g)=u

a(g0g−1) < δg, δg1 >

= a(g0g
−1
1 )

=
∑
s(g)=u

< δg0 , a(gg−1
1 )δg >

= < δg0 , π
u
λ(a)δg1 > .

Theorem 3.3.12. Let G be a locally compact Hausdorff étale groupoid. If g
is any element of G, the representations π

r(g)
λ and π

s(g)
λ are unitarily equiva-

lent.

Proof. The map sending h to hg is a bijection from s−1{r(g)} to in s−1{s(g)}
and therefore implements a unitary operator between their respective `2

spaces. We leave it as an exercise to check that this unitary intertwines
the two representations as claimed.

Definition 3.3.13. Let G be a locally compact Hausdorff étale groupoid. The
left regular representation of G is the direct sum πλ = ⊕u∈G0πuλ.

It is not hard to see that the fact that G may be partitioned into pairwise
disjoint sets as

G = ∪u∈G0s−1{u}
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means that
`2(G) = ⊕u∈G0`2(s−1{u}).

In fact, the same formula that defines πuλ for each u in G0 may also be used
to define πuλ on `2(G). So in fact, we could also have defined the left regular
representation in this way on `2(G) and then observed that each subspace
`2(s−1{u}) is invariant.

Notice in the last proof that we have shown

πuλ(a)δg0 =
∑

s(g)=r(g0)

a(g)δgg0 ,

for any a in Cc(G) and s(g0) = u. Let h be any element of G and apply this
in the case u = s(h) and g0 = u, and then take the inner products with δh
and we obtain the following.

Theorem 3.3.14. Let G be a locally compact Hausdorff étale groupoid. For
any a in Cc(G) and h in G, we have

a(h) =< π
s(h)
λ (a)δs(h), δh > .

The following is a trivial consequence of the formula above.

Corollary 3.3.15. Let G be a locally compact Hausdorff étale groupoid. The
left regular representation of Cc(G) is faithful.

3.3.4 C∗(G) and C∗r (G)

We have almost everything to define the reduced C∗-algebra of an étale
groupoid, namely the left regular representation and the knowledge that it
is faithful. It also means we have almost everything we need to define the
full C∗-algebra. The only missing ingredient is the knowledge that taking
a single element of Cc(G) and the supremum of its norms in all possible
representations is finite. We start with the elements of C(G).

Lemma 3.3.16. Let G be a locally compact, Hausdorff étale groupoid with
compact unit space and let a be any function in C(G).

1. a∗a and aa∗ both lie in ∆(C(G)0).

2. ‖a‖2
∞ = ‖aa∗‖∞ = ‖a∗a‖∞. (N.B. The product being used is not the

pointwise product, but the product from Cc(G).)
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3. If π is any representation of the ∗-algebra Cc(G) on the Hilbert space
H, then ‖π(a)‖ ≤ ‖a‖∞.

Proof. Let U be a G-set which contains the support of a. Then for any g in
G, we compute

aa∗(g) =
∑

r(h)=r(g)

a(h)a∗(h−1g) =
∑

r(h)=r(g)

a(h)a(g−1h).

For the term a(h)a(g−1h) to be non-zero, it is necessary that both h and
g−1h lie in U . As s(h) = s(g−1h) and s is injective on U , we conclude
that g−1h = h is necessary for the term to be non-zero. This implies g is a
unit. We have shown that a necessary condition for aa∗(g) to be non-zero is
that g is in G0. This means that aa∗ = ∆((aa∗)|G0). Continuing with the
computation above for the case that g is a unit (so r(g) = g), we see

aa∗(g) =
∑
r(h)=g

a(h)a(h) = |a|2((r|U)−1(g)).

Since r|U is a homeomorphism, the conclusion of part two follows.
The first two parts also hold since a∗ is also in C(G).
For the third part, we use the first part and the fact that π ◦ ∆ is a

∗-representation of the C∗-algebra C(G0) and hence is contractive. Thus, we
have

‖π(a)‖2 = ‖π(a)π(a)∗‖
= ‖π(aa∗)‖
= ‖π(∆(aa∗|G0))‖
≤ ‖aa∗|G0‖∞
= ‖aa∗‖∞
= ‖a‖2

∞.

Now we want to move on from the special elements of C(G) to all of
Cc(G).

Theorem 3.3.17. Let G be a locally compact, Hausdorff étale groupoid with
compact unit space and let a be any function in Cc(G). There is a constant
A such that

‖π(a)‖ ≤ A,
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for all representations π of Cc(G).

Proof. We know we can find functions a1, . . . , aK in C(G) such that a =∑K
k=1 ak. Then, for any π, we have

‖π(a)‖ = ‖π(
∑
k

ak)‖ ≤
∑
k

‖π(ak)‖ ≤
∑
k

‖ak‖∞.

We are now ready to define full and reduced norms on Cc(G) and then
the associated full and reduced C∗-algebras. It is worth remarking that both
norms in the next two definitions are valid norms because of Corollary 3.3.11.

Definition 3.3.18. Let G be a locally compact, Hausdorff étale groupoid.
We define its C∗-algebra to be the completion of Cc(G) in the norm

‖a‖ = sup{‖π(a)‖ | π : Cc(G)→ B(H)},

for any a in Cc(G), and we denote it by C∗(G).

Definition 3.3.19. Let G be a locally compact Hausdorff étale groupoid. Its
reduced C∗-algebra is the completion of Cc(G) in the norm

‖a‖r = ‖πλ(a)‖ = sup{‖πuλ(a)‖ | u ∈ G0}.

Exercise 3.3.1. Show that Theorem 3.3.4 is false for r-discrete groupoids.
(Hint: consider Example 3.2.1.)

Exercise 3.3.2. Let G be a groupoid with the discrete topology. Prove that
for any two elements g1, g2 in G, we have

δg1δg2 = δg1g2

if (g1, g2) is in G2 and is zero otherwise.

Exercise 3.3.3. Let G be a finite group and let it act on itself by translation.
That is, consider G×G with the action (g, h) ∈ G×G→ gh ∈ G. In other
words, G×G is a groupoid with

(G×G)2 = {((g, h), (gh, k)) | g, h, k ∈ G}

and groupoid product ((g, h), (gh, k)) → (g, hk). Prove that Cc(G × G) is
isomorphic to MN(C), where N is the cardinality of G. (Hint: there are two
proofs. One involves showing that this groupoid is principal.)
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Exercise 3.3.4. Let X = {1, 2, 3, · · · , N} and let SN be the full permutation
group of X. Let pn, 1 ≤ n ≤ N be the projection in C(X) which is 1 at n
and 0 elsewhere. Prove that

∆(pN)Cc(X ×G)∆(pN) ∼= C∗(SN−1).

If you want to be ambitious, try to prove that

Cc(X ×G) ∼= MN(C∗(SN−1)).

Exercise 3.3.5. Let Γ be a discrete group and let Γ0 be a subgroup of index
N > 1. Let Γ0\Γ denote the set of all right cosets, Γ0γ, γ ∈ Γ. Choose
γ1, γ2, . . . , γN to be representatives of the N right cosets. Assume γ1 = e. (If
you like, let Γ = Z, Γ0 = NZ and γi = i− 1.)

We let G be the transformation groupoid associated with the action of Γ
on Γ0\Γ: (Γ0γi)γ = Γ0(γiγ). Of course, everything gets the discrete topology.

1. Find a set of matrix units ei,j, 1 ≤ i, j ≤ N in Cc(G). (Hint: Try
letting e1,1 be the function which is one at (Γ0, e) and zero elsewhere.)

2. A typical element a in Cc(G) can be written as a finite linear combi-
nation of functions on G which are one at a single element and zero
elsewhere. Write such a function out and compute e1,1ae1,1.

3. The set e1,1Cc(G)e1,1 is ∗-subalgebra of Cc(G) with unit, e1,1. Describe
it as a more familiar ∗-algebra.

3.4 The structure of groupoid C∗-algebras

In this section, we want to prove some basic results about the structure of
C∗r (G) and C∗(G), when G is a locally compact, Hausdorff étale groupoid.
For technical simplicity, we will usually also assume that the unit space G0

is compact.

3.4.1 The expectation onto C(G0)

We have already seen that there is a natural ∗-homomorphism ∆ : C(G0)→
Cc(G). We have done this under the added hypothesis that G0 is compact.
That was mainly for convenience; the same thing will work in the general
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case, replacing C(G0) by Cc(G
0). But we will continue to work in the case

G0 is compact.
What we would like to do now is find a kind of inverse to this map.

Specifically, we will have a map E : Cc(G) → C(G0). It is as simple to
describe as ∆: simply restrict the function to G0. Of course, the weak point
about this map is that it is not a homomorphism. But it does have a number
of useful features. First, it extends continuously to both full and reduced
groupoid C∗-algebras. Secondly, the extension to the reduced C∗-algebra is
faithful in a certain sense. That is very useful because it is very difficult in
general to write down elements in the reduced C∗-algebra, but C(G0) is quite
explicit.

Theorem 3.4.1. Let G be a locally compact, Hausdorff étale groupoid with
compact unit space. The map E from Cc(G) to C(G0) defined by E(a) = a|G0

is a contraction for both full and reduced norms. That is, for all a in Cc(G),
we have

‖E(a)‖∞ ≤ ‖a‖r ≤ ‖a‖.

The map extends to a contraction on both C∗r (G) and C∗(G), both denoted
by E.

For any f, g in C(G0) and a in C∗r (G), we have

E(∆(f)a∆(g)) = fE(a)g.

In particular, we have E ◦∆(f) = f , for all f in C(G0).
On C∗r (G), E is faithful in the sense that if a is in C∗r (G) and E(a∗a) = 0,

then a = 0.

Proof. First of all, we noted above in Theorem 3.3.14 that for any a in Cc(G),
we have

a(h) =< π
s(h)
λ (a)δs(h), δh >,

for any h in G. It follows then that

‖E(a)‖∞ ≤ ‖a‖∞
≤ sup{| < π

s(h)
λ (a)δs(h), δh > | | h ∈ G}

≤ ‖a‖r,

and we are done.
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The second part is done by first considering a in Cc(G). Here the con-
clusion is a direct computation, which we omit. The general case is obtained
by taking limits.

For the last statement, we first consider the case when a is in Cc(G).
Then for any g in G, we have

‖πs(g)λ (a)δg‖2 = < π
s(g)
λ (a)δg, π

s(g)
λ (a)δg >

=
∑
s(h)=u

∑
s(k)=u

< a(hg−1)δh, a(kg−1)δk >

=
∑
s(h)=u

a(hg−1)a(hg−1)

=
∑
r(l)=u

a(l−1)a(l−1)

=
∑
r(l)=u

a∗(l)a(l−1u)

= (a∗a)(u)

= E(a∗a)(u).

Now let a be any element of C∗r (G) with E(a∗a) = 0. We choose a sequence
ak in Cc(G) which converges to a. Using the equation we have above for the
elements ak, we have

‖πs(g)λ (a)δg‖2 = lim
k
‖πs(g)λ (ak)δg‖2

= lim
k
E(a∗kak)(u)

= E(a∗a)(u)

= 0.

Thus we see that π
s(g)
λ (a) is zero on a basis for the Hilbert space and hence

is zero.

3.4.2 Traces on groupoid C∗-algebras

The title of this section more or less says it all: we want to have a method
of producing traces on the C∗-algebras.

Definition 3.4.2. Let G be a locally compact, Hausdorff étale groupoid with
compact unit space. A regular Borel measure µ on G0 is said to be G-invariant
if, for every G-set U , µ(r(U)) = µ(s(U)).
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Lemma 3.4.3. Let G be a locally compact, Hausdorff étale groupoid with
compact unit space. A regular Borel measure µ on G0 is G-invariant if and
only if, for every G-set U , and function a ≥ 0 in Cc(r(U)), we have∫

r(U)

a(u)dµ(u) =

∫
s(U)

a ◦ r ◦ (s|U)−1(v)dµ(v).

Proof. First suppose that µ is G-invariant and let U and a be as given above.
So r◦(s|U)−1 is a homeomorphism from s(U) to r(U). We claim that, for any
Borel subset E ⊂ r(U), we have µ(E) = µ(r ◦ (s|U)−1(E)). The conclusion
follows from these two facts.

First, if E is an open subset of s(U), then V = (s|U)−1(E) is again a
G-set. Moreover, s(V ) = E while r(V ) = r ◦ (s|U)−1(E). Our claim follows
from an application of the definition to the G-set V .

Conversely, suppose the condition stated holds and let U be a G-set. It
suffices then to note again that r ◦ (s|U)−1 is a homeomorphism from s(U)
to r(U)

µ(r(U)) = sup{
∫
r(U)

a(u)dµ(u) | 0 ≤ a ≤ 1, a ∈ Cc(r(U))}

= sup{
∫
s(U)

a ◦ r ◦ (s|U)−1(v)dµ(v) | 0 ≤ a ≤ 1, a ∈ Cc(r(U))}

= sup{
∫
s(U)

b(u)dµ(u) | 0 ≤ b ≤ 1, a ∈ Cc(s(U))}

= µ(s(U)).

Theorem 3.4.4. Let G be a locally compact, Hausdorff étale groupoid with
compact unit space and suppose that µ is a regular, G-invariant, Borel prob-
ability measure on G0. The formula

τ(a) =

∫
G0

a(u)dµ(u)

for a in Cc(G) extends to a continuous trace on C∗r (G) and also on C∗(G),
both denoted τ .

Proof. For the first statement, we observe that the map τ is simply the
composition of E of Theorem 3.4.1 with the linear functional defined by µ in
C(G0). Hence it is bounded and extends continuously.
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Let us now verify the trace condition. It suffices (in view of Lemma
3.3.3) to consider functions a and b that are supported on G-sets U and V ,
respectively.

In this case, for any unit u,

ab(u) =
∑
r(h)=u

a(h)b(h−1u) =
∑
r(h)=u

a(h)b(h−1).

For a given u, a(h) is zero unless h is in U and hence u = r(h) is in r(U).
Similarly, the term b(h−1) is zero unless h−1 is in V and u = r(h). We
conclude that the sum ab(u) is zero unless u is in r(U ∩ V −1) and in this
case, its value is a((r|U∩V −1)−1(u))b((r|U∩V −1)−1(u)−1). Notice that if W is a
G-set and s(h) = u, then h−1 is the unique element of W−1 (also a G-set) with
s(h−1) = u. This may be summarized as ((r|W )−1(u))−1 = (s|W−1)−1(u). We
may conclude

ab(u) =

{
a((r|U∩V −1)−1(u))b((s|U−1∩V )−1(u)) u ∈ r(U ∩ V −1)

0 otherwise.

By simply reversing the roles of a and b (and also U and V ), we see that

ba(v) =

{
b((r|U−1∩V )−1(v))a((s|U∩V −1)−1(v)) v ∈ r(U−1 ∩ V )

0 otherwise.

We now observe that r(U−1∩V ) = s(U ∩V −1) and for v in this set, we claim
that

ab(r ◦ s(U ∩ V −1)−1(v)) = ba(v).

In fact, it is clear that the terms involving a are the same for both. As for the
b terms, it suffices to see that if g is in a G-set W−1, then (s|W )−1◦r(g) = g−1,
so that

(s|U−1∩V )−1 ◦ r ◦ s(U ∩ V −1)−1(v) = (s(U ∩ V −1)−1(v))−1 = (r|U−1∩V )−1(v).

This completes the proof.

In fact, if the groupoid G is also principal, then the construction above
accounts for every trace on the reduced C∗-algebra.

Theorem 3.4.5. Let G be a locally compact, Hausdorff étale groupoid with
compact unit space. If G is principal, then every trace on C∗r (G) arises from
a G-invariant regular Borel probability measure as in Theorem 3.4.4.
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Proof. Let τ be a trace on G∗r(G). First, we prove that for any a in Cc(G)
with a(u) = 0, for all u in G0, we have τ(a) = 0. Let g is any element in
the support of a. From the hypothesis above, and the fact that G0 is open,
g is not in G0. As G is principal, this means that r(g) 6= s(g). Then we may
choose a G-set Ug which is a neighbourhood of g with r(Ug) ∩ s(Ug) = ∅.

The sets Ug, g ∈ supp(a), form an open cover of supp(a) from which we
extract a finite subcover. Together with G \ supp(a), this forms a finite
open cover of G. We find a partition of unity subordinate to this cover and
multiply this pointwise against a. In this way, we have a = a1 +a2 + . . .+aN ,
where each an is supported in a set Un with r(Un) ∩ s(Un) = ∅. It now
suffices to prove that if a is supported on a G-set U with r(U) ∩ s(U) = ∅,
then τ(a) = 0.

Define functions b, c by

b(u) =

{
|a(g)|1/2 g ∈ U, r(g) = u

0 otherwise

c(g) =

{
|a(g)|−1/2a(g) g ∈ U, a(g) 6= 0

0 otherwise

It is a simple exercise to check that b, c are in Cc(G). We compute

bc(g) =
∑

r(h)=r(g)

b(h)c(h−1g).

The b is zero unless h = r(g), some some g in U and the a term is zero unless
a(g) 6= 0. In this case, bc(g) = b(r(g))c(g) = a(g). We conclude in any case
that bc = a.

Next, we compute

cb(g) =
∑

r(h)=r(g)

c(h)b(h−1g).

The c term is non-zero only when h is in U . Also the b term is non-zero only
on the units, so in order to get something other than zero, we must have g
in U and then cb(g) = c(g)b(g−1g). But for any g in U , g−1g = s(g) is in
s(U) and b is zero on this set since b is supported in r(U). We conclude that
cb = 0. Then we have

τ(a) = τ(bc) = τ(cb) = τ(0) = 0.
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We now know that τ(a) = τ(E(a)), for every a in Cc(G). The functional
τ ◦∆ is a positive linear functional on C(G0) and so

τ(∆(f)) =

∫
G0

f(u)dµ(u),

for some probability measure µ on G0. It remains for us to prove that µ is
G-invariant. Let U be a G-set and suppose a ≥ 0 is in Cc(r(U)). Define b in
Cc(G) by

b(g) =

{
a(r(g))1/2 g ∈ U,

0 otherwise.

As b is supported in U , both b∗b and bb∗ are in C(G0). We compute

bb∗(u) =
∑
r(g)=u

b(g)b∗(g−1u) =
∑
r(g)=u

b(g)b∗(g−1) =
∑
r(g)=u

b(g)2.

Clearly for bb∗(u) to be non-zero, we must have a g in U with r(g) = u. That
is, bb∗(u) is zero unless u is in r(U) and in this case, with g in U , r(g) = u,
bb∗(u) = b(g)2 = a(r(g)) = a(u). On the other hand, we compute

b∗b(u) =
∑
r(g)=u

b∗(g)b(g−1u)

=
∑
r(g)=u

b(g−1)b(g−1u)

=
∑
r(g)=u

b(g−1)2

=
∑
s(g)=u

b(g)2.

For b∗b to be non-zero, we need u = s(g) for some g in U . So u is in s(U) and
in this case, letting g = (s|U)−1(u) be the unique element of U with s(g) = u,

b∗b(u) = b(g)2 = a(r(g)) = a(r ◦ (s|U)−1(u)).

From the trace property, we know that τ(bb∗) = τ(b∗b). It follows that the
condition of Lemma 3.4.3 is satisfied, so µ is G-invariant.
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3.4.3 Ideals in groupoid C∗-algebras

We now turn to the issue of describing the ideals in the C∗-algebras of an étale
groupoid. The results are remarkably similar to the situation with traces. In
stead of G-invariant measures on G0, we introduce the notion of G-invariant
open sets in G0. We see how such a set gives rise to an ideal and, in the case
that G is principal, all ideals arise in this way.

Definition 3.4.6. Let G be a locally compact, Hausdorff étale groupoid. A
subset X ⊂ G0 is said to be G-invariant if, for any g in G, r(g) is in X if
and only if s(g) is in X.

Of course, another way to say this is that X is the union of equivalence
classes for the equivalence relation of Proposition 3.1.6. Notice also that, for
such an X, r−1(X) = s−1(X).

Lemma 3.4.7. Let G be a locally compact, Hausdorff étale groupoid and
suppose that U is an open G-invariant subset of G0. If b is any element of
Cc(G) with support in r−1(U), then there exists a continuous function f on
G0 with support in U such that ∆(f)b = b = b∆(f).

Proof. Let K ⊆ r−1(U) be a compact set such that b = 0 on G −K. Then
r(K) ∪ s(K) is a compact subset of U . We may find a continuous function
of compact support on U which is identically 1 on r(K) ∪ s(K). We extend
this function to be zero on G0 − U . For any g in G, we compute

∆(f)b(g) =
∑

r(h)=r(g)

∆(f)(h)b(h−1g).

Since ∆(f) is supported on G0, the only non-zero term in the sum is for
h = r(g) in which case we get f(r(g))b(g). If b(g) is non-zero, it follows that
g is in K and hence f(r(g)) = 1. This proves that ∆(f)b = b. The other
computation is done in a similar manner.

Theorem 3.4.8. Let G be a locally compact, Hausdorff étale groupoid and
suppose that U is an open subset of G0 and X is its closed complement in
G0. Then U is G-invariant if and only if X is. Moreover, in this case, the
following hold.

1. GU = r−1(U) is open in G and GX = r−1(X) is closed in G.
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2. With the relative topologies of G, both GU and GX are étale groupoids.

3. By extending functions to be zero on G−GU , Cc(GU) ⊆ Cc(G) is a ∗-
closed, two-sided ideal. Moreover, this inclusion extends to C∗r (GU) ⊆
C∗r (G) and C∗(GU) ⊆ C∗(G) and in each, the subset is a ∗-closed,
two-sided ideal.

4. The restriction map ρ : Cc(G)→ Cc(GX) is a surjective ∗-homomorphism
which extends to surjective ∗-homomorphisms ρ : C∗r (G) → C∗r (GX)
and ρ : C∗(G)→ C∗(GX).

5. The kernel of ρ : C∗(G)→ C∗(GX) is C∗(GU).

Proof. The first thing to say is that the proof is long! Mainly because the
statement should probably be broken down into several theorems, some of
which need little lemmas.

For the first statement, assume that U is G-invariant. Let g be in G with
r(g) in X. This means that r(g) is not in U and hence s(g) is also not in
U , as U is G-invariant. Hence s(g) is in X. As this argument did not use
the fact that U was open, the same argument shows that if X is G-invariant,
then so is U .

Part 1 follows from the continuity of r. For part 2, it is clear from the
G-invariance condition that both GU and GX are groupoids. The fact that
GU is étale follows from Theorem 3.2.12. As for GX , let g be an element
of GX . It has a neighbourhood V in G such that r(v) is open in G0 and
r : V → r(V ) is a homeomorphism. Then V ∩ GX is a neighbourhood of
g in the relative topology of GX . From the G-invariance of X, we have
r(V ∩ GX) = r(V ) ∩ GX , which is an open set in GX . Moreover, it follows
immediately from the definition of the relative topology that r : V ∩ GX →
r(V ∩ GX) is a homeomorphism. A similar argument proves the analogous
statement for s.

In part 3, it is a general fact in topology, that if A is a topological space
and B ⊆ A is open, by extending functions to be zero, we have Cc(B) ⊆
Cc(A) and is a linear subspace. We know that the map sending g to g−1

is a homeomorphism of G; let us verify GU is mapped to itself. If g is in
GU , then by definition, r(g) is in U , so s(g) is in U by G-invariance, and so
r(g−1) = s(g) is in U and so g−1 is in GU . It follows from this that if a is in
Cc(GU), then so is a∗. It remains for us to verify that Cc(GU) is an ideal in
Cc(G). To this end, let a, b be two functions in Cc(G) and assume the latter
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is compactly supported in GU . We may find f as in Lemma 3.4.7 and we
have ab = a∆(f)b and it suffices for us to prove that a∆(f) is in Cc(GU).
For g in G, we compute

a∆(f)(g)−
∑

r(h)=r(g)

a(h)∆(f)(h−1g).

As ∆(f) is supported in G0, the only non-zero term in the sum is for h = g
and we have a∆(f)(g) = a(g)f(s(g)). This is non-zero only if g is in the
support of a and also in the support of f . We claim this set is a compact
subset of GU . Any such g has s(g) in the support of f which is contained
in U , so this is a subset of U . To see it is compact, suppose that gn is a
sequence in this set. As the support of a is compact, it has a subsequence
which converges to a point, g, in G. Then applying s to this subsequence,
we have a sequence in the support of f which converges. As f has compact
support in U , we know s(g) is in U . Hence g is in GU as desired.

To prove the inclusion C∗(GU) ⊆ C∗(G), we must show that the norms
we obtain on Cc(GU) obtained by considering all representations and the
norm we obtain by considering all representations of Cc(G) and restricting
to Cc(GU) are the same. More precisely, for each b in Cc(GU), we must prove
that

sup{‖π(b)‖ | π a representation of Cc(GU)}
= sup{‖π(b)‖ | π a representation of Cc(G)}.

Since every representation of Cc(G) restricts to one of Cc(GU), the inequality
≥ is immediate.

We will now show that every representation (π,H) of Cc(GU) extends to
one, (π̃,H), of Cc(G). In fact, to obtain the norm on Cc(GU), we need only
consider those representations which extend to irreducible representations of
C∗(GU). Let ξ be any non-zero vector in H. It follows that π(C∗(GU))ξ is a
dense subspace ofH. As Cc(GU) is norm dense in C∗(GU), π(Cc(GU))ξ is also
dense in H. Let a be in Cc(G). We define an operator π̃(a) on π(Cc(GU))ξ
by setting

π̃(a)π(b)ξ = π(ab)ξ,

for any b in Cc(GU). To see this is well-defined we must check that π(b)ξ = 0
implies π(ab)ξ = 0. Let f be as in Lemma 3.4.7 for the element b. Then we
have

π(ab)ξ = π(a∆(f)b)ξ = π(a∆(f))π(b)ξ = 0,
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since a∆(f) is in Cc(GU).
Next, it is an easy estimate which we leave to the reader to check that

π̃(a) is bounded and therefore extends to all of H. The computations that
π̃ is a representation and restricts to π on Cc(GU) are routine and we omit
them.

To prove the inclusion C∗r (GU) ⊆ C∗r (G), we proceed in much the same
way, but considering only the left regular representations. Let us add a little
notation. If u is in G0, we let πuλ be the representation of Cc(G) as before. If
u is also in U , we let πuλ,U be the representation of Cc(GU). It u is unit of G,
then we consider the Hilbert space `2(s−1{u}). It is clear from the fact the
U is G-invariant that s−1{u} is contained in U if u is in U and is contained
in X otherwise. From this observation, it follows almost at once that the
representation πuλ of Cc(G), when restricted to Cc(GU), is exactly πuλ,U if u is
in U and is zero otherwise. We may write this as

⊕u∈G0πuλ|Cc(GU) =
(
⊕u∈Uπuλ,U

)
⊕ (⊕u∈X0) .

The desired conclusion follows.
This brings us to the proof of part 4. The fact that the map is linear

is obvious. To see that it is surjective, let f be in Cc(GX) with support in
the compact set K. Since K is compact in GX , which is closed in G, it is
also compact in G. Each point of K is contained in an open set in G with
compact closure. In this way, we may form an open cover of K in G and
extract a finite subcover. The union of this finite subcover, which we denote
by V , is then an open set in G containing K and with compact closure. The
sets GX and G−V are both closed and while they may intersect, f is zero on
this intersection. It follows that we can extend f to be a continuous function
on GX ∪ (G− V ) by setting f to be zero on G− V . By the Tietze extension
Theorem we may find a continuous function f̃ on G which equals f on GX

and is zero on G− V . It follows that f̃ is in Cc(G) and ρ(f̃) = f .
We indicate briefly why ρ is a homomorphism. Looking at the formula we

have for the product in Cc(G), for a fixed g in GX , we need to sum over all h
with r(h) = r(g). Since GX is G-invariant, it is irrelevant whether we specify
h in G or in GX ; they are equivalent. From this fact, it is easy to see the
restriction map is a homomorphism. It is also clear that ρ is ∗-preserving.

Let u be a unit in X. The same reasoning as above shows that the left
regular representation for u, of Cc(G) or Cc(GX) are on exactly the same
Hilbert space. Moreover, for f in Cc(G), its image under the left regular
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representation depends only on its values on GX . In other words, we have
πuλ,U(ρ(f)) = πuλ(f). It follows at once that ρ extends to a surjective ∗-
homomorphism from C∗r (G) to C∗r (GX).

Extending ρ to the full C∗-algebras is somewhat easier: if π is any rep-
resentation of Cc(GX), then π ◦ ρ is also a representation of Cc(G) and it
follows that ρ is contractive for the full C∗-norms.

We next consider part 5. It is clear that Cc(GU) is contained the kernel
of ρ : Cc(G) → Cc(GX). We claim that the kernel of ρ : Cc(G) → Cc(GX)
is contained in C∗(GU). Suppose that a is in Cc(G) and is zero on GX . We
write a =

∑
V αV a exactly as in the proof of Lemma 3.3.3 (using V for the

elements of the cover of supp(a) instead of U). Let M be the number of
sets V in the cover. Let ε > 0. For each V in the cover, αV a is a function
in C(G) and vanishes on GX . Therefore, we may find βV in Cc(GU) with
‖αV a− βV ‖∞ < ε

M
. Then we have b =

∑
V βV is in Cc(GU) and

‖a− b‖ = ‖
∑
V

αV a−
∑
V

βV ‖

≤
∑
V

‖αV a− βV ‖

≤
∑
V

‖αV a− βV ‖∞

<
∑
V

ε

M

= ε,

by part 3 of Lemma 3.3.16. Since ε was arbitrary, we conclude that a is in
the closure of Cc(GU) as desired.

We know that C∗(GU) is in the kernel of ρ : C∗(G)→ C∗(GX) and is an
ideal in C∗(G). So we have a well-defined ∗-homomorphism ρ̄ : C∗(G)/C∗(GU)→
C∗(GX). We claim this map is an isometry. It suffices to verify that on the
cosets of elements of Cc(G). By Theorem 1.12.8, there is a representation π
of C∗(G)/C∗(GU) which is an isometry. We can regard π as a representation
of C∗(G) by simply first applying the quotient map and then π. This map
is zero on C∗(GU). We claim that there exists a representation π′ of Cc(GX)
such that π(a) = π′(ρ(a)), for all a in Cc(G). To see this, let b be in Cc(GX).
Find a in Cc(G) with ρ(a) = b and set π′(b) = π(a). This is well-defined since
any two choices for a differ by an element of C∗(GU) which is in the kernel
of π. Checking that π′ is a representation is a trivial matter. It follows now
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that for any a in Cc(G)

‖a+ C∗(GU)‖ = ‖π(a)‖ = ‖π′(ρ(a))‖ ≤ ‖ρ̄(a+ C∗(GU))‖.

This completes the proof that ρ̄ is an isometry. It follows that the kernel of
ρ is simply C∗(GU).

It is an interesting question to ask whether Theorem 3.4.8 accounts for all
ideals in C∗(G). The short answer is ’no’. Suppose G = F2, the free group
on two generators. Here, as a groupoid, the unit space is a single element.
On the other hand, C∗(F2) has a non-trivial ideal: the kernel of the map to
C∗r (F2). In fact, since there are ∗-homomorphism onto every matrix algebra
and their kernels are a lot of other ideals as well.

We could also ask whether Theorem 3.4.8 accounts for all ideals in C∗r (G).
The answer is still ’no’. Suppose that G = Z. Again, as a groupoid, the unit
space is a single element. On the other hand, C∗(Z) = C∗r (Z) ∼= C(S1) has a
great many ideals.

We can finally get a positive answer by looking at ideals in C∗r (G) with
the added hypothesis that G is principal.

We begin with two simple lemmas.

Lemma 3.4.9. Let A be a C∗-algebra and e1, . . . , eI be positive elements of
A with ‖

∑I
i=1 e

2
i ‖ ≤ 1. Then for any a in A, we have

‖
I∑
i=1

eiaei‖ ≤ ‖a‖.

Proof. Without loss of generality, we may assume that A is acting on a
Hilbert space H. Define operators on ⊕Ii=1H

e(ξ1, . . . , ξI) = (e1ξ1, e2ξ1, . . . , eIξ1)

ã(ξ1, . . . , ξI) = (aξ1, . . . , aξI).

It is a simple matter to verify that

e ∗ ãe(ξ1, . . . , ξI) = (
I∑
i=1

eiaeiξ1, 0, . . . , 0),

e ∗ e(ξ1, . . . , ξI) = (
I∑
i=1

e2
i ξ1, 0, . . . , 0).
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From these facts, it follows that

‖
I∑
i=1

eiaei‖ = ‖e ∗ ãe‖ ≤ ‖e∗e‖‖a‖ ≤ ‖a‖.

The next result is where the groupoid being principal appears in a crucial
way.

Lemma 3.4.10. Let G be a principal, étale groupoid which is locally compact
and Hausdorff.

1. If a is in Cc(G), then there exist f1, f2, . . . , fN in Cc(G
0) such that

N∑
n=1

∆(fn)a∆(fn) = E(a).

2. If I is an ideal in C∗r (G), then E(I) ⊂ I.

Proof. Suppose that a is supported in the compact set K ⊆ G. For each g
in K − G0, r(g) 6= s(g) since G is principal. Therefore we may find a G-set
Vg such that r(Vg) and s(Vg) are disjoint. These sets form an open cover of
K −G0 and we extract a finite subcover V1, . . . , VM . For each u in K ∩G0,
we may choose an open neighbourhood Wu with compact closure as follows.
For any fixed m, u cannot be in both r(Vm) and s(Vm), so choose Wu so that
it is disjoint from one of them. That is, for each m, Wu is disjoint from at
least one of r(Vm) and s(Vm). These sets form an open cover of K ∩G0 and
we extract a finite subcover W1, . . . ,WN .

We find functions f1, f2, . . . , fN in Cc(G
0) with 0 ≤ fn ≤ 1, fn = 0 off of

Wun , and
∑N

n=1 f
2
i (u) = 1, for u in K ∩G0.

It is an immediate consequence of the definition of the product that, for
any 1 ≤ n ≤ N and g in G,

(∆(fn)a∆(fn))(g) = fn(r(g))a(g)fn(s(g)).

We consider two cases. First, suppose that g is in G0. If a(g) is zero, then
this function is also zero at g. If not, then after summing over all n, we get
a(g).
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If g is not in G0, we claim (∆(fn)a∆(fn))(g) = 0. If g is not in K, then
a(g) = 0 and the claim holds. If r(g) is not in Wn or if s(g) is not in Wn,
then f(r(g)) = 0 and the claim holds. It remains for us to consider the case
g is in K, r(g) and s(g) are in Wn. Then g is in Vm, for some m, and r(g)
is in r(Vm) while s(g) is in s(Vm). But we know that Wn must be disjoint
from one of these two, so this case cannot occur. We have now proved that∑N

n=1 ∆(fn)a∆(fn) = E(a).
For the second part, let b be in I. Let ε > 0 and choose a in Cc(G) with

‖b−a‖ < ε. Choose f1, . . . , fN as above for a. Then clearly
∑N

n=1 ∆(fn)b∆(fn)
is in I and we have

‖E(b)−
N∑
n=1

∆(fn)b∆(fn)‖ ≤ ‖E(b)− E(a)‖

+‖
N∑
n=1

∆(fn)a∆(fn)−
N∑
n=1

∆(fn)b∆(fn)‖

≤ ‖b− a‖+ ‖
N∑
n=1

∆(fn)(a− b)∆(fn)‖

≤ ‖b− a‖+ ‖b− a‖
< 2ε,

having used Lemma 3.4.9 in the penultimate step. As ε was arbitrary and I
is closed, we conclude that E(b) is in I.

Theorem 3.4.11. Let G be a locally compact, Hausdorff étale principal
groupoid. If I is a closed two-sided ideal in C∗r (G). then there is an open
G-invariant set U ⊂ G0 such that

I = C∗r (GU).

Proof. It is clear that ∆−1(I) is a closed two-sided ideal in C(G0) and so by
the second part of Exercise 1.8.2, it equals C0(U), for some open set U ⊆ G0.

First, we prove that U is G-invariant. Suppose that g is in G with r(g)
in U . Choose an open G-set V containing g with r(V ) ⊆ U . Let a be
any continuous function supported in V with a(g) = 1. We apply Lemma
3.3.16. In fact, the proof there shows that aa∗ is not only in ∆(C(G0)),
but is supported in r(V ) ⊆ U and so aa∗ is in I. It follows then that
(a∗a)2 = a∗(aa∗)a is also in I. But the proof of Lemma 3.3.16 also shows
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that a∗a is in ∆(C(G0)) and (a∗a)(s(g)) = 1. This implies that s(g) is also
in U .

Next, we will show that C∗r (GU) ⊆ I. Since I is closed, it suffices to check
that Cc(GU) ⊆ I. If a is in Cc(GU), then by Lemma 3.4.7 we may find f in
Cc(U) with ∆(f)a = a. Since ∆(f) is clearly in I and I is an ideal, so is a.

We now turn to the reverse inclusion: C∗r (GU) ⊇ I. Let a be in I. It
follows that a∗a and hence E(a∗a) (by 3.4.10) are in I. By definition of U ,
E(a∗a) is in ∆(C0(U)). Next, choose ε > 0. As Cc(G) is dense in Cr(G), we
may find f in Cc(G) such that

‖a− f‖r, ‖a∗a− f ∗f‖r < ε.

It follows that ‖E(a∗a)−E(f ∗f)‖ < ε and hence ∆−1(E(f ∗f)) is an element
of C(G0) which is less than ε in absolute value on G0 − U . Hence, we can
find g in Cc(U) such that

‖∆(g)− E(f ∗f)‖r = ‖g −∆−1(E(f ∗f))‖∞ < 2ε.

It follows that ∆(g) and hence f∆(g) are in Cc(GU). Moreover, we have

‖a− f∆(g)‖r ≤ ‖a− f‖r + ‖f − f∆(g)‖r

Exercise 3.4.1. Explain why the kernel of π : Cc(G) → Cc(GX) is not
Cc(GU) in Theorem 3.4.8. (Hint: you don’t have to look for very complicated
groupoids. Try the ones in Example 3.3.6.)

Exercise 3.4.2. Let N > 1 and let ZN act on the circle, T, by z · n =
e

2πin
N z. That is, n rotates the circle by angle 2πn

N
. Let G be the associated

transformation groupoid.

1. Describe all the traces on C∗r (G).

2. Describe all ideals in C∗r (G). Among these, identify the maximal proper
ideals. (Observe that, for two open G-invariant sets U, V , U ⊆ V if
and only if C∗r (GU) ⊆ C∗r (GV ).)

3. For each maximal ideal I in C∗r (G), describe the quotient C∗r (G)/I.

Exercise 3.4.3. For N > 1, let G be the groupoid associated with the action
of SN on {1, 2, . . . , N} as in Exercise ??.
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1. Explain why Theorem 3.4.8 applies, while 3.4.11 does not.

2. Find all open G-invariant subsets X of G0.

3. For N = 3 or N = 4, prove that there is an ideal which is not of the
form C∗r (GU), where U is an open G-invariant subset of G0.

Exercise 3.4.4. Let 0 < θ < 1 be irrational and let Z act on the circle, T,
by z · n = e2πinθz. That is, n rotates the circle by angle 2πnθ. Let G be the
associated transformation groupoid.

1. Describe a trace C∗r (G). How many others are there? (This last part
might be a little beyond your background.)

2. Describe all ideals in C∗r (G). (This might be a little beyond your back-
ground, too.)

3. Assume that 0 < θ < 1
2
. Define f : T→ [0, 1] by

f(e2πit) =


θ−1t 0 ≤ t ≤ θ,
θ−1(2θ − t) θ ≤ t ≤ 2θ,
0 2θ ≤ t < 1.

Verify that f is a continuous function and draw its graph. Define a in
Cc(G) by

a(e2πit, n) =


√
f(e2πit)(1− f(e2πit)) n = −1, θ ≤ t ≤ 2θ,

f(e2πit) n = 0,√
f(e2πit)(1− f(e2πit)) n = 1, 0 ≤ t ≤ θ,

0 otherwise.

Compute a∗, a2 and τ(a), for each trace τ from the first part.

3.5 AF-algebras

In this chapter, we will construct a particular class of examples of étale
groupoids and thoroughly describe their associated C∗-algebras. The class
of C∗-algebras which we produce are called AF-algebras, ’AF’ standing for
’approximately finite-dimensional’.

We need some combinatorial data to get started. The key notion is that
of a Bratteli diagram. It is an infinite graph, consisting of vertices and edges,
but these are organized into layers indexed by the natural numbers.
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V E1E0V 3E

t(e)

i(e)

e

2V1 2

Figure 3.1: A Bratteli diagram.

Definition 3.5.1. A Bratteli diagram, consists of a sequence of finite, pair-
wise disjoint, non-empty sets, {Vn}∞n=0, called the vertices, a sequence of
finite non-empty sets {En}∞n=1 called the edges and maps i : En → Vn−1 and
t : En → Vn, called the initial and terminal maps. We let V and E denote
the union of these sets and denote the diagram by (V,E). We will assume
that V0 has exactly one element, denoted v0, that i−1{v} is non-empty for
every v in V , and that t−1{v} is non-empty for every v 6= v0 in V . (That is,
the diagram has no sinks and no sources other than v0.)

We may draw the diagram as in Figure 3.1. We say a Bratteli diagram
(V,E) has full edge connections if for every n ≥ 1, v in Vn−1 and w in Vn,
there exists e in En with i(e) = v and t(e) = w.

For M < N , a path from VM to VN , p = (pM+1, pM+2, . . . , pN), is a
sequence of edges with pn in En, for M < n ≤ N and t(pn) = i(pn+1) for
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M < n < N . We define i(p) = i(pM+1) ∈ VM and t(p) = t(pN) ∈ VN for
such a path. We let EM,N denote the set of all such paths. If p is in EL,M
and q is in EM,N and t(p) = i(q), then p and q may be concatenated and we
denote the result by pq in EL,N .

Definition 3.5.2. An infinite path in the Bratteli diagram (V,E) is a se-
quence of edges (x1, x2, . . .) such that xn is in En and t(xn) = i(xn+1) for
n ≥ 1. We let XE denote the set of all infinite paths. If N ≥ 1 and p is in
E0,N , we let

C(p) = {x ∈ XE | (x1, x2, . . . , xN) = p}.

We define d on XE ×XE by

d(x, y) = inf{2−N | N ≥ 0, xn = yn, for all 0 < n ≤ N}.

Proposition 3.5.3. Let (V,E) be a Bratteli diagram and let N ≥ 1.

1. d is a metric on XE.

2. For x in XE, we have

B(x, 21−N) = C(x1, . . . , xN).

3. For p, q in E0,N , C(p) and C(q) are equal when p = q and are disjoint
otherwise.

4. For p in E0,N , C(p) is clopen. (That is, C(p) is both closed and open.)

5. The collection PN = {C(p) | p ∈ E0,N} is a partition of XE into
pairwise disjoint clopen sets.

6. For p in E0,N , we have

C(p) = ∪i(e)=t(p)C(pe).

7. Each element of PN+1 is contained in a single element of PN .

8. The collection ∪M≥1PM is a base for the topology of (XE, d).

9. The space XE is compact.
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We leave the proof as an exercise for the interested reader. Almost all of
this is quite easy, with the possible exception of the last part.

Having defined our space XE, we are now ready to provide an equivalence
relation on it. Of course, an equivalence relation is an example of a groupoid.
More than that, this will come equipped with a topology in which it is étale.

Definition 3.5.4. Let (V,E) be a Bratteli diagram.

1. For each N ≥ 1, v in VN and pair p, q in E0,N with t(p) = t(q) = v, we
define

γ(p, q) = {(x, y) ∈ XE ×XE | x ∈ C(p), y ∈ C(q), xn = yn, n > N}.

2. We let ΓE,v denote the collection of all such γ(p, q) with t(p) = t(q) = v.
We also let ΓE,N denote the union of these over all v in VN and, finally,
we let ΓE denote the union of these over all N ≥ 1. (Notice that
ΓE,v,ΓE,N and ΓE are all collections of subsets of XE ×XE.)

3. We define

RE,N = ∪ΓE,N

RE = ∪ΓE.

(Notice that RE,N and RE are subsets of XE ×XE.)

We regard XE×XE as a groupoid with the usual product and involution:
(x, y) · (x′, y′) is defined when y = x′ and the result is (x, y′) and (x, y)−1 =
(y, x). We note that r(x, y) = (x, x) and s(x, y) = (y, y).

We summarize the properties of these sets with the following result. All
parts follow easily from the definition and we omit the proof.

Lemma 3.5.5. Let (V,E) be a Bratteli diagram.

1. If p, q, p′, q′ are in E0,N with t(p) = t(q), t(p′) = t(q′), then γ(p, q) =
γ(p′, q′) if and only if (p, q) = (p′, q′) and they are disjoint otherwise.

2. If p, q are in E0,N with t(p) = t(q), then γ(p, q) ⊆ ∆XE if p = q and
γ(p, q) ∩∆XE = ∅ if p 6= q.

3. If p, q, p′, q′ are in E0,N with t(p) = t(q), t(p′) = t(q′), then γ(p, q) ·
γ(p′, q′) = γ(p, q′) if q = p′ and is empty otherwise. In the first case,
the product is a bijection
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4. If p, q are in E0,N with t(p) = t(q), then γ(p, q)−1 = γ(q, p).

5. If p, q are in E0,N with t(p) = t(q), then r(γ(p, q)) = γ(p, p) and r is
a bijection between these two sets in XE ×XE. Similarly, s(γ(p, q)) =
γ(q, q) and r is a bijection between these two sets in XE ×XE.

6. If p, q are in E0,N with t(p) = t(q), then for any M > N ,

γ(p, q) = ∪γ(pp′, qp′),

where the union is over all p′ in EN,M with i(p′) = t(p).

Again, we omit the proof since all parts are quite easy. The importance
though is summarized in the following result.

Theorem 3.5.6. Let (V,E) be a Bratteli diagram.

1. The set RE ⊆ XE×XE is an equivalence relation. In other words, with
the usual product from XE×XE, the set RE is a principal subgroupoid.

2. The collection of subsets ΓE forms a neighbourhood base for a topology
on RE in which it is an étale groupoid.

3. On each element of ΓE, the relative topology from the last part agrees
with the relative topology as a subset of XE ×XE.

4. Each element of ΓE is a compact, open RE-set.

Proof. It is clear that for any fixed N , the union of all sets γ(p, p), with p in
E0,N is exactly ∆XE and it follows that RE is reflexive. RE is symmetric by
part 4 of Lemma 3.5.5 and transitive from part 3 of Lemma 3.5.5. Thus, RE

is an equivalence relation.
The collection of sets ΓE,N is closed under intersections by part 1 of 3.5.5.

The same is true of ΓE using this fact and part 6 of 3.5.5. This immediately
implies that ΓE is a neighbourhood base for a topology.

The fact that the product and inverse are continuous in this topology
follows from parts 3 and 4 of Lemma 3.5.5. The facts that both r and s
are open and local homeomorphisms follows from part 5. Thus, with the
topology induced by ΓE, RE is an étale groupoid.

If we fix p, q in E0,N with t(p) = t(q), then the relative topology on γ(p, q),
from our base is generated by sets γ(p′, q′) with p′, q′ in E0,N ′ with N ′ > N ,
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(p′1, . . . , p
′
N) = p, (q′1, . . . , q

′
N) = q, and (p′N+1, . . . , p

′
N ′) = (q′N+1, . . . , q

′
N ′). It

is a simple matter to see that

γ(p′, q′) = γ(p, q) ∩ C(p′)× C(q′).

This implies that the relative topology on γ(p, q) induced by ΓE is the same
as the product topology.

We have already seen that γ(p, q) is an open RE-set. The fact it is com-
pact follows from the last statement and the fact that C(p) and C(q) are
both closed and hence compact in XE.

Definition 3.5.7. The étale groupoid RE arising from a Bratteli diagram
(V,E) as above is called an AF-groupoid.

We now move on to investigate the associated groupoid C∗-algebras.

Definition 3.5.8. For each pair p, q in E0,N with t(p) = t(q), we define
e(p, q) to be the characteristic function of γ(p, q), which lies in Cc(RE).

Lemma 3.5.9. 1. If p, q are in E0,N with t(p) = t(q), then e(p, q)∗ =
e(q, p).

2. If p, q, p′, q′ are in E0,N with t(p) = t(q) 6= t(p′) = t(q′), then e(p, q)e(p′, q′) =
0.

3. If p, q, p′, q′ are in E0,N with t(p) = t(q) = t(p′) = t(q′), then e(p, q)e(p′, q′) =
e(p, q′) if q = p′ and is zero if q 6= p′.

4. If p, q are in E0,N with t(p) = t(q), then

e(p, q) =
∑

i(e)=t(p)

e(pe, qe).

Proof. The first part is a general fact that for a compact open G-set U ,
χ∗U = χU−1 combined with part 4 of 3.5.5.

Now consider the case t(p) = t(q), t(p′) = t(q′) and q 6= p′. We compute

(e(p, q)e(p′, q′)) (x, y) =
∑

(x,z)∈RE

e(p, q)(x, z)e(p′, q′)(z, y).

To obtain something other than zero, we would need to find a z with
(z1, . . . , zN) = q and (z1, . . . , zN) = p′. As q 6= p′ there are no such z. This
proves part 2 and the second statement of part 3.
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For the other statement of part 3, we use the same formula above. For a
fixed x, y, to obtain something other than zero, we must find
z = (p′1, . . . , p

′
N , xN+1, xN+2, . . .) for the first term to be non-zero and

z = (q1, . . . , qN , yN+1, yN+2, . . .). This requires xn = yn for all n > N and
in this case, there is a unique such z and the value of e(p, q)e(p′, q′)(x, y) is
one. This means that e(p, q)e(p′, q′) is the characteristic function of γ(p, q′)
as claimed.

The last part follows from the last part of 3.5.5.

Theorem 3.5.10. Let (V,E) be a Bratteli diagram.

1. For a fixed vertex v in VN ,

Av = span{e(p, q) | p, q ∈ E0,N , t(p) = t(q) = v}

is a C∗-subalgebra of C∗(RE) and is isomorphic to Mn(v)(C), where

n(v) = #{p ∈ E0,N | t(p) = v},

the number of paths from v0 to v.

2. For a fixed positive integer N ,

AN = span{e(p, q) | p, q ∈ E0,N , t(p) = t(q)}

is a unital C∗-subalgebra of C∗(RE) and equals ⊕v∈VNAv.

3. For a fixed positive integer N , AN is a unital C∗-subalgebra of AN+1.

4. ∪N≥1AN is a dense unital ∗-subalgebra of C∗(RE).

5. The full and reduced groupoid C∗-algebras of RE are the same.

Proof. The first statement follows from parts 1 and 3 of Lemma 3.5.9 and
exercise 1.7.1. If v, w are distinct vertices in VN , then Av · Aw = 0 follows
from part 2 of Lemma 3.5.9 and the second part follows at once.

It is easy to see that, for any N ,
∑

p∈E0,N
e(p, p) = χ∆XE

= ∆(1) is the

unit for Cc(RE). The fact that AN is a subalgebra of AN+1 follows from part
4 of Lemma 3.5.9.

The proof of part 4 is as follows. First, we have a neighbourhood base for
RE consisting of compact open sets which is also closed under intersections.
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It follows that every continuous function of compact support of RE can be
uniformly approximated by a linear combination of such functions. The
linear span of these functions is exactly ∪N≥1AN . This implies that these
two subsets will have the same completion in the C∗-algebra norm.

As each ∗-subalgebra AN in Cc(RE) is finite dimensional, it has a unique
norm in which it is a C∗-algebra. Thus the norm on Cc(RE) in which its
completion is a C∗-algebra is unique on the dense set ∪NAN and hence is
unique. It follows that ‖ · ‖ and ‖ · ‖r agree and C∗(RE) = C∗r (RE).

Exercise 3.5.1. Let (V,E) be a Bratteli diagram. Let (xk, yk), k ≥ 1 and
(x, y) be in RE. (That is, each xk and yk is an infinite sequence in XE.)
Prove that the sequence (xk, yk), k ≥ 1 converges to (x, y) in R if and only
it converges in X × X and there exists N ≥ 1 such that RE,N contains the
sequence and its limit point.

Exercise 3.5.2. Consider the Bratteli diagram (V,E) with

1. Vn = {vn, wn}, n ≥ 1,

2. there is one edge from v0 to v1 and one edge from v0 to w1,

3. for n ≥ 1, there is one edge from vn to vn+1, one edge from vn to wn+1,
and one edge from wn to wn+1.

Give a simple concrete description of X (as a familiar space) and R. Also,
find a set that is open in R and not open in the relative topology on R from
X ×X.

Exercise 3.5.3. Suppose that (V,E) has full edge connections. Prove that
every equivalence class in R is dense in X. Describe all ideals in C∗(RE).

Exercise 3.5.4. Find a necessary and sufficient condition on a Bratteli di-
agram (V,E) such that C∗(RE) is commutative.

Exercise 3.5.5. Let (V,E) be a Bratteli diagram. Use the following two
facts: any finitely additive, probability measure on the clopen subsets of a
totally disconnected compact space will extend to a probability measure, and
that a probability measure on such a space is uniquely determined by its re-
striction to the clopen sets.

Find a bijection between the set of RE-invariant probability measures on
XE and the set of all functions ν : V → [0, 1] such that
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1. ν(v0) = 1,

2.
ν(v) =

∑
e∈En+1,i(e)=v

ν(t(e)),

for every n ≥ 0, v in Vn.

Exercise 3.5.6. Consider the following three Bratteli diagrams.

1. The diagram described in Exercise 3.5.2.

2. The diagram with exactly one vertex and exactly two edges at each level.

3. With the same vertex set as Exercise 3.5.2, have one edge from vn to
vn+1, one from vn to wn+1 and one from wn to vn+1.

In each case, find all traces on the C∗-algebras of the Bratteli diagrams.


