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Applications of Negative Dimensional Tensors

ROGER PENROSE
. Birkbeck College, University of London, England

1 wish to describe a theory of “abstract tensor systems” (abbreviated ATS)
and indicate some applications. Unfortunately I shall only be able to give a
very brief outline of the general theory here.f :

I take as my model, the conventional tensor index notation with Einstein’s
sumination convention, which has become so familiar in physics and'in what
is now referred to as “old fashioned™ differential geometry. The elements of an
ATS may be denoted by kernel symbols with indices in a way formally.
identical with the tensor index notation, but now the meanings of the indices

" are to be quite different. This will enable more general types of object than

ordinary tensors to be considered. Some of these (for example, “negative
dimensional’” tensors} will not be representable in terms of components in
the ordinary way. '

Each index is to be simply a /abel and does not stand for, say, 1, 2, ..., &

- Thus an element & (a “vector™) of an ATS is not a set of components, but a

single element of a vector space (or modulé) 9 over a field (or ring) 7. Since

I wish to mirror the ordinary index notation and allow expressions such as

E4E% or £ ¥ — #° &P, for example, I shall also need an element £ distinct from
&% and so on. Thus we need another vector space (or module) F° which will
be canonically isomorphic with &7 etc. etc. Let me défine the labelling set & :

3’ = (a, b, &y s Z, Ay, bo, wees gy ....),
supposed infinite. The elements of % are to be the allowed “abstract indices”.
We shall then have an infinite class of canonically isomorphic modules
T =Tt = _
where corresponding elements are denoted by :f“,f", voen - Thus AE% + up® = ¢°
A& + wp? = (%, etc. where A, ue T ;&% 0%, L e T2, 8% b, Lt e T2, etc. But

T A more extended account is to be found in [4]. However, the theory is there made unneces-
sarily complicated, because of an inconvenient (but apparently natural) choice having been
made in connection with the notation. The point is dvoided here by the use of infinitely many
canonically isomorphic copies of each vector space or niodule. See [5] in connection with the
approach used here. Also, compare [3] as regards diagrammatic notation.
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in addltzon we shall need to mirror the other tensor operations (e.g. outer
product, contractlon) and thus to consider many-indexed quantities which

look (a, b, ..., d, f, ..., ) being all distinct) like

b‘.,d
X5

Such quantities will be elements of sets 5791, each of these sets again being

. amodule over 7. (The ordering of g, b, ... dand of f, ..., & is of significance

for each y%¥:f but not for the sers .9"“ 4. That is: .5”““*’ = g0, for
example, butgenerally P #E A

The entire tensor system {9"} will have, as elements, the members of the
sets

(T T T T T o T ey T, T,
‘There are four basic operations on {7}. These are

addition: ' y:;;?i- FEtos FE

TN

pPor [ 2SN

(outer) multiplication; 44 x 5";‘; o Fradx.
contraction, e.g. §%:  FLIEs FIE

Gl W

index substitution: Trts Ff-h

In the first three of these operations, the differently denoted index letters

appearing are all assumed to be different elements of . In the final operation
of mdex substitution, x,...,z,u,...,w of % are all distinct and so are
Fion ..y . Otherwise they are unrestricted except that x, ...,z and
5 k are equal in number and thatw,...., wand k, ..., m are equal in number.
The axioms are: First that addition deﬁnes an Abehan group structure for
each 7. Second, multiplication is distributive over addition and com-
mutative. T (Non-commutative systems can also be considered, but I shail not
concern myself with them here.) Third, contraction is distributipe over ad-

dition and it appropriately commutes with multiplication and with other
contractions, ¢.g.

(x";,"'+¢ ,,)— ...... @ (60,
Qe (x,, ).;, ----
A ,,))%(@a(“ o)

_ 'r This is not rea]ly inconsistent w1th the usual algebraic definition of tensor preduet, which

is formally non- commutauve Here, the !abe!s cope with the ordering in a tensor product.
Thus, whereas &° 4* = 5* £%, we have Eo b 3 o &0 :
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" Fourth, an index substitution is eﬁ‘ected by any permutation of .,9." and leaves

the validity of any formula vnaltered, e. g if

X = gan® + €L,
then :

ﬁ=@w+ﬁwwm

etc. The “dummy mdex notauon wrll be used for contraction. Thus we can
write the above

= gin 4 0L,

for example, so that rcpeated indices (one upper and one lower) do not contri-
bute to the total “label” {} of the tensor. These 0peratlons and axioms define
an abstract tensor system or ATS,

Tet me remark, in passing, one way of generating new tensor systems from

old. This is by means of the device of “clumping indices together”. Thus, if .

we consider a new labelling systcm.g’ =(,%,86, ..., .99’0, ..... )} where, say,

=(@.5),¢ =(c,d),& = (e,), ..., #5 = (ao, b}, ..., then we can con-

struct a new ATS 2 } whose elements belong to a subset of {7} namely

T =g, T~ % .... More generally, we can also clump together upper

and Iower indices asa smg]c compound index. (For example 7 7 =

ATS’s with indices of differing types (e.g. ¥ 24%) where contractions and

index substitutions are not permitted between indices of different types. If we
- consider different kinds of clumping operations applied simultaneously to an

ATS, then each different kind of clumping plays the role of a different type of
index in the resulting new ATS.

If desired, we may requlre of an ATS that it possesses “umt elements™.
For example, an element 1e Z such that

L=

) for ajl x::eJ 7 and an element SjeF§  such that

bci'
T? =g _,, j = "", ..... Here, each script letter stands for three.
elements of & two of which are in reverse position.) The axioms for the new -
-ATS are satisfied in consequence for those for the old. We can also consider
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(Thus 3 has the formal properties of a Kronecker delta.) These elements
must necessarily be unique. The systems {#} and {.#} generatéd by & and 1,
and by &% and the elements of 7, respectively, have a special interest. (These
~ mirror those tensors in an “ordinary” system whose components are ab-
solutely invariant under the full linear group of coordinate transformations,

these components being integers in the case of {2).) We define the “dimen-

sion” of 7 to be the scalar

;=
In “reasonable” systems, v is a non-negative integer. We shall also consider
“unreasonable” systems in which v is a negative integer. '

A motivation for the above notation-is that even in the case of otdinary
finite dimensional systems we can retain the full flexibility and simplicity of
the tensor index notation while eliminatin g the undesirable basis dependence

. of the usual notation. However the above is still subject to the other criticism
which is sometimes levelled at such index notations, namely the fact that with

many indices, expressions may become cumbersome and all-important index

connections are easily mistead. I shall therefore introduce a diagrammatic
notation for tensors which in most instances allows: connections between
indices to be discerned at a glance.

Let a, b, ... labei points in a plane. We denote an object Ya. f by & symbol
with an “arm” corresponding to each of 4, ..., ¢ and'a “leg” corresponding
toeach of 4, ..., /. For example, if 62 & %, y2 ;€ F¢,, we could write

a) .- 16 : a
i
— f)ab —_
“_9_0' = Abecd -
c - b ¢od

Normally, the label symbols g, b, ¢, ... would be omitted in a diagram. In
fact, we may regard the labels simply as points of the plane on which the
figure is depicted. Quter products are drawn simiply as a juxtaposition of the
-individual symbols:

— [)ab d : abd
“9? Xefgeg-ccfy
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or

for example. We do not require products to be ordered horizontally, (We
should not have had this freedom if we had been concerned with non-
commutative ATS’s.) To depict a contraction, we simply join the correspond-
ingarm and leg: ‘ ' _

b .
= 321‘ Xrie €T :5.:

or

= egc Xﬂac €7 ,. =

a

For clarity it will be usual to draw all the free arms (non-dummy upper
indices) as emerging at the top of the picture and free legs (non-dummy lower

-indices) emerging at the bottom. In any case each arm should emerge as finally

directed upwards and each leg as finally directed downwards. {As far .as
possible we try to keep the lines proceeding essentially vertically.) This will
cease to apply when we consider Cartesian systems shortly, however.
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Normally, to add two expgessiohs it will be convenient simply to draw the
diagram for each term and puta *“+” sign between them, e.g.

il
>

5 )
. Afde ggf + .X:fe Bﬁf

~ We may omit the labels and draw this”

which are corresponding to which in the different terms. Occasionally it is
. convenient to employ a notation ’

il

when sums in parenthesis are involved.
The notation for the unit 8§ is simply a “disembodied” line:

a

making sure that it is clear, from the arrangements of free arms and legs, -
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since then the rules

remain notationally consistent when the labels are omitted from the diagrams,
The “dimension” vis depicted simply as a closed loop:

=6:=v'
a -

‘The utility of the diagrammatic notation is much enhanced when a special
notation is employed for certain important elements'of {2}, Write

Bl B

R R 00,3 [ L

The general pattern should be cléar. For each integer p we define two elemerits

_of {&}. These have p arms and p legs and are sums (or differences) of p!

terms, one corresponding to each permutation of the legs (or, equivalently of

the arms). Bach term is an outer product of p “Kronecker deltas”. The o

negative signs occur, in-the second case, whenever the permutation is odd.
(These are really Aitken’s diagrams [1]. The permutation is odd if the number
of intersection points between the lines is odd, counted correctly if multiple
intersections are present.) In the case of ordinary tensors, the object

g b f 6: I ()': 5{ .
H—‘I‘ S K -,
2 P e

will be recognized as the “generalized Kronecker delta”,

: a o q - .- )
= ﬁ = K = X =B
‘_ d Blel 1o b_ec dl’ Co ’
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If the ring 7. of scalars contains {a subring isomorphic to) the rationals,

then we can form the symmetrizers

] y H‘ IM I HIH
.’ _2" ik 5 ,...,p—!- T . .

and skew-symmetrjzers -

o ! .J_—'

' which have the i'démpétence:_ :

(As an alternafive no'tation, we could absorb the 1/p! factors into the defini-

tions of the diagrams. On the whole I prefer not to. This is partly because one

would like to be able to handle the case when o has finite characteristic. But,
in addition, it turns out that the factors 1 [p! are rather a nuisance when

. . expansions of complicated diagrams are carried out.) We can form symmetric

and skew parts of tensors as follows:

symmetric part of

- ol
P
skew part of - ' 1
= — f[=-=
I=== et I P
—
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We can also build up Young tableau 0perators (cf [?]) from thcse For
example, the expression .

1
12

is an irreducible Young idempotent;

correﬁpondin_g to the partition (22). When applied to a four-legged object:

(%1 : . ’ ) I ]
[EER =

This partlcular operator produces an object with the symmetries of a
Riemann—Christoffel tensor. '

An ATS will be called weakly regu!ar 1ﬁ' for all x¥¢ {77}, there exists
Bde.‘}"  such that

(= 0) ¢ = Jcg

An ATS is regular ift for all y*" & .‘3’*" - (with every different possible clumpmg
of its mchces into two groups) there exists Or ¢ such that

Lo O 368 = A,

(This terminology is suggested by the concept of a regular ring [8].) If we
assume that the scalars J constitute a field, then clearly {7} is weakly

‘regular iff for every non-zero y¥ € {F'}, there exists 8 , €  , such that

¥ 8, #0.
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Furthermore, 1t can be shown [43 that if there isdeg? sansfymg some
identical re]auon

s Xl e >gu>z>< ]

which is non-trivial (i.e. w1th some non- vamshmg coeﬂic:ent) and if {f }is
- weakly reguiar, with 7~ a field, then {7} is regular. In fact, for any ATS
whose elements are representable in the ordinary way in terms of (finite) sets
of components and which contains 8%, there will be an identical relation of this
kind. For, the dimension v = 4} must now-be a positive integer, and we have

v+l

as a well-known simple property of the generahzed Kronecker delta.
Simply for comparison with the weak regularity condition above, let us

consider another (stronger), condition on an ATS (for which 7 is a field).

We call an ATS complete if: for every non-zero x*F € {7} (with each possible
clumping into two clumps), there exists 8, €  ,-such that -

Every such comp!ere ATS will be 1somorph1c to the system of aH n-dimen-
sional (*ordinary”) tensors over the field 7.

The possible {#}-systems can be classified completely—J = # being, for
simplicity, a field without characteristic. The result (cf. [4]) is that either {£}
is free (i.e. no identical relations of the type considered), or the identical

type
g
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corresponding to a recra:}gufar partition (p%). We then have v =g — p. Call

such a & of type [¢ — 1, p — 13(p and ¢ must be positive integers). The A

which generate reguiar {#} systems are then just those of type [n, 0] or [0, 1.
A 8° of general type [, n] is constructible as a “direct sum’’ of one of type
[m, 0] and one of type [0, n]. The “direct product” of & of type [m, n] with
88 of type [p,¢] is 67 of type [mp + ng, mg + np] (4 = (@, ®), B = (b, B))-
A Cartesian ATS is one containing a special element g€ T . which is

Gop = :gba

and invertible in the sense that there exists another element glteg™ with

Job gbc "_"‘5: .

- (Since g9 g% = g%, it follows that g is also symmetric: g% = g".) The:
© elements g, g% can be used, in the usual way, to translate an upper index

into a lower one, ot a lower index into an upper one:
— b ’ be _ . db
Xadc = La cgb@la Xo C - p{ndcg .

Tt now ceases to be important to maintain a distinction between upper and
lower indices. For, writing ’

a_b

‘which is consistent with

I

we can turn arms into legs and vice-versa, Since it now makes no difference

whether an arm points up or down, we may as well also allow arms to point
right or left or, indeed, in any direction in the plane. This will give our dia-
grams an additional flexibility. (In fact we can attain this flexibility also in the
case of a non-Cartesian system if we aftow our index lines to be directed—as,
may be indicated, say, by an arrow on the line, rather than simply by the

vertical ordering.) - :
: _ . |
The complete description of Cartesian {#}-systems (i.e. systems generated

by g, ¢ and scalars) is a little more complicated than that of the non--

<
Cartesian {£}-systems. Assume J is a field without characteristic, as before.

SEee T T
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. c
. Then there is a unique regular {#}-system for each integral value of y. When
v=2,3,4, .. (or in the trivial cases v = 0, 1) we have simply a system
isomorphic with the “ordinary” Cartesian system of (numerically) invariant
tensors over-a v-dimensional vector space, with component representation in
- the normal way. We have the basic identical relations: '

with 82 of tsrpc [v,0]. Whenv = -2, -4, —6, . We have 5,’; of type [0, —v)]

with -

] —

" as an identical relation. However, this can be contracted down to give a re-
~ lation of Iower valence: ‘ :

.-'-I-‘.'_

The most interesting system of all is, perhaps, the regular Cartesian system

with v = —2. The elements of this system I call binors. The above basic

identical relation can be written out as

X ) (-

We readily see that every coutracti_oh of this expression is identically zero

if v = ~ 2. This expression must indeed vanish for a (weakly) regular
{F}-system with v =2 '
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When v = —1, =3, =35, ..., the systems are somewhat more complicated.
The type is now [1, 1 — v} mstead of {0, —v]. Let us iltustrate this with the
casev= —=1. We have the identical relation

=0

but this contracts down to give (equivalent) relations of smaller valence, e.g.

Morc symmetrical forms, edch of whlch is equivalent to either of the above
two relatlons are : :

e

This second expressmn, partly expanded out, is:

R DK

We readily verify that every contraction of this vanishes if v = — l ‘The cases

v= -3, ~5, .. are essentially similar.

So much for general theory. Now let us.examine some apphcatlons t First
consider a simple (regular) Cartesian system generated by the complex num-
bets as scalars and an ordinary three-dimensional Cartesian Kronecker delta
8 (= gu) and the skew-symmetrical (Levi-Civita) e,,.. We can represent 8,
and e, in the normal way in terms of components, with

511 = 522 = 533 =1,
S123 = E312 = 8331 = 1,

3132 = 6331 = 8213 = —1,

1 The main application described here was, for thc most part, obtained during the penod
1953 55 but has not been published hitherto.
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tl"{e re}'_nainin'g components being. zero. Contraction is fepresented by the
Emsﬁem summation convention in the usual way. Depict: :

o _ ' ' a ¢
e \‘(/q

where the factor i (= / ~1)is included for si'mplicity in thé 8i gns 6f redu?tion
form_ula:_a._We have, as well-known formulae of tensor calculus, or by repeated
_ applications, thereof: | ' . ‘

ete.f

_ certai'n-c‘ontracted product of e, 's, where oné ic,,, is drawn at each vertex, a
contraction occurring for each edge of the graph. The résult is just some com-
plex number (actuaily an integer). For example: -

The number X .is, in fact, precisely the number of ﬁ'ays of colouring the edges
_of the graph with three colours so that three distinct colours occur at each -

t Lam grateful to T. G, Murphy for pointing the last of these formulae out ib me.

1

Now consider a planar graph of degree three. We can associate with it a
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vertex. This, by a well-known result {27, is just oné-guarter of the number of

. ways of colouring the faces of the graph with four colours so that no two’

similarly coloured faces have an edge in common.
To see the connection between K and the edge-colounng number, we think
of the representation in terms of components The tensor expression is then

simply a sum of terms, each of which arises when one of the numbers 1, 2, 3

is assigned to each edge (corresponding to a summed index). We get a factor i
for each vertex where the numbers 1, 2, 3 appear cyclicly, and —§if 1, 2, 3

. appear anti-cyclicly. The term is zero if a repetition of 1, 2, 3 appears at some

vertex. Thus each non-zero term arises from an allowable colouring of the

- edges with three colours. Finally we have to check that each non-zero term

contributes precisely the value +1. It is at this point that the planarity of the
graph enters. There are various ways of seeing that the sign comes out
correctly here, but I have not been able to think of an argument which can be

. presented in 2 nutshell, so 1 shall just omit it here, It is, however, worthwhile
* totilustrate the necessity of the planarity condition by an example. We have

even though the graph’s.edges can be coloured with three colours (in twelve

ways). The vanishing of the tensor expression follows from the skew-

symmnetry of g, For, a pair of vertices can be interchanged while leaving the -
configuration invariant, but with three signs changed in the process. Of course.

any non-planar graph of degree three whose edges are nof colourable with

three colours must have a Vanlshmg tensor expression, e.g. the Petersen graph
" gives:

(the vanishing is also a consequence of skew-symmetry again in this case).
There is an alternative’ way of establishing the equality of the tensor

expression K and the number of colourings in the case of a planar graph. This -
iz simply to observe that the last four of our reduction formulae for. &, -
.. expressions can be used to eliminate the faces one by one. We merely have to

verify that these four reduction formulae are equally valid if they refer to
numbers of colourings or to ¢,,, expressions. Then we finally end up with a

i T R A T e n
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single closed loop. This “edge” can be coloured in three ways and the value-
is 3, thus conpleting the induction, ’
‘Now let us try something further. We-can replace each vertex by a litile
triangle, without changing the value (because of one of our reduction
formulae). Thus : g ' ‘

The two new vertices at the ends of each original edge can noyw be slid together -
and another of our reduction formulae employed to give:

- We can reinterpret this combinatorially, Expandin g out each of the “skew-
. symmetrizers” we get a sum of 2% terms, where E is the number of edges in the

graph. We can describe each term as follows. Select a subset of edges of the -

graph and call these the crossed edges. Then the term is positive or negative

according as the number of crossed edges is even or odd, We build up a. .

number of closed loops by following along just inside the boundary of each

face and the:
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face and then crossing over to the other side of the edge at its mid-point
whenever the edge is a crossed edge. Let the total number of closed [oops thus

formed be C. Then the absolute value of the term is 3¢, (since a closed loop -

takes the value v = 3). For example, in the graph just considered, a typical
term is given by an assignment of crossed edges as follows:

since there are five closed loops, the minus sign occurring because there are

15 crossed edges. Thus we have - - -
| K=Y (-1)¥3°

where X is the number of crossed edges and C the resulting number of closed

~loops. ' .

A simple worked example is the following:

N-H-00000-@90D

=3 -3 -3 -3 43 43 43 =3 =6

This is obviously the correct answer, but it also illustrates the fact that we

must expect a considerable amount of cancellation in the sum. The formula is

- clearly net very practical for explicit calculation, but also it is unlikely to be of

——rae L
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great direct theoretical use in attcmpts to establish K'> 0, owing to this
cancellation.

At 'this point we turn our attention to a “negative d1mens:onal” ATS. Itisa
remarkable fact that the above formula for K has a curious analog in which
Jis replacecl by —2: : -

K= (=" T (-D¥ (-2

where V = %E is the number of vertices of the graph. Note that the_\ialuc; of
the summation must now be much larger, éven though the individual terms
have smaller absolute value than before. Thus the amount of canceliation has

been considerably reduced. The above worked example gives:

K= -4{(- 2)3—( 2= (~ 2)‘—( 2)?
+ (=D +(-D+(-)-(- 2)}
=3B +4+4+44+2+242-2)=6

The basis of the above formula stems from consideration of the system of

binors (i.e. the regular system {f} with v = —2). We consider a

correspondence
. . ’ !‘ . .
> — .
. 4./ :

where the arms on the left-hand figure are ordinary Cartesian 3-tensor lines
(as before, i.e. v = 3), but where the arms on the rlght-hand figure are binor
lines (v = —2). The point about this corresponderice is that the algebraic
properties of the ie,,, object on the left and of the binor object on the right—

. indjces suitably clumped in pairs as indicated—are formally identical. In
_ other words, the correspondence establishes an - embedding of the

(Daps Eapes ¥ = 3) system, considered earlier, in the binor system (845 v = — 2)
for which’ indices are clumiped in pairs (e.g. a = (2, %), b = (8, o), ...).

-I shall not go into the matter in full detail here. Essentially, what has to be

verified is that the relations
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~are also satisfied by the proposé‘d binor object. That s,

" where

SHHHE = LKL -1 30+

The verification of these re!ati'onsl requires the properties
| Q -7 2’

which -characterize the binor system. It is easiest not to carry out the full
verification of the middle relation directly, but to use some general results.
These wili not be entered into here, The thlrd relation is really just the example
considered earlier, ‘

By using binors, we can also establ:sh some other formulae for K. Set

Then we have the bmor relation

Y+ XX =

"'This may be verified directly using the basic binor identical relation. This

leads to yet another formula for X:
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If we assign an orientation “counter-clockwise” to each face, we may describe
this formula in terms of directed circuits (i.e. this falls within the framework
of the non-Cartesian system {#} with v = —2). (We could not do this
previously because the orientations would not have been consistent with
crossed edges.) Then our formula can be described as follows:

K=(-P"L(=D" (-2

where there are 2" terms in the sum, one term corresponding to each assign-
ment of a “+” or-of a “—" to every vertex. Here Y is the number of * -

-vertices; C” is the number of directed circuits required, where we cover every

edge of the graph exactly twice and where we turn to the lef? at every -+
vertex and to the right at every “ — vertex, as we follow the circuits. In fact,
it can be seen fairly easily that the number of circuits has the same parity in
each term, Hence ' : '

K= ¥y (-1
(So apart from an overall sign (—1)**, we may interpret our last diagram for
K as applying within the system {#} or {#} with v = 2.) Our example now
gives: .

Q —K=3{8-2-2+48 =6 -

Let us consider one final expression for K. We observe that our binor vertex
possesses the skew-symmetry ’ g

I
[

(since we saw that it was eciu,al to an expression in which this skew-symmetry

was manifest), Thus, at most the overall sign is altered if we replace our last

diagram for K by one in which all edges become crossed edges. If we depict

APP

the diagram in the

' then an alternativ.

Here, as before, :

. assignment of a°
vertices. Now, C'

alternately black.
‘once with a black
vertex we tarn -
vice-versa at each
There is anoth
. here. This is to th,
“not go into mucl
where [6].
Consider an ui,

- free ends. Each e.

‘negative integer.
even and that no-
such a graph.a sp




1y describe

ot do this

lCh i].‘_ :"ln'
cr of ="
'OVEL eVery
wvery 4>
.18, In fact,
& parity in

iagram for

unple now

ot vertex

»ymmetry
e our last
we depict

ramework -

istent with .

L

'APi’LICATIdNS OF NEGATIVE DIMENSIONAL TENSORS

the diagram in the E‘ollewing way,

then an alternative formula for K presents itself: S
= WYL= (-2

Here, as before, there are 2" terms in the sum; each term corresponds to an

. assignment of a “+” or a “—" to every vertex; Y is the number of “—"
vertices. Now, C" is the number of {undirected) closed circuits, consisting of

alternately black and white line segments, which just cover every edge twice,
once with a black segment and once with a white segment, where at each “+>

- Yertex we turn right from white to black and left from black to white and . -

vice-persa at each ** — " vertex.

There is-another application of banl‘ algebra which is worth ment:omng .

here. This is to the theory of quantum mechanical angular momentum. I shall
not go into much detail here. A more extended account has been given €lse-

~ where [e]. _
© Consider an undirected graph of degree 3, but which may possess also some

free ends. Each edge of the graph (including each free end} is assigned a non-
negative integer. T suppose that the sum of the three integers at each vertex is
even and that no integer at a vertex exceeds the sum of the other two: I call

. such a graph a spin-network. An example of a spin-network is the following:

e n n maim A e b d—rmbn —im wopm. e ot -l b i <1
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Each spin-network will have a physical interpretation—or, rather, a number.

of different physical tnterpretations, depending on a choice of “time-ordering”
for the graph. Let us think of the network as a kind of space-time diagram of

a portion of the universe, For the spin-network depicted above, we shall think -

of time'as progressing from the bottom of the diagram to the top. Each line

segment is to be pictured as describin g a part of the universe—called a unit—-
~which is-effectively stationary and isolated from the remainder of the universe

{e.g. a “free particle”), I suppose that a unit also has a well-defined total

angular momentum. According to quantum mechanics, the value of this total.
angular momentum must be a {non-negative) inregral multiple of 14. If the -

integer depicted on the line segment is », then the total angular momentum of
the unit is to be 3u# and the unit is called an H-Unit. -
We may interpret the above diagram as follows: A 2-unit splits into two

2-units one of which combines with a 4-unit to make another 2-unit; the other

2-unit splits into a O-unit and yet another Z-unit, which subsequently splits

into a l-unit and a 3-unit, the I-unit combining with the 0-unit to make.

another 1-unit; ..... . We are interested -in the following type of question.
Suppose we are given a spin-network in which an g-unit and a b-unit emerge,

- Suppose that the a-unit and the b-unit combine to form a e-unit:

We ask: what is the probability value for each possible value of the integer ¢,
if the remainder of the spin-network is all that we are given ? Now, quantum
mechanics gives a well-defined answer to this question (assuming the effect of
relative motion between the different units may be neglected). There is a
standard procedure for obtaining this probability, but calculations tend to get
very involved. ) ) : ’ -
An alternative (but equivalent) procedure is to use binors. With each spin-
network we associate a binor, where an z-unit is represented by # lines with a
“skew-symmetrizer” across. The lines are then joined up at each vertex in an
essentially unique way. For example, the above spin-network is represented as
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Define a norm ||x||, for a spin-network -x, to be the modulus of the scalar

obtained by joining together two identical copies of the binor for &, connect-
ing coniracting over corresponding free arms. Then, my assertion is that when
a-unit and the b-unit combine in the above process, the probability that the
resulting unit is a c-unit is: : :

181 (¢ + D(al)*(a1)?
«l 5 f - -
probabifity of ¢ el bl

where

It may be finally remarked that although the direct caiculation of _spin-

network norms; by the above prescription, can be very impractical, there are

various shorteuts possible. One such methodf involves counting the total

- number of ways of colouring a certain series of graphs, associated with the

spin-network, with n-colours and then putting # = —2 in the resulting
polymomial. In this way it is possible to obtain some standard angular
momentum formulae (e.g. Racah’s-expression for the 6 - j symbol) very
rapidly. All this will be described fully elsewhere.

1 When applied to the particular case of a planar graph (no free gnds.and ali spin values
having » = 2); this method yields yet anosher expression for X, Consider each different way

- of covering the edges of the graph with a number of circoits, where each edge is covered
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exactly twice and where no individual circuit covers any edge more than once. For each such
covering, colour the circuits with v colours so that no two similarly coloured circuits cover a

- common edge. Count the number of distinct colourings for each such covering and sum over

all possible such coverings. The result will be a polynomial jn v, Substituting the value
v = — 2 into this polynomial we get (— 4)¥+K. (If we substitute v = 3 into the polynomial,
the result is in fact also just X, but this is less subtle, being quite easy to see directly.)

The above polynomial in v can also be obtained in another way, We assigi a string of v
symbols, consisting solely of “zeros” and “ones™, to every fuce of the graph {counting the
external *‘sea” as a face). The strings of symbols assigned to two adjacent faces are to differ
in exactly rwo places. The number of ways of making such an assignment is then just 2v
times the required polynomial. .
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- [E] = {xel

We write & = {I

Proposition 1. T}

~ a complete lattice
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is a supremum |

" in the usual way



