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Origins of functorial field theory

m 1948 (Feynman): path integral formulation of quantum
mechanics

m 1949 (Feynman—Kac): the Feynman-Kac formula
m Later: path integral used in QFT, no longer rigorous

m 1980s (Witten): properties of path integrals for (conformal)
field theory

m 1980s (Segal): mathematical formulation of conformal field
theory
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Further developments

m late 1980s (Atiyah, Kontsevich, ...): topological theories:
easier to construct and study, but less relevant for physics

m 1992 (Freed, Lawrence): extended field theories (correspond
to locality in physics)

m 1995 (Baez-Dolan): the topological cobordism and tangle
hypotheses

m 2002 (Stolz—Teichner): modern formulation of nontopological
field theories (including supersymmetry); the Stolz—Teichner
program on 2|1-EFTs and TMF

m 2004 (Costello): the (o0, 2)-category of topological
2-dimensional bordisms

m 2006 (Hopkins—Lurie); 2015 (Calaque—Scheimbauer): the
(00, d)-category of topological bordisms
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Previous results on the topological cobordism hypothesis

m 2008 (Lurie): outline of a proof of the topological cobordism
hypothesis

m 2017 (Ayala-Francis): a different approach, conditional on a
conjecture

m 2004 (Costello), 2009 (Schommer-Pries):
the 2-dimensional topological cobordism hypothesis

m 2006 (Galatius-Madsen—Tillmann-Weiss);
2011 (Bokstedt—-Madsen); 2017 (Schommer-Pries):
the invertible case
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Low-dimensional nontopological field theories

Examples of 2-dimensional nonextended nontopological field
theories:

m 2007 (Pickrell): Riemannian 2-dimensional field theory

m 2018 (Runkel-Szegedy): volume-dependent 2-dimensional
field theory

Classifications of holonomy maps, transport functors, and
1-dimensional nontopological field theories:

m 1990 (Barrett), 1994 (Caetano—Picken),
2007 (Schreiber-Waldorf): parallel transport for bundles

m 2000 (Mackaay—Picken), 2004 (Picken),
2008 (Schreiber-Waldorf): parallel transport for gerbes

m 2015 (Berwick-Evans—P.), 2020 (Ludewig—Stoffel):
1-dimensional field theories
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Features of the geometric bordism category

m Locality: k-bordisms with corners of all codimensions (up to
d) with compositions in d directions
= symmetric monoidal d-category of bordisms

m Isotopy: chain complexes to encode BV-BRST
= must encode (higher) diffeomorphisms between bordisms
= symmetric monoidal (oo, d)-categories

m Geometric (nontopological) structures on bordisms:
Riemannian/Lorentzian metrics,
complex/conformal/symplectic/contact structures,
principal G-bundles with connection and isos,
higher gauge fields (Kalb—-Ramond, Ramond—Ramond)
= an (00, 1)-sheaf of geometric structures

m Smoothness: values of field theories depend smoothly on
bordisms
= (00, 1)-sheaf of (00, d)-categories of bordisms
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Geometric structures

Given d > 0, the site FEmby has

m Objects: submersions T — U with d-dimensional fibers,
where U = R" is a cartesian manifold;

m Morphisms: commutative squares with T — T’ a fiberwise
open embedding over a smooth map U — U’;

m Covering families: open covers on total spaces T.
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Geometric structures

Given d > 0, the site FEmby has
m Objects: submersions with d-dimensional fibers;
m Morphisms: fiberwise open embeddings;

m Covering families: open covers on total spaces T.

Definition

Given d > 0, a d-dimensional geometric structure is a simplicial
presheaf S: FEmbzp — sSet.
Example:

m T — U — the set of fiberwise Riemannian metricson T — U;

m (T — T',U— U) — the restriction map from T’ to T.
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Examples of geometric structures

m fiberwise Riemannian, Lorentzian, pseudo-Riemannian metrics;
positive/negative sectional/Ricci curvature;

m fiberwise conformal, complex, symplectic, contact, Kahler
structures;

m fiberwise foliations, possibly with transversal metrics;

m smooth map to a target manifold M (traditional o-model);

m smooth map to an orbifold or co-sheaf on manifolds;

m fiberwise etale map or an open embedding into a target
manifold N;

m fiberwise topological structures: orientation, framing, etc.

m fiberwise differential n-forms (possibly closed).
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Examples of geometric structures: gauge transformations

m Send a d-manifold M to (the nerve of) the groupoid
BvG(M):
m Objects: principal G-bundles on T with a fiberwise connection
on T — U (gauge fields);
m Morphisms: connection-preserving isomorphisms (gauge
transformations).
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Examples of geometric structures: (higher) gauge

transformations

m Principal G-bundles with connection on M (gauge fields, e.g.,
the electromagnetic field);

m Bundle gerbe with connection on M (B-field, Kalb—Ramond
field).
m Bundle 2-gerbe with connection on M (supergravity C-field).

m Bundle (d — 1)-gerbes with connection on M (Deligne
cohomology, Cheeger—Simons characters, ordinary differential
cohomology, circle d-bundles).

m Geometric tangential structures: geometric Spin©-structure,
String (Waldorf), Fivebrane (Sati—Schreiber—Stasheff),
Ninebrane (Sati). (Vanishing of anomaly.)

m differential K-theory (Ramond—Ramond field). Requires
oo-groupoids.
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The main theorem

Ingredients:
m A dimension d > 0.
m A smooth symmetric monoidal (co, d)-category V of values.
m A d-dimensional geometric structure S: FEmb)” — sSet.
Constructions:
m The smooth symmetric monoidal (oo, d)-category of bordisms
Bord§ with geometric structure S.
m A d-dimensional functorial field theory valued in V with
geometric structure S is a smooth symmetric monoidal
(00, d)-functor Bord§ — V.
m The simplicial set of d-dimensional functorial field theories
valued in V with geometric structure S is the derived mapping
simplicial set

FFT41(S) = RMap(Bordg, V).

Can be refined to a derived internal hom.
13/15  12/16



The main theorem

Conjectures:
m Freed, Lawrence (1992): FFT4y is an oco-sheaf.

m Baez-Dolan (1995), Hopkins—Lurie (2008): if V is fully
dualizable,
FFT41(S) ~ RMap(S, V™).
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The main theorem

Conjectures:
m Freed, Lawrence (1992): FFT4y is an oco-sheaf.
m Baez-Dolan (1995), Hopkins—Lurie (2008): if V is fully
dualizable, FFT4y(S) ~ RMap(S,V*).

Theorem (Grady—P., The geometric cobordism hypothesis)

Part I: Botdy is a left adjoint functor:
R Map(Bord3, V) ~ RMap(S, V),
where V; = FFTqy, ie, V(T = U) =FFT4 (T — U).
Part II: The evaluation-at-points map
VIR x U— U)=FFTy4p(R? x U — U) = V*(V)

is a weak equivalence of simplicial sets.
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Applications (current and future)

m Consequence of the GCH: smooth invertible FFTs are
classified by the smooth Madsen—Tillmann spectrum.
(Previous work: Galatius—Madsen—Tillmann—\Weiss,
Bokstedt—-Madsen, Schommer-Pries.)

m The Stolz—Teichner conjecture: concordance classes of
extended FFTs have a classifying space. (Proof: Locality +
the smooth Oka principle (Berwick-Evans—Boavida de
Brito—P.).

m Construction of power operations on the level of FFTs
(extending Barthel-Berwick-Evans—Stapleton).

m (Grady) The Freed—Hopkins conjecture (Conjecture 8.37 in
Reflection positivity and invertible topological phases)

m Construction of prequantum FFTs from geometric/topological
data.

m Quantization of functorial field theories.
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Recipe: computing the space of FFTs in practice

Step 1 Compute V (once for every V).
Step 1la Guess a candidate W for V. (Standardized guesses exist.)
Step 1b Guess a map W — V7. (Typically straightforward.)

Step 1c For every U € Cart, prove that

W(RY x U— U) = Vi(R! x U— U) = V*(U)

is a weak equivalence. (Easy.)

Step 2 Compute RMap(S,V,) as RMap(S, W). (Like differential
cohomology.)
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Example: the prequantum Chern—Simons theory

Input data:
m G: a Lie group;
m S = By G (fiberwise principal G-bundles with connection);
m V = B3U(1) (a single k-morphism for k < 3; 3-morphisms are
U(1) as a Lie group).
Output data: a fully extended 3-dimensional G-gauged FFT:

BoroSvE — B3U(1).
m Closed 3-manifold M — the Chern—Simons action of M;
m Closed 2-manifold B — the prequantum line bundle of B;
m Closed 1-manifold C — the Wess—Zumino—Witten gerbe
(B-field) of C (Carey—Johnson—-Murray—Stevenson-Wang);
m Point — the Chern-Simons 2-gerbe (Waldorf).
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Example: the prequantum Chern—Simons theory

Step 1 Compute V5 = (B3U(1))5.
Step la W is the fiberwise Deligne complex of T — U:

W(T — U) = Q3+ Q% « Q! « C>®(T,U(1)).

Step 1b W — V5: a fiberwise 3-form w on T — U
+— framed FFT: 3-bordism B — exp( [z w).

Step 1c The composition
W(T — U) = V(T = U) = V¥(U) = B3C2,(T,U(1))

is a weak equivalence by the Poincaré lemma.
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Example: the prequantum Chern—Simons theory

Step 1 Result: V5 = (B3U(1)); = B3C2 (-, U(1)).

fconst

Step 2 Construct a point in
RMap(BVG, W) = RMap(Ql(—’ g)//coo(_’ G)7 Bacfo:onst(_v U(l)))

(Brylinski-McLaughlin 1996, Fiorenza—Sati—Schreiber 2013)
Step 2" Even better: can compute the whole space RMap(By G, W).
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Quantization of functorial field theories

X: the prequantum geometric structure
Y: the quantum geometric structure (e.g., a point)

FFT g0 (X) een R Map(X, V)
J l lo
FFTa(Y) = R Map(Y, V)

d = 1: recover the Spin® geometric quantization when X is a
smooth manifold, Y = Riemy;, V = Fredholm complexes.
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