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Abstract

The 2-category of groupoids, functors and natural isomorphisms

is shown to be locally cartesian closed in a weak sense of a pseudo-

adjunction.
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1 Introduction

A groupoid is a category in which each morphism is invertible. The notion
may be considered as a common generalisation of the notions of group and
equivalence relation. A group is a one-object groupoid. Every equivalence
relation on a set, viewed as a directed graph, is a groupoid. A recent indepen-
dence proof in logic used groupoids. Hofmann and Streicher [8] showed that
groupoids arise from a construction in Martin-Löf type theory. This is the
so-called identity type construction, which applied to a type gives a groupoid
turning the type into a projective object, in the category of types with equiv-
alence relations. As a consequence there are plenty of choice objects in this
category: every object has a projective cover [12] — a property which seems
essential for doing constructive mathematics according to Bishop [1] inter-
nally to the category. For some time the groupoids associated with types
were believed to be discrete. However, in [8] a model of type theory was given
using fibrations over groupoids, showing that this need not be the case.

The purpose of this article is to draw some further conclusions for group-
oids from the idea of Hofmann and Streicher. Since type theory has a Π-
construction, one could expect that some kind of (weak) local cartesian clo-
sure should hold for groupoids. The small groupoids can be organised into
a category Gpd by taking the morphisms to be functors. This category
has many useful properties: it is complete and cocomplete, and unlike the
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category of groups, it is also cartesian closed [4]. However, it is not lo-
cally cartesian closed (see Section 2). The main goal of the present paper
is to show that, from a 2-categorical perspective, the groupoids nevertheless
satisfy a version of local cartesian closedness. The category Gpd may be re-
organised as a 2-category G by letting the natural transformations between
functors be the 2-cells, which are then necessarily natural isomorphisms.
After some preliminaries on 2-categorical constructions (Section 3 and 4)
the main result (Theorem 5.6) is presented. This involves a construction of
dependent products of groupoids which is fairly natural, though the verifica-
tion of its 2-universal property is quite involved. We should point out that
the solution is not completely satisfactory, since the notion of “semi-strict
pseudo-adjunction” is probably not general enough.

The proofs herein are constructive and choice free, and should be possible
to formalise in a topos, or even in predicative versions of toposes.

2 The category of groupoids

In this section we see that the category Gpd of small groupoids and functors
is not locally cartesian closed. This motivates the laborious 2-categorical
constructions in Section 3 and onwards. For a general overview of groupoids
we recommend Brown [4]. Higgins [7] contains the most basic and central
constructions. The pullback construction will be of special interest, so we
state it explicitly here. Let f : A // Z and g : B // Z be functors in
Gpd. The pullback of these is constructed analogously to that of sets. Let
P be the groupoid where the objects are pairs (x, y), where x is an object of
A and y is an object of B such that f(x) = g(y). A morphism from (x, y) to
(x′, y′) is a pair of morphisms (ϕ,ψ) where ϕ : x // x′ and ψ : y // y′ are
morphisms satisfying f(ϕ) = g(ψ). It follows by the functoriality of f and g
that this defines a groupoid. Together with the first and second projection
functor π1 : P // A and π2 : P // B, this is a pullback of f and g.

The coproduct of a set of groupoids can be formed by simply taking the
disjoint union of objects and arrows. For the construction of coequalizers,
see [7].

It is known that the category Cat of small categories is not locally carte-
sian closed (Conduché [5]). Johnstone [9, p. 48] gives a simple argument for
this fact, which is easy to adapt to the category Gpd. Let En be the groupoid
given by the coarsest equivalence relation on the set Nn = {0, 1, . . . , n − 1},
that is, for every pair of objects i, j ∈ En, there is a unique arrow eij : i

// j. In the terminology of [7] this is the simplicial groupoid on Nn.
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Figure 1

Let g, h : E2
// E3 be the unique functors such that g(e01) = e01 and

h(e01) = e12. Then the canonical map [g, h] : E2 + E2
// E3 is a regular

epi. To wit, it is the coequalizer of the arrows m1,m2 : E1
// E2 + E2

where m1 maps 0 to 1 of the first summand and m2 maps 0 to 0 of the second
summand. Now let f : E2

// E3 be the unique functor with f(e01) = e02.
(See Figure 1.) The pullback of the arrow [g, h] along f is then isomorphic
to k = [k0, k1] : E1 + E1

// E2 where kj is the unique functor mapping
the object 0 to j. This k is clearly not epi.

Proposition 2.1 The category Gpd is not locally cartesian closed.

Proof. Suppose that Gpd is locally cartesian closed. Then since Gpd has
coequalizers [7, Ch. 9] it is also regular [9, Lemma 1.5.13]. Consequently, the
pullback of a regular epi should be a regular epi. But we have just presented
a counter-example to this in Gpd. This is a contradiction.

3 Some 2-categorical notions and constructions

Let C be a 2-category. We employ the notation of Borceux [3]. The compo-
sition of 1-cells is denoted ◦, and for a 1-cell f : A // B, the left and right
identities are 1A and 1B respectively. A 2-cell α from f : A // B to g : A

// B is written α : f ⇒ g. The vertical composition of 2-cells is denoted
⊙. The left and right vertical identities of α are if and ig. The operation
∗ stands for horizontal composition of 2-cells. The left and right horizontal
identities for α from f : A // B to g : A // B are i1A

and i1B
, but we

will denote these by iA and iB respectively. Apart from the usual identity
and associativity laws these operations satisfy a further identity law and the
exchange law

ig ∗ if = ig◦f ,

(γ ⊙ δ) ∗ (α⊙ β) = (γ ∗ α) ⊙ (δ ∗ β).
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for f1
β

=⇒ f2
α

=⇒ f3 and g1
δ

=⇒ g2
γ

=⇒ g3, where f1, f2, f3 : A // B,
g1, g2, g3 : B // C. We have distributivity of vertical identities

ig ∗ (α⊙ β) = (ig ∗ α) ⊙ (ig ∗ β)

(γ ⊙ δ) ∗ if = (γ ∗ if ) ⊙ (δ ∗ if ),

where f : A // B and g : B // C. Inverses can be computed as

(α ∗ β)−1 = α−1 ∗ β−1,

for invertible α and β. Note that for 2-cells α : h ⇒ k and β : f ⇒ g,
where f, g : A // B and h, k : B // C, the interchange law gives the
decomposition laws

α ∗ β = (α ∗ ig) ⊙ (ih ∗ β),

α ∗ β = (ik ∗ β) ⊙ (α ∗ if ).

In the following we shall of use the syntactic convention that the operation
∗ binds stronger than ⊙.

The 2-category of groupoids to be studied in Sections 4 and 5 is the
following.

Example 3.1 The 2-category G has small groupoids as objects, functors as
1-cells and natural transformations as 2-cells. The vertical composition ⊙ is
the usual vertical composition · of natural transformations. The horizontal
composition of α ∗ β (with f, g, h, k as above) is given by

(α ∗ β)a = αg(a)h(βa) = k(βa)αf(a).

The identity if is the natural transformation if : f ⇒ f defined by (if )a =
1f(a).

3.1 2-slices

In an ordinary slice category C/X a morphism from α : A // X to β : B
// X is a morphism f : A // B in C satisfying the equality α = β ◦ f .

For morphisms between the slices of a 2-category (to be defined below), this
equality is replaced by a 2-cell. The specific information given by the 2-cell
seems necessary to obtain the pseudo-adjoints of Section 4 and 5.

Definition 3.2 Let C be a 2-category. For every object X of C the 2-slice
category C//X of C by X is the 2-category given by the following data.
(When the intended category is obvious from the context we simply write ¯̄X
for C//X.)
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• The objects of C//X are arrows (1-cells) of the form α : A // X of
C. We also write (α,A) or even α.

• The arrows (1-cells) from (α,A) to (β,B) in C//X are pairs

f = (f, f)

such that f : A // B is an arrow of C and f : α ⇒ β ◦ f is a 2-cell
of C.

A

X

α

��?
??

??
??

??
??

?A B
f

// B

X

β

����
��

��
��

��
��

f
=⇒

– Suppose that f : (α,A) // (β,B) and g : (β,B) // (γ,C) are
1-cells. Then their composition is given by

g ◦ f = (g ◦ f, (g ∗ if ) ⊙ f). (1)

– The identity 1(α,A) on (α,A) is (1A, iα).

• Suppose f, g : (α,A) // (β,B) are 1-cells. A 2-cell τ from f to g is
by definition a 2-cell τ : f ⇒ g of C such that the pasting condition

(iβ ∗ τ) ⊙ f = g (2)

is satisfied.

– Suppose that σ : f ⇒ g and τ : g ⇒ h are 2-cells, where f, g, h :
(α,A) // (β,B). The vertical composition τ ⊙ σ is then just
the vertical composition τ ⊙ σ in C.

– Suppose that σ : f ⇒ g and τ : h ⇒ k are 2-cells, where f, g :
(α,A) // (β,B) and h, k : (β,B) // (γ,C). The horizontal
composition τ ∗σ : h◦f ⇒ k◦g is then the horizontal composition
τ ∗ σ in C.

– The identity 2-cell if : f ⇒ f is if .

Remark 3.3 Note that in G//X the composition (1) becomes (g ◦ f, gf · f)

and the pasting condition (2) becomes βτ · f = g, using standard notation
for composing functors and natural transformations (Mac Lane [11]).

Proposition 3.4 If C is a 2-category and X is an object of C, then C//X is
a 2-category.
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Proof. The verification is straightforward, except possibly for the fact that
horizontal composition of 2-cells is well-defined. Let f1, f2 : (α,A) //

(β,B) and g1, g2 : (β,B) // (γ,C). Suppose that σ : f1 ⇒ f2 and
τ : g1 ⇒ g2. Their horizontal composition is τ ∗ σ : g1 ◦ f1 ⇒ g2 ◦ f2. We
show that it satisfies the pasting condition.

(iγ ∗ τ ∗ σ) ⊙ g1 ◦ f1 = (iγ ∗ τ ∗ σ) ⊙ (g1 ∗ if1) ⊙ f1

= (((iγ ∗ τ) ⊙ g1) ∗ (σ ⊙ if1)) ⊙ f1

= ((g2 ∗ (σ ⊙ if1)) ⊙ f1

= (g2 ∗ σ) ⊙ f1

= (g2 ∗ if2) ⊙ (iβ ∗ σ) ⊙ f1

= (g2 ∗ if2) ⊙ f2 = g2 ◦ f2

The equations are obtained by applying (in order): the interchange law, the
pasting condition of τ , identity law, the decomposition law and the pasting
condition of σ.

Remark 3.5 Note that if τ : f ⇒ g is a 2-cell in C//X and τ is invertible in
C, then τ−1 : g ⇒ f is inverse to τ in C//X. In particular, this means that
the 2-cells of G//X are all invertible.

3.2 2-dimensional functors

Definition 3.6 Let C and D be 2-categories. A 2-functor F : C // D
consists of an object F (A) of D for each object A of C, and for each pair of
objects A,B ∈ C a functor

FA,B : C(A,B) // D(FA,FB)

such that

FA,A(1A) = 1FA FA,C(g ◦ f) = FB,C(g) ◦ FA,B(f), (3)

for 1-cells f : A // B, g : B // C, and moreover

FA,A(iA) = iFA FA,C(β ∗ α) = FB,C(β) ∗ FA,B(α), (4)

for 2-cells α : f1 ⇒ f2 and β : g1 ⇒ g2, where f1, f2 : A // B and g1, g2 : B
// C.

The composition GF : C // E with another 2-functor G : D // E is
given by

(G ◦ F )(A) = G(F (A)) (G ◦ F )A,B = GFA,FB ◦ FA,B .

6



Remark 3.7 Note that the first equality of (4) actually follows from (3)
and the fact that FA,A is a functor.

Example 3.8 Let C be a 2-category. The identity 2-functor IC on C is
defined by IC(A) = A, and (IC)A,B is the identity functor on C(A,B).

Example 3.9 Let C be a 2-category and let h : X // Y be an arrow
(1-cell) in this category. Then we define the post-composition 2-functor

Σh : C//X // C//Y

as follows on 0-cells, 1-cells and 2-cells respectively:

Σh(α,A) = (h ◦ α,A),

(Σh)(α,A),(β,B)(f) = (f, ih ∗ f),

(Σh)(α,A),(β,B)(τ) = τ.

3.3 2-dimensional transformations and adjunctions

We recall the definition of a 2-natural transformation [3].

Definition 3.10 Suppose that F,G : A // B are 2-functors. A 2-natural

transformation θ : F
·

// G is a collection of arrows of B, θA : F (A)
// G(A), where A ranges over objects of A. They satisfy the following

naturality condition

B(FA, θA′) ◦ FA,A′ = B(θA, GA
′) ◦GA,A′ (5)

for objects A and A′ of A. This means that for 1-cells f ∈ A(A,A′)

θA′ ◦ FA,A′(f) = GA,A′(f) ◦ θA (6)

and for 2-cells α : f ⇒ f ′ in A(A,A′)

iθA′
∗ FA,A′(α) = GA,A′(α) ∗ iθA

. (7)

Example 3.11 Let F : A // B be a 2-functor. The identity 2-natural

transformation on F is IF : F
·

// F given by (IF )A = 1FA.

Example 3.12 Specialising to A = G//X, B = G//Y , and θA = (θA, θA)
then (7) reads

θA′FA,A′(α) = GA,A′(α)θA. (8)
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The definition of composition of 2-functors and 2-natural transformation
are formally identical to the 1-dimensional case. Let H : B // C, F,G : C

// D and K : D // E be 2-functors, and suppose that ε : F
·

// G is a
2-natural transformation. Then define 2-natural transformations

εH : FH
·

// GH, Kε : KF
·

// KG

by
(εH)A = εHA : FHA // GHA

and
(Kε)A = KFA,GA(εA) : KFA // KGA.

To formulate the desired adjunction property we need a more liberal ver-
sion of 2-natural transformations. The notion of lax 2-natural transformation
(Borceux [3]) can be applied to (strict) 2-functors as well. We specialise the
notion to this case. (Note the direction of τA,B.)

Definition 3.13 Let F,G : A // B be 2-functors. A lax natural transfor-

mation from F to G is a pair (α, τ) (notation: (α, τ) : F
·

// G) consisting
of arrows αA : FA // GA, for A ∈ A, and for each pair of objects A,B ∈ A
a natural transformation

τA,B : B(αA, GB) ◦GA,B // B(FA,αB) ◦ FA,B. (9)

These should satisfy the following functoriality conditions:

(τA,A)1A
= iαA

(10)

and
(τA,C)g◦f = (τB,C)g ∗ iFA,B(f) ⊙ iGB,C(g) ∗ (τA,B)f (11)

for f : A // B and g : B // C. In case each τA,B is a natural isomor-
phism, (α, τ) is called a pseudo-natural transformation.

Remark 3.14 Condition (9) means, explicitly, that for f, g : A // B and
σ : f ⇒ g the following diagram of 2-cells commutes:

GA,B(g) ◦ αA αB ◦ FA,B(g)
(τA,B)g

+3

GA,B(f) ◦ αA

GA,B(g) ◦ αA

GA,B(σ)∗iαA

��

GA,B(f) ◦ αA αB ◦ FA,B(f)
(τA,B)f

+3 αB ◦ FA,B(f)

αB ◦ FA,B(g)

iαB
∗FA,B(σ)

��

(12)
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Example 3.15 Given a 2-natural transformation α : F
·

// G, thenGA,B(f)◦
αA = αB ◦ FA,B(f). We may define

(τA,B)f = iGA,B(f)◦αA
= iαB◦FA,B(f).

It is straightforward to see that (α, τ) defines a pseudo-natural transforma-

tion F
·

// G, the lax version of α. Conversely, any lax (α, τ) where (τA,B)f

is the identity for each f , is called 2-natural. In case α = IF : F
·

// F is
the identity 2-natural transformation on F, then (τA,B)f = iFA,B(f).

The compositions given just before Definition 3.13 are now generalised
to lax natural transformations.

Definition 3.16 Let (α, τ) : F
·

// G be a lax natural transformation
between the 2-functors F,G : A // B. We define the left and right com-
positions with the 2-functors H : Z // A and K : B // C. Define

(α, τ)H =def (αH, τH) : FH
·

// GH

by letting
(αH)U = αHU

and
(τH)U,V = τHU,HVHU,V ,

where the right hand side is an ordinary composition of a natural transfor-
mation with a functor. Define

K(α, τ) =def (Kα,Kτ) : KF
·

// KG

by assigning
(Kα)A = KFA,GA(αA)

and
(Kτ)A,B = KFA,GBτA,B.

Here the right hand side is the composition of a functor with a natural
transformation.

Proposition 3.17 With assumptions as in Definition 3.16:

(i) (α, τ)H is lax natural, and it is pseudo-natural whenever (α, τ) is,

(ii) K(α, τ) is lax natural, and it is pseudo-natural whenever (α, τ) is.

Remark 3.18 These compositions generalise those for 2-natural transfor-
mation. (Cf. Example 3.15.) So, e.g., that if (α, τ) is 2-natural, then (α, τ)H
is the lax version of αH.
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Definition 3.19 Let F,G,H : A
·

// B be 2-functors. Let (α, σ) : F
·

//

G and (β, τ) : G
·

// H be lax natural transformations. Define their vertical
composition

(β, τ) ⊙ (α, σ) =def (β ⊙ α, τ ⊙ σ) : F
·

// H

as follows
(β ⊙ α)A = βA ◦ αA

and, for f : A // B,

((τ ⊙ σ)A,B)f = iβB
∗ (σA,B)f ⊙ (τA,B)f ∗ iαA

. (13)

Remark 3.20 If (α, σ) is 2-natural, the right hand side of (13) becomes
(τA,B)f ∗ iαA

, and in case (β, τ) is 2-natural, it becomes iβB
∗ (σA,B)f .

Proposition 3.21 With assumptions as in Definition 3.19: (β, τ)⊙(α, σ) is
a lax natural transformation, and it is pseudo-natural if both (β, τ) and (α, σ)
are. Moreover, in case (β, τ) and (α, σ) are both 2-natural transformations
(considered as lax natural transformation), then (β, τ) ⊙ (α, σ) is again a
2-natural transformation.

We now define the notion of adjunction to be employed.

Definition 3.22 A semi-strict pseudo-adjunction 〈F,G, ε, η〉 : C // D
consists of the 2-functors F : C // D and G : D // C and pseudo-natural
transformations

ε : FG
·

// ID η : IC
·

// GF

such that both

GFG G
Gε

//

G

GFG

ηG

��

G

G

IG

��?
??

??
??

??
??

?

FGF F
εF

//

F

FGF

Fη

��

F

F

IF

��?
??

??
??

??
??

?

commute. These are called the triangular identities forG and F , respectively.
Here IH denotes the lax version of the identity 2-natural transformation on
the 2-functor H. (See Example 3.15.)

Given an adjunction as in Definition 3.22, we define functors

PA,B : C(A,GB) // D(FA,B)

and
QA,B : D(FA,B) // C(A,GB)
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as follows for arrows f and 2-cells α:

PA,B(f) = ε1B ◦ FA,GB(f), PA,B(α) = iε1B
∗ FA,GB(α) (14)

and
QA,B(f) = GFA,B(f) ◦ η1

A, QA,B(α) = GFA,B(α) ∗ iη1
A
, (15)

where η = (η1, η2) and ε = (ε1, ε2).

Theorem 3.23 Let 〈F,G, ε, η〉 : C // D be a semi-strict pseudo-adjunction.
With P and Q defined as in (14) and (15):

(i) QA,B ◦ PA,B ≃ IC(A,GB) and QA,B ◦ PA,B = IC(A,GB), whenever η is
2-natural,

(ii) PA,B ◦ QA,B ≃ ID(FA,B), and PA,B ◦ QA,B = ID(FA,B), whenever ε is
2-natural.

Proof. (i): Write η = (η1, η2) and ε = (ε1, ε2).
For arrows g : A // GB we have

QA,B(PA,B(g)) = GFA,B(ε1B ◦ FA,GB(g)) ◦ η1
A

= GFGB,B(ε1B) ◦GFA,FGB(FA,GB(g)) ◦ η1
A

= GFGB,B(ε1B) ◦ (GF )A,GB(g) ◦ η1
A

Let τg = iGF GB,B(ε1B) ∗ (η2
A,GB)g, for g : A // GB. Thus

τg : GFGB(ε1B) ◦ (GF )A,GB(g) ◦ η1
A =⇒ GFGB,B(ε1B) ◦ η1

GB ◦ (IC)A,GB(g),

by the fact that η is pseudo-natural. Moreover, by the triangular identity
for G:

GFGB,B(ε1B) ◦ η1
GB ◦ (IC)A,GB(g) = 1GB ◦ g = g

By the above equations, it follows that τg : QA,B(PA,B(g)) ⇒ g is a well-
defined isomorphism. To demonstrate that τ gives the desired equivalence
it suffices to show that τ is natural. Suppose α : f ⇒ g. Then:

τg ⊙QA,B(PA,B(α)) = τg ⊙GFA,B(iε1B
∗ FA,GB(α)) ∗ iη1A

= τg ⊙GFGB,B(iε1B
) ∗GFA,FGB(FA,GB(α)) ∗ iη1A

= τg ⊙ iGF GB,B(ε1
B

) ∗GFA,FGB(FA,GB(α)) ∗ iη1
A

= iGF GB,B(ε1B) ∗ ((η2
A,GB)g ⊙GFA,FGB(FA,GB(α)) ∗ iη1A

)

= iGF GB,B(ε1B) ∗ ((η2
A,GB)g ⊙ (GF )A,GB(α) ∗ iη1A

)

= iGF GB,B(ε1
B

) ∗ (iη1
GB

∗ α⊙ (η2
A,GB)f ) (nat.)

= iGF GB,B(ε1B)◦η1GB
∗ α⊙ τf (def. of τf )

= i1GB
∗ α⊙ τf = α⊙ τf . (triang.)
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In this calculation we used distributivity of vertical identities, that η2
A,GB

is natural and the triangular equality for G. This shows that τ is an
equivalence. Suppose now that η is a 2-natural transformation. Then
(η2
A,GB)g is the identity, so τg is the identity for each g. Hence, in this

case, QA,B ◦ PA,B = IC(A,GB).
The proof of (ii) is analogous.

Remark 3.24 A good notion of “pseudo-adjunction” should probably be
flexible enough to allow the functors to be pseudo-functors rather than strict,
and the triangular identities to be “iso-modifications”. (See also Remark 5.2
in [2].) We have not investigated this possibility fully.

4 Groupoids and weak pullbacks

We consider here the 2-category G of small groupoids. For arrows f : A
// C and g : B // C in G the comma groupoid f ↓ g consists of

triples (a, b, ϕ) such that ϕ : f(a) // g(b) as objects. A morphism (a, b, ϕ)
// (a′, b′, ϕ′) is a pair (α, β) of arrows α : a // a′, β : b // b′ such that

f(a′) g(b′)
ϕ′

//

f(a)

f(a′)

f(α)

��

f(a) g(b)
ϕ

// g(b)

g(b′)

g(β)

��

(16)

commutes. The identity morphism on (a, b, ϕ) is (1a, 1b). It is immediate
that all arrows of the category f ↓ g are invertible, so that it constitutes
a groupoid. Denote by p1 : (f ↓ g) // A the functor given by the first
projections p1(a, b, ϕ) = a and p1(α, β) = α. Similarly, there is a functor
p2 : (f ↓ g) // B given by second projections. We do not in general have
fp1 = gp2. However, there is a natural isomorphism

σ : fp1 ⇒ gp2

given by σ(a,b,ϕ) = ϕ. Writing p
f,g
1 = p1, p

f,g
2 = p2 and σf,g = σ, we depict

this as:

A C
f

//

(f ↓ g)

A

p
f,g
1

��

(f ↓ g) B
p

f,g
2

// B

C

g

��

σf,g

⇒

(17)
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Now given h : D // A and k : D // B and a natural isomorphism

ρ : fh⇒ gk.

Define a functor t : D // (f ↓ g) by t(d) = (h(d), k(d), ρd) and t(θ) =
(h(θ), k(θ)). Then p1t = h and p2f = k.

4.1 2-pullback functor

Next we introduce what can be considered as a 2-analogue of the pullback
functor k∗ along a morphism k. We use the notation ¯̄X for the 2-slice G//X.
For each f the construction of a comma groupoid (f ↓ g) can be considered
as a 2-functor, which is a right pseudo-adjoint of Σf (cf. Theorem 4.4 below).

Let f : X // Y be a functor in G. Define a 2-functor f+ : ¯̄Y // ¯̄X that
constructs comma groupoids along f . For α : A // Y let

f+(α,A) = (pf,α1 , f ↓ α)

Write A = (α,A), B = (β,B) etc. for objects in 2-slice categories. Let A

and B be objects in ¯̄Y , and suppose that h : A // B is an arrow. Define
f+
A,B(h) : f+(A) // f+(B) by

f+
A,B(h) = (F (h), F (h)) (18)

where

F (h)(x, a, ϕ) = (x, h(a), ha ◦ ϕ),

F (h)(θ1, θ2) = (θ1, h(θ2)),

F (h)(x,a,ϕ) = 1x.

Let h, p : A // B be two arrows, and let τ : h ⇒ p be a 2-cell between
these arrows in ¯̄Y . Then define f+

A,B(τ) : f+
A,B(h) ⇒ f+

A,B(p) by

(f+
A,B(τ))(x,a,ϕ) = (1x, τa).

Lemma 4.1 For any functor f : X // Y in G, f+ : ¯̄Y // ¯̄X is a
2-functor.

Let f : X // Y be a functor in G. Consider the composition of 2-
functors

Σf ◦ f
+ : ¯̄Y // ¯̄Y.

For each A ∈ ¯̄Y define
εA = (pf,α2 , σf,α),

where p
f,α
1 ,pf,α2 and σf,α are the projection and 2-cell associated with the

comma category f ↓ α, see diagram (17). Let I = I ¯̄Y
: ¯̄Y

·
// ¯̄Y be the

identity 2-natural transformation. Note that Σf ◦ f
+(A) = (f ◦p

f,α
1 , f ↓ α),

so εA : Σf ◦ f
+(A) ⇒ A. In fact, we have
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Lemma 4.2 ε : Σf ◦ f
+ ·

// I is a 2-natural transformation.

The counit of the adjunction will merely be a pseudo-natural transfor-
mation. Let f : X // Y be a functor in G, and consider the composition

f+ ◦ Σf : ¯̄X // ¯̄X.

For B = (β,B) we have f+ ◦ Σf (B) = (pf,f◦β1 , f ↓ f ◦ β). Define a pseudo-
natural transformation

(η, ρ) : I
·

// f+ ◦ Σf

as follows: ηB = (η
B
, ηB) where η

B
: B // f ↓ (f ◦ β) is the functor

defined by
η
B

(b) = (β(b), b, 1f(β(b)))

for b ∈ B and η
B

(θ) = (β(θ), θ) for θ : b // b′. Moreover, ηB = iβ . For A

and B in ¯̄X, define ρA,B as

((ρA,B)h)a = (ha, 1h(a))

for arrows h : A // B and a ∈ A.

Lemma 4.3 (η, ρ) : I
·

// f+ ◦ Σf is a pseudo-natural transformation.

Theorem 4.4 For any functor f : X // Y in G,

〈Σf , f
+, ε, (η, ρ)〉 : ¯̄X // ¯̄Y

is a semi-strict pseudo-adjunction, where ε is 2-natural.

Remark 4.5 The above adjunction seems to be known, in some form, among
category theorists, but I have not been able to locate a reference. It might
implicitly be contained in the theory of 2-monad [2], but then again we have
not be able figure this out.

5 Dependent products of groupoids

First we introduce some auxiliary notions. Let f : X // Y be a functor
in G and let y be an object of Y . Define f−1(y) be the groupoid consisting
of objects (x, ϕ) where ϕ : f(x) // y is an arrow in Y . A morphism
ψ : (x, ϕ) // (x′, ϕ′) in f−1(y) is an arrow ψ : x // x′ in X such that
ϕ = ϕ′◦f(ψ). In fact, this construction can be considered as a special comma
category: f ↓ y. For θ : y // y′ in Y we have a functor f−1(θ) : f−1(y)

// f−1(y′) defined by f−1(θ)(x, ϕ) = (x, θϕ) and f−1(θ)(ψ) = ψ. Also,
f−1(θ′θ) = f−1(θ′)f−1(θ), if θ′ : y′ // y′′, and f−1(1y) = 1f−1(y).

14



For each object y of Y there is a projection functor py : f−1(y) // X
given by py(x, ϕ) = x and py(ψ) = ψ. For θ : y // y′ we have py′◦f

−1(θ) =
py so

f−1(θ) =def (f−1(θ), 1py) : py // py′

is a 1-cell in ¯̄X.

Definition 5.1 Let γ : C // X and f : X // Y be functors in G. The
groupoid Πf (γ) is constructed as follows.

• Objects are pairs (y, h) where y ∈ Y , and h = (h, h) : py // γ is a

1-cell in ¯̄X. More explicitly

h : f−1(y) // C

and
h : py ⇒ γh.

In a diagram:

f−1(y)

X

py

��?
??

??
??

??
??

f−1(y) C
h

// C

X

γ

����
��

��
��

��
��

h
=⇒

• Morphisms are pairs (θ, η) : (y, h) // (y′, h′) where

θ : y // y′

and
η : h =⇒ h′ ◦ f−1(θ)

is a 2-cell in ¯̄X. Explicitly, this means that the 2-cell in G

η : h⇒ h′ ◦ f−1(θ)

is such that the diagram of natural transformations

py′f
−1(θ) γh′f−1(θ)

h′∗if−1(θ)

+3

py

py′f
−1(θ)

ipy

��

py γh
h

+3 γh

γh′f−1(θ)

iγ∗η

��

(19)

commutes, i.e. h′ ∗ if−1(θ) = (iγ ∗ η) ⊙ h. This is the pasting condition
for η.
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• The identity morphism on (y, h) is (1y, ih).

• Composition of (θ, η) : (y, h) // (y′, h′) and (θ′, η′) : (y′, h′) //

(y′′, h′′) is given by

(θ′, η′) ◦ (θ, η) = (θ′ ◦ θ, η′ ∗ if−1(θ) ⊙ η).

• The inverse of (θ, η) : (y, h) // (y′, h′) is (θ−1, η−1 ∗ if−1(θ−1)).

The following is now easily verified.

Lemma 5.2 Πf (γ) is a groupoid.

The first projection of this groupoid πf (γ) = πf,γ : Πf (γ) // Y defined
by πf (γ)(y, h) = y and πf (γ)(θ, η) = θ is clearly a functor. We now extend
the Π-construction to a 2-functor

Πf : ¯̄X // ¯̄Y,

for each f : X // Y . For objects C = (γ,C) of ¯̄X, let

Πf (C) = (πf (γ),Πf (γ)).

For each pair C,D of objects in ¯̄X define the functor

(Πf )C,D : ¯̄X(C,D) // ¯̄Y (Πf (C),Πf (D))

as follows.

• For a 1-cell q = (q, q) in ¯̄X, let (Πf )C,D(q) = (P (q), P (q)) where

P (q)(y, h) =def (y, q ◦ h) = (y, (qh, q ∗ ih ⊙ h))

P (q)(θ, η) = (θ, iq ∗ η)

and P (q) : πf (γ) ⇒ πf (δ) ◦ P (q) is given by

P (q)(y,h) = 1y.

• For a 2-cell β : q ⇒ r in ¯̄X define the 2-cell (Πf )C,D(β) in ¯̄Y by

(Πf )C,D(β)(y,h) = (1y, β ∗ ih).

Theorem 5.3 For every functor f : X // Y in G,

Πf : ¯̄X // ¯̄Y

is a 2-functor.
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Proof. A tedious but straightforward verification.

Next define the unit, or the evaluation operator: ε : f+ ◦ Πf

·
// I ¯̄X .

Construct the composition of 2-functors

Φ = f+ ◦ Πf : ¯̄X // ¯̄X.

For C = (γ,C) of ¯̄X, observe that

Φ(C) = (p
f,πf (γ)
1 , (f ↓ πf (γ)))

Explicitly, the objects of (f ↓ πf (γ)) will be tuples (x, (y, h), ν) where ν :
f(x) // y. A morphism

(β, (θ, η)) : (x, (y, h), ν) // (x′, (y′, h′), ν ′) (20)

consists of β : x // x′ and (θ, η) : (y, h) // (y′, h′) in Πf (γ) such that

θν = ν ′f(β). For C ∈ ¯̄X define a 1-cell

εC = (εC, εC) : Φ(C) // C

as follows: Let
εC(x, (y, h), ν) = h(x, ν)

on objects, and for a morphism (β, (θ, η)) as in (20), let

εC(β, (θ, η)) = h′(β) ◦ η(x,ν). (21)

It can readily be checked that εC is a functor (f ↓ πf (γ)) // C. There is
a natural transformation

εC : pf,γ1 ⇒ γ ◦ εC

given by
(εC)(x,(y,h),ν) = h(x,ν).

A calculation shows

Lemma 5.4 ε : f+ ◦Πf

·
// I ¯̄X is a 2-natural transformation.

Next we define a counit I ¯̄Y

·
// Πf ◦f

+, which will merely be a pseudo-
natural transformation. For C = (γ,C) note that

(Πf ◦ f
+)(C) = (πf (p

f,γ
1 ),Πf (p

f,γ
1 )).

Define a 1-cell in ¯̄Y : ψC = (ψ
C
, ψC) : C // (Πf ◦ f

+)(C) by

ψ
C

(c) = (γ(c), (kc, τ c)) (c ∈ C)

where
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• kc : f−1(γ(c)) // (f ↓ γ) is given by

– kc(x, ϕ) = (x, c, ϕ) for (x, ϕ) ∈ f−1(γ(c)) and

– kc(α) = (α, 1c) for α : (x, ϕ) // (x′, ϕ′) in f−1(γ(c))

• τ c : pγ(c) ⇒ p
f,γ
1 kc is defined by τ c(x,ϕ) = 1x.

Furthermore for β : c // c′ let ψ
C

(β) = (γ(β), ηβ) where

ηβ(x,ϕ) = (1x, β).

Let
ψC = iγ : γ ⇒ πf (p

f,γ
1 ) ◦ ψ

C
.

This defines the first component ψ of the pseudo-natural transformation.
The second component ρ is a family of 2-cells

C (Πf ◦ f
+)(D)

(Πf◦f
+)C,D(q)◦ψC

--
C (Πf ◦ f

+)(D)

ψD◦q

11
(ρC,D)q��

(for q : C // D in ¯̄Y ) given by

((ρC,D)q)c = (qc, iF (q)kc) (c ∈ C). (22)

Here F is defined as in (18).

Lemma 5.5 (ψ, ρ) : I ¯̄Y

·
// Πf ◦ f

+ is a pseudo-natural transformation.

Proof. We consider first the obstacle for ψ being a strict 2-natural trans-
formation. Write C = (γ,C) and D = (δ,D). For a 1-cell q : C // D the
first component of (Πf ◦ f

+)(q) ◦ ψC at the object c ∈ C is

P (F (q))(ψC(c)) = (γ(c), F (q) ◦ (κc, τ c)) = (γ(c), (F (q)κc, F (q) ∗ iκc ⊙ τ c))
(23)

whereas the first component of ψD ◦ q computed at c is

ψ
D

(q(c)) = (δ(q(c)), (κq(c), τ q(c))). (24)

These are clearly not equal. However, it can be checked that (qc, iF (q)κc) as
in (22) above is an isomorphism from (23) to (24). We next check that ρC,D
is natural: we need to show that for q, r : C // D and α : q ⇒ r

iψD
∗ α⊙ (ρC,D)q = (ρC,D)r ⊙ (Πf ◦ f

+)C,D(α) ∗ iψC
. (25)

18



Computing the left hand side of (25) at c yields

(iψ
D

∗ α⊙ (ρC,D)q)c = (iψ
D

∗ α)c ◦ ((ρC,D)q)c

= ψ
D

(αc) ◦ (qc, iF (q)κc)

= (δ(αc) ◦ qc, η
αc ∗ if−1(qc)

⊙ iF (q)κc).

The right hand side of (25) at c is

((ρC,D)r ⊙ (Πf ◦ f
+)C,D(α) ∗ iψC

)c = (rc, iF (r)κc) ◦ (Πf ◦ f
+)C,D(α)ψ

C
(c)

= (rc, iF (r)κc) ◦ (Πf )f+C,f+D(f+
C,D(α))(γ(c),(κc ,τc))

= (rc, iF (r)κc) ◦ (1γ(c), f
+
C,D(α) ∗ iκc)

= (rc, iF (r)κc ∗ if−1(1γ(c))
⊙ f+

C,D(α) ∗ iκc)

= (rc, f
+
C,D(α) ∗ iκc)

From α : q ⇒ r follows, by the pasting condition, δ(αc) ◦ qc = rc. This
shows that the first components of (25) are the same. As for the second
components evaluate at an arbitrary (x, ϕ) ∈ f−1(γ):

(ηαc ∗ if−1(qc)
)(x,ϕ) = ηαc

f−1(qc)(x,ϕ)

= ηαc

(x,qc,ϕ)

= (1x, αc)

= f+
C,D(α)(x,c,ϕ)

= f+
C,D(α)κc(x,ϕ)

= (f+
C,D(α) ∗ iκc)(x,ϕ).

showing that they are identical as well. The functoriality conditions (10)
and (11) on ρ are straightforward to check.

Theorem 5.6 For each f : X // Y in G,

〈f+,Πf , ε, (ψ, ρ)〉 : ¯̄Y // ¯̄X

is a semi-strict pseudo-adjunction, where ε is 2-natural.

Proof. We compute the composition of pseudo-natural transformations

(θ, σ) = εf+ ⊙ f+(ψ, ρ) : f+ // (f+ ◦ Πf ◦ f
+) // f+.

For A ∈ ¯̄Y we have

θA = (εB ◦ F (ψA), εB ∗ iF (ψA) ⊙ F (ψA) (26)
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where B = f+A. Now evaluating the first component of (26) at an arbitrary
object (x, a, ϕ) ∈ (f ↓ α) we get

εB(F (ψA)(x, a, ϕ)) = εB(x, (α(a), (κa, τa)), 1α(a) ◦ ϕ) = κa(x,ϕ) = (x, a, ϕ).

For an arbitrary morphism (θ1, θ2) : (x, a, ϕ) // (x′, a′, x′) we have

εB(F (ψA)(θ1, θ2)) = εB(θ1, (α(θ2), η
θ2))

= κa
′

(θ1) ◦ η
θ2
(x,ϕ)

= (θ1, 1a′) ◦ (1x, θ2) = (θ1, θ2).

This shows that εB ◦ F (ψA) = 1f↓α. The second component in (26) is

(εB ∗ iF (ψA) ⊙ F (ψA))(x,a,ϕ) = (εB)F (ψA)(x,a,ϕ)F (ψA)(x,a,ϕ)

= (εB)(x,ψ
A

(a),(ψA)a◦ϕ) ◦ 1x

= (εB)(x,(α(a),(κa ,τa)),1α(a)◦ϕ)

= τa(x, ϕ) = 1x.

But 1x = 1
p

f,α
1

(x, a, ϕ) = (i
p

f,α
1

)(x,a,ϕ). Thus

θA = (1f↓α, ipf,α
1

) = 1A.

Next consider σ. Let A and B be arbitrary and let h : A // B. Then
since εf+ is 2-natural we have by Remark 3.20

(σA,B)h = i(εf+)B ∗ ((f+ρ)A,B)h. (27)

and
(σA,B)h : (f+)A,B(h) ◦ θA =⇒ θB ◦ (f+)A,B(h).

Since θC = 1C for all C we have

(σA,B)h : (f+)A,B(h) =⇒ (f+)A,B(h).

Consider an arbitrary (x, a, ϕ). Then by (27)

((σA,B)h)(x,a,ϕ) = (εf+)B(ω(x,a,ϕ))

where
ω = ((f+ρ)A,B)h = f+

A,(Πf◦f
+)(B)

((ρA,B)h)

and
(ρA,B)h : (Πf ◦ f

+)A,B ◦ ψA =⇒ ψB ◦ h. (28)

Denote the domain and codomain in (28) by q and r respectively. We need
to find the data for (21) so we compute domain and codomains for

ω(x,a,ϕ) = (1x, (ha, iF (h)κa)) : (x, q(a), qa ◦ ϕ) // (x, r(a), ra ◦ ϕ).
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Here we have
q
a

= P (F (h), F (h))(α(a),κa ,τa) = 1α(a)

and r(a) = (β(h(a)), (κh(a), τh(a))). Thus

(εf+)B(ω(x,a,ϕ)) = εf+B((1x, (ha, iF (h)κa)))

= κh(a)(1x) ◦ (iFκa)(x,ϕ)

= (1x, 1h(a)) ◦ 1F (h)κa(x,ϕ)

= 1F (h)(x,a,ϕ)

= (iF (h))(x,a,ϕ).

This shows (σA,B)h = iF (h), so (θ, σ) is indeed the lax version of the identity
2-natural transformation.

We now prove the second triangular equality, by computing the compo-
sition

(ξ, ζ) = (Πf )ε⊙ (ψ, ρ)Πf : Πf
// (Πf ◦ f

+ ◦ Πf ) // Πf . (29)

Then for a given A

ξA = (P (εA) ◦ ψ
C
, P (ψA) ∗ iψ

C

⊙ ψC), (30)

where C = Πf (A). We examine the first component, a functor. For an
object (y, h) ∈ Πf (α)

P (εA)(ψ
C

(y, h)) = P (εA)(πf (α)(y, h), (κ(y,h), τ (y,h)))

= (y, (εA ◦ κ(y,h), εA ∗ iκ(y,h) ⊙ τ (y,h)))

= (y, (h, h)) = (y, h).

The third step follows because of the equations (31, 32, 33)

εA(κ(y,h)(x, ϕ)) = εA((x, (y, h), ϕ)) = h(x, ϕ) (31)

for (x, ϕ) ∈ f−1(y). For β : (x, ϕ) // (x′, ϕ′) in f−1(y), and so κ(y,h)(β) :
(x, (y, h), ϕ) // (x′, (y, h), ϕ′), we have

εA(κ(y,h)(β)) = εA((β, 1(y,h))) = εA((β, (1y , ih))) = h(β) ◦ (ih)(x,ϕ) = h(β).
(32)

For (x, ϕ) ∈ f−1(y)

(εA∗iκ(y,h)⊙τ (y,h))(x,ϕ) = (εA)κ(y,h)(x,ϕ)τ
(y,h)
(x,ϕ) = (εA)(x,(y,h),ϕ) = h(x,ϕ). (33)

This proves that the first component is the identity on objects. As for
morphisms consider (θ, δ) : (y, h) // (y′, h′)

P (εA)(ψ
C

(θ, δ)) = P (εA)(θ, η(θ,δ)) = (θ, iε
A
∗ η(θ,δ)) (34)
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Now η
(θ,δ)
(x,ϕ) = (1x, (θ, δ)) : (x, (y, h), ϕ) // (x, (y′, h′), ϕ) so

(iε
A
∗ η(θ,δ))(x,ϕ) = εA((1x, (θ, δ))) = h′(1x) ◦ δ(x,ϕ) = δ(x,ϕ).

Thus (34) is (θ, δ) and consequently

P (εA) ◦ ψ
C

= 1Πf (α).

We now consider the second component in (30):

(P (ψA) ∗ iψ
C

⊙ ψC))(y, h) = P (ψA)ψ
C

(y,h)(ψC)(y,h)

= P (ψA)(y, (κ
(y,h), τ (y,h))) ◦ 1πf (α)(y,h)

= 1y ◦ 1πf (α)(y,h)

= 1πf (α)(y,h) = (iπf (α))(y,h).

Thus
ξA = (1Πf (α), iπf (α)) = 1Πf (A).

Finally, we compute ζ. For q : A // B we have

ζ ′ = (ζA,B)q : H(q) ◦ ξA =⇒ ξB ◦H(q),

where H(q) = (Πf )A,B. Noting that ξA = 1A and ξB = 1B we get ζ ′ :
H(q) =⇒ H(q) and so

ζ ′ : P (q) =⇒ P (q),

Since Πfε is strict 2-natural we may, according to Remark 3.20, compute

ζ ′ = i(Πf ε)B ∗ ((ρΠf )A,B)q = iP (εB) ∗ (ρΠf (A),Πf (B))r

where r = H(q). Thus

(ζ ′)(y,h) = P (εB)(((ρΠf (A),Πf (B))r)(y,h))

= P (εB)(P (r)(y,h), iF (r)κ(y,h))

= (P (r)(y,h), iεB ∗ iF (r)κ(y,h))

= (1y, iε
B
◦F (r)κ(y,h))

The last component can be simplified as follows: consider an arbitrary (x, ϕ)

εB(F (r)(κ(y,h)(x, ϕ))) = εB(F (r)(x, (y, h), ϕ))

= εB(x, r(y, h), r(y,h) ◦ ϕ))

= εB(x, (y, (qh, q ∗ ih ⊙ h)), 1y ◦ ϕ))

= qh(x, ϕ)
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On the other hand,

(iH(q))(y,h) = (iP (q))(y,h)

= 1P (q)(y,h)

= 1(y,(qh,q∗ih⊙h))

= (1y, iqh)

= ζ ′(y,h)

Hence
ζ ′ = iH(q)

which shows that (ξ, ζ) a lax version of the identity 2-functor as well.

6 Further work

There are several further type constructions [8] whose counterpart in G might
be worth investigating, if they exist. For instance, general inductive and
recursive types, in particular the type of well-founded trees with infinite
branching, and universes closed under type construction. Whether there
exists some counterpart to the subobject classifier seems also to be an inter-
esting question.
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