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Abstract

We propose new approaches to construct models of the physics beyond the Standard Model
using two-sphere(S2) as the extra dimensional space. Especially, we are interested in Gauge-Higgs
Unification models and Universal Extra Dimensional models and construct models based on these
ideas with S2 extra space. We analyze a gauge-Higgs unification model which is based on a gauge
theory defined on a six-dimensional spacetime with an S2 extra-space. We impose a symmetry
condition for a gauge field and non-trivial boundary conditions of the S2. We provide the scheme
for constructing a four-dimensional theory from the six-dimensional gauge theory under these con-
ditions. We then construct a concrete model based on an SO(12) gauge theory with fermions which
lie in a 32 representation of SO(12), under the scheme. This model leads to a Standard-Model(-like)
gauge theory which has gauge symmetry SU(3) × SU(2)L × U(1)Y (× U(1)2) and one generation of
SM fermions, in four-dimensions. The Higgs sector of the model is also analyzed, and it is shown
that the electroweak symmetry breaking and the prediction of W-boson and Higgs-boson masses
are obtained. The former attempts of constructing Gauge-Higgs Unification models are also intro-
duced, which are based on Coset Space Dimensional Reduction scheme. The new Universal Extra
Dimensional model is also constructed, which is defined on a six-dimensional spacetime with two-
sphere orbifold S2/Z2 as an extra-space. We specify our model by choosing the gauge symmetry
as SU(3)×SU(2)×U(1)Y ×U(1)X , introducing field contents in six-dimensions as their zero modes
correspond to the Standard model particles, and determining a boundary condition of these fields
on orbifold S2/Z2. A background gauge field that belongs to U(1)X is introduced there, which
is necessary to obtain massless chiral fermions in four-dimensional spacetime. We then analyze
Kaluza-Klein(KK) mode expansion of the fields in our model and derive the mass spectrum of the
KK particles. We find that the lightest KK particles are the 1st KK particle of massless gauge
bosons at tree level. We also discuss the KK parity of the KK modes in our model and confirm the
stability of the lightest KK particle which is important for dark matter physics.
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1 Introduction

The Standard Model(SM) has been successful in describing phenomenology of the elementary particle
physics up to the energy of order Tev. Not only did it explain experimental results but it also gave us
deeper insights that gauge symmetry governs the interactions among the particles and its spontaneous
breaking rises particle masses. The SM, however, is not a satisfactory model since the choice of the
gauge group and the contents of the particles are input of the model, and there are at least 18 parameters
in the model even without neutrino mass and lepton mixing. Furthermore, there seem to be several
problems in the SM, e.g. the hierarchy problem, lack of the candidate of dark mater, and so on. Thus
it is suggested that the physics beyond the SM would appear around Tev scale and the SM is an
effective theory originated from this high energy physics. We, therefore, are motivated to construct a
model describing the physics beyond the SM which solve above problems. Among these problems, the
hierarchy problem strongly drives physicists to construct a model beyond the SM. We need to explain
the stability of the weak scale to solve the problem. For such an explanation, supersymmetry has been
mostly employed and the consequence of these models are extensively explored. There are also other
mechanisms, say, little higgs, extra dimensions, and so on. These have not been intensively studied
compared to supersymmetric models. Furthermore there is still a room for new type of models. Since
the Large Hadron Collider experiment is about to operate, which will explore the physics at TeV scale,
it is urgent to investigate all the possible models at that scale.

Among these approaches, a physics beyond the SM with extra-dimension is very interesting. We, es-
pecially, are interested in Universal Extra Dimensional(UED) models and Gauge-Higgs Unification(GHU)
models and provide new approaches to construct these models.

The gauge-Higgs unification is one of the attractive approaches to the physics beyond the SM since
it provides origin of the Higgs sector in the SM [1, 2, 3] (for recent approaches, see Refs. [4, 5, 6,
7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]). In this approach, the Higgs particles originate
from the extra-dimensional components of the gauge field of a gauge theory defined on spacetime with
dimensions larger than four. Thus the Higgs sector is embraced into the gauge interactions in the
higher-dimensional spacetime and part of the fundamental properties of Higgs scalar is determined from
the gauge interactions. We then would obtain the Higgs sector described by fewer free parameter than
the SM one and this Higgs sector is expected to be predictive.

Coset Space Dimensional Reduction (CSDR) scheme is one of the attractive approaches to construct
a GHU model in this regard [1, 21, 22, 23, 24, 25]. This scheme introduces a compact extra dimensional
space which has the structure of a coset of Lie groups, S/R. The Higgs field and the gauge field of the
SM are merged into a gauge field of a gauge group G in the higher-dimensional spacetime. The SM
fermions are unified into a representation of this gauge group. The particle contents surviving in four
dimensional theory are determined by the identification of the gauge transformation as a rotation within
the extra-dimensional space. The four dimensional gauge symmetries are determined by embedding of
R into G. Since the Higgs originates from extra dimensional components of the gauge field, the Higgs
and Yukawa sectors in four dimensional Lagrangian are uniquely determined. Furthermore, as shown in
Ref. [27, 28, 29, 30], it is possible to obtain chiral fermions when total dimension, D, of the spacetime
is even. The chiral fermions can be obtained even from (pseudo)real representations in D = 8n + 2
(D = 8n + 6) [27, 30].

Gauge theories in six- and ten-dimensional spacetime with simple gauge group are well investigated
within the CSDR scheme. No known model, however, reproduced the particle content of the SM or
Grand Unified Theory (GUT) [1, 22, 31, 32, 33, 34, 35, 36, 37, 38]. We then introduce new attempts
to construct GHU model within the CSDR scheme. These approaches are based on extending the
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dimensionality of the space time and candidate of the gauge group; we applied a fourteen-dimensional
gauge theory and an eight-dimensional gauge theory as former approach and direct product gauge group
in ten-dimensions as latter approach. We also show difficulties in constructing a realistic model in these
attempts.

We then provide a new approach of GHU model based on a gauge theory defined on the six-
dimensional spacetime with the extra-space which has the structure of two-sphere S2 to overcome some of
the difficulties. We can impose on the fields of this gauge theory the symmetry condition which identifies
the gauge transformation as the isometry transformation of S2 as in the CSDR scheme [1, 21, 22, 23, 24]
, since the S2 has the coset space structure such as S2=SU(2)/U(1). We then impose on the gauge field
the symmetry in order to carry out the dimensional reduction of the gauge sector. The dimensional
reduction is explicitly carried out by applying the solution of the symmetry condition, and a background
gauge field is introduced as a part of the solution of the symmetry condition [1]. We obtain, by the
dimensional reduction, the scalar sector with a potential term which leads to spontaneous symmetry
breaking. The symmetry also restricts the gauge symmetry and the scalar contents originated from extra
guage field components in four-dimensions. We, however, do not impose the symmetry on the fermion of
the gauge theory, in contrast to other CSDR models. We then have massive Kaluza-Klein(KK) modes
of fermion in four-dimensions while gauge and scalar fields have no massive KK mode, and would obtain
a dark-matter candidate. Generally, the KK modes do not have massless mode because of positive
curvature of S2 [39]. We, however, obtain a massless KK mode because of existence of background
gauge field; the fermion components which have the massless mode are determined by the background
gauge field.

We also impose on fields of a six-dimensional theory the non-trivial boundary conditions of S2

together with the symmetry condition in order to overcome the difficulty of breaking a GUT gauge
symmetry. A GUT gauge symmetry can be broken to SM gauge symmetry by the non-trivial boundary
conditions (for cases with orbifold extra-space, see for example [4, 5, 6, 7, 8, 11, 12, 16, 17, 18, 40, 41]).

We then analyze the gauge theory defined on the six-dimensional spacetime which has S2 as extra-
space, with the symmetry condition and non-trivial boundary conditions. The gauge symmetry, scalar
contents and massless fermion contents are determined by the symmetry condition and the boundary
conditions. First, we provide the scheme for constructing a four-dimensional theory from the six-
dimensional gauge theory. We then construct the model based on SO(12) gauge symmetry and show
that SM-Higgs doublet and one generation of massless fermions are obtained in four-dimensions. We also
find that the electroweak symmetry breaking is realized and Higgs mass value is predicted by analyzing
Higgs sector of the model.

The UED model is the extension of the SM to higher-dimensional spacetime and all the SM particles
propagate extra dimensions [42, 43]. Indeed the minimal version of UED has recently been studied
very much. It is a model with one extra dimension defined on an orbifold S1/Z2. This orbifold is
given by identifying the extra spatial coordinate y with −y and hence there are fixed points y = 0, π.
By this identification chiral fermions are obtained. It is shown that this model is free from the current
experimental constraints if the scale of extra dimension 1/R, which is the inverse of the compactification
radius R, is larger than 400 GeV [42, 44]. The dark matter can be explained by the first or second
Kaluza-Klein (KK) mode [45], which is often the first KK photon, and this model can be discriminated
from other models [46]. This model also can give plausible explanations for SM neutrino masses which
are embedded in extended models [47].

The UED models with more than five dimensions have not been studied extensively despite the fact
that it can explain some problems in the SM. The six dimensional models are particularly interesting. It
is known that the number of the generations of quarks and leptons is derived by anomaly cancellations
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[48] and the proton stability is guaranteed by a discrete symmetry of a subgroup of 6D Lorentz symmetry
[49]. Since the above UED model was proposed as a six dimensional model with extra dimensions of
T 2/Z2, it is very interesting to pursue six dimensional models with an alternative compactification.

As a physically intriguing example, there is a model with two dimensional compact space S2, which
has so far received a little attention (see for some works in this direction on the Einstein-Maxwell theory
[50, 51] and the gauge-Higgs unification [1, 52, 53]). In models with two spheres, it is well known
that fermions cannot be massless because of the positive curvature and hence they have a mass of
O(1/R) [54, 39]. We cannot overcome the theorem simply by the orbifolding of the extra spaces. In
another words, we have no massless fermion on the curved space with positive curvature, but we know
a mechanism to obtain a massless fermion on that space by introducing a nontrivial background gauge
field [55, 50]. The nontrivial background gauge field can cancel the spin connection term in the covariant
derivative. As a result, a massless fermion naturally appears. Furthermore, we note that the background
gauge field configuration is energetically favorable since the background gauge kinetic energy lowers a
total energy. In order to realize chiral fermions, the orbifolding is required, for instance.

We provide here a new type of UED with S2 extra dimensions. We will show that we can construct
a model in six dimensions with S2/Z2 extra space. We extend the SM to the space, employ the method
of background, and acquire chiral fermions. Due to this orbifolding, all the bosons of the SM can be
massless in the SU(2) limit. This means the lowest states are completely consistent with the SM as
they should be. Furthermore, there are KK modes for each particle, and the lightest mode among them
is stable due to the KK parity originated from the orbifolding. Besides the complexity stemming from
the structure of S2 instead of S1, the feature is quite similar up to the first KK mode. The difference
appears from the second KK modes.

2 Gauge-Higgs Unification Model using Coset Space Dimen-
sional Reduction

2.1 The brief review of Coset Space Dimensionla Reduction

In this subsection, we recapitulate the scheme of the coset space dimensional reduction (CSDR) and the
construction of the four-dimensional theory by CSDR [22].

2.1.1 General case

We begin with a gauge theory with a gauge group G defined on a D-dimensional spacetime MD. The
spacetime MD is assumed to be a direct product of the four-dimensional spacetime M4 and a compact
coset space S/R such that MD = M4 × S/R, where S is a compact Lie group and R is a Lie subgroup
of S. The dimension of the coset space S/R is thus d ≡ D − 4, implying dimS − dim R = d. This
assumption on the structure of extra-dimensional space requires the group R to be embedded into the
group SO(d), which is a subgroup of the Lorentz group SO(1, D − 1). Let us denote the coordinates of
MD by XM = (xµ, yα), where xµ and yα are coordinates of M4 and S/R, respectively. The spacetime
index M runs over µ ∈ {0, 1, 2, 3} and α ∈ {4, 5, · · · , D − 1}. We define the vielbein eM

A which relates
the metric of the manifold MD (the bulk spacetime), denoted by gMN (X), and that of the tangent space
TXMD (the local Lorentz frame), denoted by hAB(X), as gMN = eM

AeN
BhAB . Here A = (µ, a), where

a ∈ {4, · · · , D}, is the index for the coordinates of TXMD. We conventionally use µ, ν, λ, · · · to denote
the indices for M4; α, β, γ, · · · for the coset space S/R; a, b, c, · · · for the algebra of the group S/R;
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M,N, · · · for (µ, α); and A,B for (µ, a). We introduce a gauge field AM (x, y) = (Aµ(x, y), Aα(x, y)),
which belongs to the adjoint representation of the gauge group G, and fermions ψ(x, y), which lies in a
representation F of G. The action S of this theory is given by

S =
∫

dDX
√
−g

×
(
− 1

8
gMNgKL TrFMK(X)FNL(X)

+
1
2
iψ̄(X)ΓAeA

MDMψ(X)
)
,

(2.1)

where g = det gMN , FMN (X) = ∂MAN (X) − ∂NAM (X) − [AM (X), AN (X)] is the field strength, DM

is the covariant derivative on MD, and ΓA is the generators of the D-dimensional Clifford algebra.
The extra-dimensional space S/R admits S as an isometric transformation group, and we impose

on AM (X) and ψ(X) the following symmetry under this transformation in order to carry out the
dimensional reduction [21, 57, 58, 59, 60, 61]. Consider a coordinate transformation which acts trivially
on x and gives rise to a S-transformation on y as

(x, y) → (x, sy), (2.2)

where s ∈ S. We require that this coordinate transformation Eq. (2.2) should be compensated by a
gauge transformation. This symmetry, connecting nontrivially the coordinate and gauge transformation,
requires R to be embedded into G. The symmetry further leads to the following set of the symmetric
condition on the fields:

Aµ(x, y) = g(y; s)Aµ(x, s−1y)g−1(y; s), (2.3a)

Aα(x, y) = g(y; s)Jα
βAβ(x, s−1y)g−1(y; s)

+ g(y; s)∂αg−1(y; s), (2.3b)

ψ(x, y) = f(y; s)Ωψ(x, s−1y), (2.3c)

where g(y; s) and f(y; s) are gauge transformations in the adjoint representation and in the representa-
tion F , respectively, and Jα

β and Ω are the rotation in the tangent space for the vectors and spinors,
respectively. These conditions of Eq. (2.3) make the D-dimensional Lagrangian invariant under the
S-transformation of Eq. (2.2) and therefore independent of the coordinate y of S/R. The dimensional
reduction is then carried out by integrating over the coordinate y to obtain the four-dimensional La-
grangian. The four-dimensional theory consists of the gauge fields Aµ, fermions ψ, and in addition the
scalars ϕa ≡ ea

αAα.The gauge group reduces to a subgroup H of the original gauge group G. The dimen-
sional reduction under the symmetric condition Eq. (2.3) and the assumption hAB = diag (ηµν ,−gab),
where ηµν = diag (1,−1,−1,−1) and gab = diag (a1, a2, · · · , ad) with ai’s being positive, leads to the
four-dimensional effective Lagrangian Leff given by

Leff = − 1
4
F t

µνF tµν +
1
2
(Dµϕa)t(Dµϕa)t + V (ϕ)

+
1
2
iψ̄ΓµDµψ +

1
2
iψ̄Γaea

αDαψ,

(2.4)

where t is the index for the generators of the gauge group G. It is notable that the Lagrangian Eq. (2.4)
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includes the scalar potential V (ϕ), which is completely determined by the group structure as

V (ϕ) = −1
4
gacgbd

×Tr
[(

fab
CϕC − [ϕa, ϕb]

)(
fcd

DϕD − [ϕc, ϕd]
)]

, (2.5)

where C and D runs over the indices of the algebra of S, and fab
C is the structure constants of the

algebra of S. This potential may cause the spontaneous symmetry breaking, rendering the final gauge
group K a subgroup of the group H.

The scheme of CSDR substantially constrains the four-dimensional gauge group H and its represen-
tations for the particle contents as shown below. First, the gauge group of the four-dimensional theory
H is easily identified as

H = CG(R), (2.6)

where CG(R) denotes the centralizer of R in G [21]. Note that this implies G ⊃ H × R up to the
U(1) factors. Secondly, the representations of H for the Higgs fields are specified by the following
prescription. Suppose that the adjoint representations of R and G are decomposed according to the
embeddings S ⊃ R and G ⊃ H × R as

adjS = adjR +
∑

s

rs, (2.7)

adjG = (adjH, 1) + (1, adjR) +
∑

g

(hg, rg), (2.8)

where rss and rgs denote representations of R, and hgs denote representations of H. The representation
of the scalar fields are hgs whose corresponding rgs in the decomposition Eq. (2.8) are contained also in
the set {rs}. Thirdly, the representation of H for the fermion fields are determined as follows [64]. Let
the group R be embedded into the Lorentz group SO(d) in such a way that the vector representation d
of SO(d) is decomposed as

d =
∑

s

rs, (2.9)

where rs are the representations obtained in the decomposition Eq. (2.9). This embedding specifies a
decomposition of the spinor representation σd of SO(d) into irreducible representations σis of R as

σd =
∑

i

σi. (2.10)

Now the representations of H for the four-dimensional fermions are found by decomposing F according
to G ⊃ H × R as

F =
∑

f

(hf , rf ). (2.11)

The representations of our interest are hf s whose corresponding rf s are found in {σi} obtained in
Eq. (2.10). Note that a phenomenologically acceptable model needs chiral fermions in the four dimen-
sions as the SM does. This is possible only when the coset space S/R satisfies rank S = rankR, according
to the non-trivial result due to Bott [63]. The chiral fermions are then obtained most straightforwardly
when we introduce a Weyl fermion in D = 2n (n = 1, 2, · · · ) dimensions and F is a complex representa-
tion [27, 28, 29, 30]. Interestingly, they can be obtained even if F is real or pseudoreal representation,
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provided D = 4n + 2 [27, 30]. The four-dimensional fermions are doubled in these cases, and these
extra fermions are eliminated by imposing the Majorana condition on the Weyl fermions in D = 4n + 2
dimensions[27, 30]. From this condition we get chiral fermions for D = 8n + 2 (8n + 6) when F is real
(pseudoreal). It is therefore interesting to consider D = 6, 10, 14, 18, · · · .

Here we mention the effect of gravity. When we include the effect of gravity and consider dynamics
of an extra-space we would find the difficulty to obtain stable extra space. This is the common difficulty
of extra-dimensional models and some works have been done on this point. For example it is discussed
in terms of radion fields which are the scalar fields originated from higher-dimensional components of
metric after compactification [31],[32]. The effect of gravity to CSDR scheme is also discussed in [4], [5].
Although we agree that the effect of gravity is important, we do not discuss about the effect of gravity
in this letter since it is beyond the scope of this letter.

2.1.2 The case of ten-dimensional spacetime with direct product gauge group

In this section, we briefly recapitulate the scheme of the coset space dimensional reduction in ten
dimensions with a direct product gauge group [22, 56].

We begin with a gauge theory defined on a ten-dimensional spacetime M10 with a gauge group
G = G1×G2 where G1 and G2 are simple Lie groups. Here M10 is a direct product of a four-dimensional
spacetime M4 and a compact coset space S/R, where S is a compact Lie group and R is a Lie subgroup of
S. The dimension of the coset space S/R is thus 6 ≡ 10−4, implying dimS−dim R = 6. This structure
of extra-dimensional space requires the group R to be embedded into the group SO(6), which is a
subgroup of the Lorentz group SO(1, 9). Let us denote the coordinates of M10 by XM = (xµ, yα), where
xµ and yα are coordinates of M4 and S/R, respectively. The spacetime index M runs over µ ∈ {0, 1, 2, 3}
and α ∈ {4, 5, · · · , 9}. We introduce, in this theory, a gauge field AM (x, y) = (Aµ(x, y), Aα(x, y)), which
belongs to the adjoint representation of the gauge group G, and fermions ψ(x, y), which lies in a
representation F of G.

The extra-dimensional space S/R admits S as an isometric transformation group as discussed in
sec. 2.1.1. The symmetry condition of CSDR is imposed on AM (X) and ψ(X) in order to carry out the
dimensional reduction as discussed in sec. 2.1.1 [21, 57, 58, 59, 60, 61].

The gauge symmetry and particle contents of the four-dimensional theory are substantially con-
strained by the CSDR scheme. We provide below the prescriptions to identify the four-dimensional
gauge group H and its representations for the particle contents in direct product gauge group case.

First, the gauge group of the four-dimensional theory H is easily identified as Eq. (2.6) where CG(R)
denotes the centralizer of R in G = G1×G2 [21]. Thus the four dimensional gauge group H is determined
by the embedding of R into G. We then assume that R has also direct product structure R = R1×R2 so
that we can embed them into G1 and G2. Here, R1 and R2 are not necessarily simple. We also assume
that four dimensional gauge groups H is obtained from only G1 up to U(1) factors. This assumption
ensures the coupling unification if H is the gauge group of the SM. These conditions imply

G = G1 × G2, (2.12)
R = R1 × R2, (2.13)
G1 ⊃ H × R1, (2.14)
G2 ⊃ R2, (2.15)

up to U(1) factors.
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Secondly, the representations of H for the scalar fields are specified by the following prescription.
Let us decompose the adjoint representation of S according to the embedding S ⊃ R1 × R2 as,

adj S = (adj R1,1) + (1, adj R2) +
∑

s

(r1s, r2s), (2.16)

where r1s and r2s are representations of R1 and R2, respectively. We then decompose the adjoint
representation of G1 and G2 according to the embeddings G1 ⊃ H × R1 and G2 ⊃ R2, respectively;

adj G1 = (adj H,1) + (1, adj R1) +
∑

g

(hg, r1g), (2.17)

adj G2 = adj R2 +
∑

g

r2g, (2.18)

where r1gs and r2gs denote representations of R1 and R2, and hgs denote representations of H. The
decomposition of adjG thus becomes

adj G =(adj G1,1) + (1, adj G2)
=(adj H,1,1) + (1, adj R1,1) + (1,1, adj R2)

+
∑

g

(hg, r1g,1) +
∑

g

(1,1, r2g). (2.19)

The representation of the scalar fields are hgs whose corresponding (r1g,1)s in the decomposition
Eq. (2.19) are contained also in the set {(r1s, r2s)} in Eq. (2.16). Note that the trivial representa-
tion 1s also remain in four-dimensions if corresponding (1, r2g)s of Eq. (2.19) are also contained in the
set {(r1s, r2s)} in Eq. (2.16).

Thirdly, the representation of H for the fermion fields is determined as follows [64]. Let the group R
be embedded into the Lorentz group SO(6) in such a way that the vector representation 6 of SO(6) is
decomposed as 6 =

∑
s(r1s, r2s), where r1s and r2s are the representations obtained in the decomposition

Eq. (2.16). This embedding specifies a decomposition of the Weyl spinor representations 4(4̄) of SO(6)
under SO(6) ⊃ R1 × R2 as

4 =
∑

i

(σ1i, σ2i)
(
4̄ =

∑
i

(σ1i, σ2i)
)

, (2.20)

where σ1i(σ1i)s and σ2i(σ2i)s are irreducible representations of R1 and R2. We then decompose the
SO(1, 9) Weyl spinor 16 according to (SU(2) × SU(2))(≈ SO(1, 3)) × SO(6) as

16 = (2,1,4) + (1,2, 4̄), (2.21)

where (2,1) and (1,2) representations of SU(2) × SU(2) correspond to left- and right-handed spinors,
respectively. We now decompose a representation F of the gauge group G. We take F1 and F2 to be a
representation of G1 and G2 for the fermions in ten-dimensional spacetime. Decompositions of F1 and
F2 are

F1 =
∑

f

(hf , r1f ), (2.22)

F2 =
∑

f

r2f , (2.23)
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Table 1: A complete list of six-dimensional coset spaces S/R with rankS = rankR [22]. The brackets
in R clarifies the correspondence between the subgroup of R and the subgroup of S. The factor of R
with subscript “max” indicates that this factor is a maximal regular subgroup of S.

No. S/R

(i) Sp(4)/[SU(2) × U(1)]max
(ii) Sp(4)/[SU(2) × U(1)]non-max
(iii) SU(4)/SU(3) × U(1)
(iv) Sp(4) × SU(2)/[SU(2) × SU(2)] × U(1)
(v) G(2)/SU(3)
(vi) SO(7)/SO(6)
(vii) SU(3)/U(1) × U(1)
(viii) SU(3) × SU(2)/[SU(2) × U(1)] × U(1)

(ix) (SU(2)/U(1))3

under G1 ⊃ H × R1 and G2 ⊃ R2. Therefore the decomposition of F becomes

F =
∑

f

(hf , r1f , r2f ). (2.24)

The representations for the left-handed(right-handed) fermions are hf s whose corresponding (r1f , r2f )s
are found in {(σ1i, σ2i)}({(σ1i, σ2i)}) obtained in Eq. (2.20). Note that a phenomenologically acceptable
model needs chiral fermions in the four dimensions as the SM does. The chiral fermions are obtained
most straightforwardly when we introduce a complex representation of G as F [27, 28, 29, 30]. More
interesting is the possibility to obtain them if F is real representation, provided rankS = rankR [63].
A pair of Weyl fermions appears in a same representation in this case, and one of the pair is eliminated
by imposing the Majorana condition on the Weyl fermions [27, 30]. We thus apply the CSDR scheme
to complex or real representations of gauge group G for fermions.

Coset space S/R of our interest should satisfy rankS = rankR to generate chiral fermions in four
dimensions [63]. This condition limits the possible S/R to the coset spaces collected in Table 1 [22].
The R of coset (i) in Table 1 with subscript “max” indicates that this is the maximal regular subgroup
of the S. There, the correspondence between the subgroup of R and the subgroup of S is clarified by
the brackets in R. For example, the coset space (iv) suggests direct product of Sp(4)/SU(2) × SU(2)
and SU(2)/U(1).

2.1.3 The case of eight-dimensional spacetime

In this section, we briefly recapitulate the scheme of the coset space dimensional reduction in eight
dimensions [22, 62].

We begin with a gauge theory defined on an eight-dimensional spacetime M8 with a simple gauge
group G. Here M8 is a direct product of a four-dimensional spacetime M4 and a compact coset space
S/R, where S is a compact Lie group and R is a Lie subgroup of S. The dimension of the coset space
S/R is thus 4 ≡ 8− 4, implying dimS − dim R = 4. This structure of extra-dimensional space requires
the group R be embedded into the group SO(4), which is a subgroup of the Lorentz group SO(1, 7). Let
us denote the coordinates of M8 by XM = (xµ, yα), where xµ and yα are coordinates of M4 and S/R,
respectively. The spacetime index M runs over µ ∈ {0, 1, 2, 3} and α ∈ {4, 5, 6, 7}. In this theory, we
introduce a gauge field AM (x, y) = (Aµ(x, y), Aα(x, y)), which belongs to the adjoint representation of
the gauge group G, and fermions ψ(x, y), which lies in a representation F of G.

11



The extra-dimensional space S/R admits S as an isometric transformation group as discussed in
sec. 2.1.1. The symmetry condition of CSDR is imposed on AM (X) and ψ(X) in order to carry out the
dimensional reduction as discussed in sec. 2.1.1 [21, 57, 58, 59, 60, 61].

The gauge symmetry and particle contents of the four-dimensional theory are substantially con-
strained by the CSDR scheme. We provide below the prescriptions to identify the four-dimensional
gauge group H and its representations for the particle contents in eight-dimensional case.

First, the gauge group of the four-dimensional theory H is easily identified as Eq. (2.6) [21]. Thus
the four dimensional gauge group H is determined by the embedding of R into G. These conditions
imply

G ⊃ H × R, (2.25)

up to U(1) factors.
Second, the representations of H for the scalar fields are specified by the following prescription. Let

us decompose the adjoint representation of S according to the embedding S ⊃ R as,

adj S = adj R +
∑

s

rs. (2.26)

We then decompose the adjoint representation of G according to the embeddings G ⊃ H × R;

adj G = (adj H,1) + (1, adj R) +
∑

g

(hg, rg), (2.27)

where rgs and hgs denote representations of R and H, respectively. The representation of the scalar
fields are hgs whose corresponding rgs in the decomposition Eq. (2.27) are also contained in the set {rs}
in Eq. (2.26).

Third, the representation of H for the fermion fields is determined as follows [64]. The SO(1, 7) Weyl
spinor 8 is decomposed under its subgroup (SU(2)L×SU(2)R)(≃ SO(1, 3))×(SU(2)1×SU(2)2)(≃ SO(4))
as

8 = (2L,1,21,1) + (1,2R,1,22), (2.28)

where (2L,1) and (1,2R) representations of SU(2)L × SU(2)R correspond to left- and right-handed
spinors, respectively. The group R is embedded into the Lorentz (SO(1, 7)) subgroup SO(4) in such
a way that the vector representation 4 of SO(4) is decomposed as 4 =

∑
s rs, where rss are the

representations obtained in the decomposition Eq. (2.26). This embedding specifies a decomposition of
the spinor representations (21,1)((1,22)) of SU(2)1 × SU(2)2 ⊃ R as

(21,1) =
∑

i

(σ1i)
(

(1,22) =
∑

i

(σ2i)
)

. (2.29)

We now decompose representation F of the gauge group G for the fermions in eight-dimensional space-
time. Decomposition of F is

F =
∑

f

(hf , rf ), (2.30)

under G ⊃ H × R. The representations for the left-handed (right-handed) fermions are hf s whose
corresponding rf s are found in σ1i(σ2i) obtained in Eq. (2.29).

12



Table 2: A complete list of four-dimensional coset spaces S/R with rankS = rankR. We also list
the decompositions of the vector representation 4 and the spinor representation (21,1) + (1,22) of
SO(4) ≃ SU(2)1 × SU(2)2 under the Rs. The representations of rs in Eq. (2.26) and σ1i and σ2i in
Eq. (2.29) are listed in the columns of “Branches of 4” and “Branches of 2”, respectively.

S/R Branches of 4 Branches of 2

(i) Sp(4)/[SU(2) × SU(2)] (2, 2) (2, 1) and (1, 2)

(ii) SU(3)/[SU(2) × U(1)] 2(±1) 2(0) and 1(±1)

(iii) (SU(2)/U(1))2 (±1,±1) (±1, 0) and (0,±1)

A phenomenologically acceptable model needs chiral fermions in
four dimensions as the SM does. The SO(1, 7) spinor is not self-dual and its charge conjugate state

is in a different representation from itself. Thus the Majorana condition cannot be used to obtain
a chiral structure from a vectorlike representation of G. Therefore, we need to introduce complex
representation for eight-dimensional fermions. Thus eight-dimensional model possesses a completely
different feature from 4n + 2-dimensional models. We must work on complex representation for eight-
dimensional fermions.

Finally coset space S/R of our interest should satisfy rankS = rankR to generate chiral fermions
in four dimensions [63]. We list all of four-dimensional coset spaces S/R satisfying the condition and
decompositions of SO(4) spinor and vector representation in Table 2.

2.2 The search for models with CSDR

2.2.1 Models on fourteen-dimensional spacetime

In this section, we search for candidates of the coset space S/R, the gauge group G, and its representation
F for fermions in the spacetime of the dimensionality D = 14 for phenomenologically acceptable models
based on CSDR scheme [25]. Such models should induce a four-dimensional theory that has a gauge
group H ⊃ SU(3)×SU(2)×U(1), and accomodates chiral fermions contained in the SM. This requirement
constrains the D, S/R, G, F , and the embedding of R in G.

Number of dimensions D should be 2n in order to give chiral fermions in four dimensions. We are
particularly interested in the case of D = 4n+2, where chiral fermions can be obtained in four dimensions
even if F is real or pseudoreal. The simplest cases of D = 6 and 10 are well investigated. No known
model, however, reproduced the particle contents of the SM or GUT. [1, 22, 31, 32, 33, 34, 35, 36, 37, 38].
This is due to the small dimensionality of the vector and spinor representations of SO(d). It is difficult
when d = 2 and 6 to match rss from SO(d) vector and σis from SO(d) spinor with rgs from adj G
and rf s from F , respectively (see Eqs. (2.9)-(2.11)). We consider a higher-dimensional spacetime to
enlarge the dimensionality of SO(d) vector and spinor representations. More rgs and rf s will satisfy
the matching prescription, and hence richer particle contents are obtained. Another merit of higher-
dimensional spacetime is the increase of candidates of the coset space and thus of the gauge group. We
thus investigate next smallest dimensionality of D = 4n + 2, which is D = 14.

Coset space S/R of our interest should have dimension d = D−4 = 10, implying dimS−dim R = 10,
and should satisfy rankS = rankR to generate chiral fermions in four dimensions [63]. These conditions
limit the possible S/R to the coset spaces collected in Table 3. There the correspondence between the
subgroup of R and the subgroup of S is clarified by the brackets in R. For example, the coset space (2)
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suggests direct sum of SO(7)/SO(6) and Sp(4)/[SU(2)× SU(2)]. The factor of R with subscript “max”
indicates that this factor is a maximal regular subalgebra of S. For example, the coset (20) in Table 3
indicates that [SU(2) × U(1)]max is the maximal regular subgroup of Sp(4). We show the embedding
of R in SO(10) in Table 4. The representations of rs in Eq. (2.9) and σi in Eq. (2.10) are listed in the
columns of “Branches of 10” and “Branches of 16”, respectively.

The representation F of G for the fermions should be either complex or pseudoreal but not real,
since the fermions of real representation do not allow the Majorana condition when D = 14 and induces
doubled fermion contents after the dimensional reduction [27, 30]. Table 5 lists the candidate groups
G and their complex and pseudoreal representations. Here we consider the dimensions of fermion
representations less than 1025 since even larger representations yield numerous higher dimensional
representations of fermion, under the gauge group of the SM or GUTs, in the four-dimensions. The
representations in this table are the candidates of F .

We constrain the gauge group G by the following two criteria once we choose S/R out of the coset
spaces listed in Table 3. First, G should have an embedding of R whose centralizer CG(R) is appropriate
as a candidate of the four-dimensional gauge group H (recall Eq. (2.6)). In this paper, we consider the
following groups as candidates of H: the GUT gauge groups such as E6,SO(10), and SU(5); the SM
gauge group SU(3)×SU(2)×U(1); and those with an extra U(1). Secondly, we consider only the regular
subgroup of G when we decompose it to embed R. We then find that no candidate of G and S/R that
satisfy this requirement gives E6, E6 × U(1), and SU(5) as H. We notice that the number of U(1)’s in
R must be no more than that in H, since the U(1)’s in R is also a part of its centralizer, i.e. a part of
H. We can thus exclude (26) – (35) in Table 3. The candidates of G for each S/R satisfying the above
conditions are summarized in Table 6.

Careful consideration is necessary when there are more than one branch in decomposing G to its
regular subgroup H × R, since the different decomposition branches lead to different representations
of H and R. Two cases deserve close attention. The first is the decomposition of SO(2n + 1). It has
essentially two distinct branches of decomposition, one being

SO(2n + 1) ⊃ SO(2k0 + 1) ×
∏

i

SO(2ki). (2.31)

and the other being
SO(2n + 1) ⊃ SO(2n) ⊃

∏
i

SO(2ki), (2.32)

An example is the decomposition of Sp(4) ≃ SO(5) into SU(2) × U(1). One of the two branches of
decomposition is Sp(4) ⊃ SU(2)×U(1), which is equivalent to SO(5) ⊃ SO(3)×SO(2), corresponding to
Eq. (2.31). The other branch is Sp(4) ≃ SO(5) ⊃ SO(4) ≃ SU(2)×SU(2) ⊃ SU(2)×U(1), corresponding
to Eq. (2.32). The two branches of decomposition lead to different branching of the representations. The
second is the normalization of U(1) charge. The different normalizations provide different representations
of H for four-dimensional fields.

H = SO(10)(×U(1))

First we search for viable SO(10) models in four dimensions. We list below the combinations of S/R,
G and F that provide H = SO(10)(×U(1)) and the representations which contain field contents of the
SM for the scalars and the fermions. We indicate the coset S/R with its number assigned in Table 3
The embedding of R into G is shown for each candidates since this embedding uniquely determines all
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Table 3: A complete list of ten-dimensional coset spaces S/R with rankS = rankR. The brackets in R
clarifies the correspondence between the subgroup of R and the subgroup of S. The factor of R with
subscript “max” indicates that this factor is a maximal regular subalgebra of S.

No. S/R

(1) SO(11)/SO(10)
(2) SO(7) × Sp(4)/SO(6) × [SU(2) × SU(2)]
(3) G2 × Sp(4)/SU(3) × [SU(2) × SU(2)]
(4) SU(6)/SU(5) × U(1)
(5) SO(9) × SU(2)/SO(8) × U(1)
(6) SO(7) × SU(3)/SO(6) × [SU(2) × U(1)]
(7) SU(4) × Sp(4)/[SU(3) × U(1)] × [SU(2) × SU(2)]
(8) (Sp(4))2 × SU(2)/[SU(2) × SU(2)]2 × U(1)
(9) G2 × SU(3)/SU(3) × [SU(2) × U(1)]
(10) Sp(4) × Sp(4)/[SU(2) × U(1)]max × [SU(2) × SU(2)]
(11) Sp(4) × Sp(4)/[SU(2) × U(1)]non-max × [SU(2) × SU(2)]
(12) Sp(6) × SU(2)/[Sp(4) × SU(2)] × U(1)
(13) G2 × SU(2)/SU(2) × SU(2) × U(1)
(14) Sp(6)/Sp(4) × U(1)
(15) G2/SU(2) × U(1)
(16) Sp(4) × SU(3) × SU(2)/[SU(2) × SU(2)] × [SU(2) × U(1)] × U(1)
(17) SU(4) × SU(3)/[SU(3) × U(1)] × [SU(2) × U(1)]
(18) SO(7) × (SU(2))2/SO(6) × (U(1))2

(19) SU(5) × SU(2)/[SU(4) × U(1)] × U(1)
(20) Sp(4) × SU(3)/[SU(2) × U(1)]max × [SU(2) × U(1)]
(21) Sp(4) × SU(3)/[SU(2) × U(1)]non-max × [SU(2) × U(1)]
(22) SU(3) × Sp(4)/[U(1) × U(1)] × [SU(2) × SU(2)]
(23) SU(4) × SU(2)/SU(2) × SU(2) × U(1) × U(1)
(24) G2 × (SU(2))2/SU(3) × (U(1))2

(25) SU(4)/SU(2) × U(1) × U(1)
(26) Sp(4) × (SU(2))3/[SU(2) × SU(2)] × (U(1))3

(27) (SU(3))2 × SU(2)/[SU(2) × U(1)]2 × U(1)
(28) SU(4) × (SU(2))2/[SU(3) × U(1)] × (U(1))2

(29) Sp(4) × (SU(2))2/[SU(2) × U(1)]max × (U(1))2

(30) Sp(4) × (SU(2))2/[SU(2) × U(1)]non-max × (U(1))2

(31) SU(3) × SU(3)/[U(1) × U(1)] × [SU(2) × U(1)]
(32) Sp(4) × SU(2)/[U(1) × U(1)] × U(1)
(33) SU(3) × (SU(2))3/[SU(2) × U(1)] × (U(1))3

(34) (SU(2)/U(1))5

(35) SU(3) × (SU(2))2/[U(1) × U(1)] × (U(1))2
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Table 4: The decompositions of the vector representation 10 and the spinor representation 16 of SO(10) under R’s

which are listed in Table 3 and have two or less U(1) factors. The representations of rs in Eq. (2.9) and σi in Eq. (2.10)

are listed in the columns of “Branches of 10” and “Branches of 16”, respectively. The U(1) charges for the cosets (16) –

(35) have a freedom of retaking the linear combination.

S/R Branches of 10 Branches of 16

(1) SO(10) 10 16

(2) (SO(6), SU(2), SU(2)) (6, 1, 1), (1, 2, 2) (4, 2, 1), (4̄, 1, 2)

(3) (SU(3), SU(2), SU(2)) (3, 1, 1), (3̄, 1, 1), (1, 2, 2) (3, 2, 1), (3̄, 1, 2), (1, 2, 1), (1, 1, 2)

(4) SU(5)(U(1)) 5(6), 5̄(−6) 1(−15), 5̄(9), 10(−3)

(5) SO(8)(U(1)) 8v(0), 1(2), 1(−2) 8s(−1), 8c(1),

(6) (SO(6), SU(2))(U(1)) (6, 1)(0), (1, 2)(3), (1, 2)(−3) (4, 2)(0), (4̄, 1)(3), (4̄, 1)(−3)

(7) (SU(3), SU(2), SU(2))(U(1)) (3, 1, 1)(−4), (3̄, 1, 1)(4), (3, 1, 2)(2), (3̄, 2, 1)(−2),

(1, 2, 2)(0) (1, 1, 2)(−6), (1, 2, 1)(6)

(8) (SU(2), SU(2), SU(2), SU(2))(U(1)) (2, 2, 1, 1)(0), (1, 1, 2, 2)(0), (2, 1, 1, 2)(1), (1, 2, 1, 2)(−1),

(1, 1, 1, 1)(2), (1, 1, 1, 1)(−2) (2, 1, 2, 1)(−1), (1, 2, 2, 1)(1)

(9) (SU(3), SU(2))(U(1)) (3, 1)(0), (3̄, 1)(0), (1, 2)(3), (3, 2)(0), (3̄, 1)(3), (3̄, 1)(−3),

(1, 2)(−3) (1, 2)(0), (1, 1)(3), (1, 1)(−3)

(10) (SU(2), SU(2), SU(2))(U(1)) (2, 2, 1)(0), (1, 1, 3)(2), (2, 1, 3)(−1), (1, 2, 3)(1),

(1, 1, 3)(−2) (1, 2, 1)(3), (2, 1, 1)(−3)

(11) (SU(2), SU(2), SU(2))(U(1)) (2, 2, 1)(0), (1, 1, 2)(1), (1, 2, 2)(−1), (1, 2, 1)(0),

(1, 1, 2)(−1), (1, 1, 1)(2) (1, 2, 1)(2), (2, 1, 2)(1)

(1, 1, 1)(−2) (2, 1, 1)(0), (2, 1, 1)(−2)

(12) (Sp(4), SU(2))(U(1)) (4, 2)(0), (1, 1)(2), (1, 1)(−2) (5, 1)(−1), (1, 3)(−1), (4, 2)(1)

(13) (SU(2), SU(2))(U(1)) (4, 2)(0), (1, 1)(2), (1, 1)(−2) (4, 2)(1), (5, 1)(−1), (1, 3)(−1)

(14) Sp(4)(U(1)) 4(1), 4(−1), 1(2), 1(−2) 5(1), 4(−2), 4(0), 1(3), 1(1), 1(−1),

(15a) SU(2)(U(1)) 2(3), 2(−3), 2(1), 2(−1), 3(1), 2(−4), 2(2), 2(−2),

1(−2), 1(2) 2(0), 1(5), 1(3), 1(−3), 1(1), 1(−1)

(15b) SU(2)(U(1)) 4(1), 4(−1), 1(2), 1(−2) 5(1), 4(−2), 4(0), 1(3), 1(1), 1(−1),

(16) (SU(2), SU(2), SU(2))(U(1), U(1)) (2, 2, 1)(0, 0), (1, 1, 2)(3, 0), (2, 1, 2)(0, 1), (1, 2, 2)(0,−1),

(1, 1, 2)(−3, 0), (1, 1, 1)(0, 2) (2, 1, 1)(3,−1), (2, 1, 1)(−3,−1)

(1, 1, 1)(0,−2) (1, 2, 1)(3, 1), (1, 2, 1)(−3, 1)

(17) (SU(3), SU(2))(U(1), U(1)) (3, 1)(0,−4), (3̄, 1)(0, 4), (3, 2)(0, 2), (3̄, 1)(3,−2), (3̄, 1)(−3,−2),

(1, 2)(3, 0), (1, 2)(−3, 0) (1, 2)(0,−6), (1, 1)(3, 6), (1, 1)(−3, 6)

(18) SO(6)(U(1), U(1)) 6(0, 0), 1(2, 0), 1(−2, 0), 4(1,−1), 4(−1, 1), 4̄(1, 1),

1(0, 2), 1(0,−2) 4̄(−1,−1),

(19) SU(4)(U(1), U(1)) 4(0,−5), 4̄(0, 5), 1(2, 0), 6(−1, 0), 4(1, 5), 4̄(1,−5),

1(−2, 0) 1(−1, 10), 1(−1,−10)

(20) (SU(2), SU(2))(U(1), U(1)) (3, 1)(0, 2), (3, 1)(0,−2), (3, 2)(0,−1), (3, 1)(3, 1), (3, 1)(−3, 1),

(1, 2)(3, 0), (1, 2)(−3, 0) (1, 2)(0, 3), (1, 1)(3,−3), (1, 1)(−3,−3)

(21) (SU(2), SU(2))(U(1), U(1)) (2, 1)(1, 0), (2, 1)(−1, 0), (2, 2)(−1, 0), (1, 2)(2, 0), (1, 2)(0, 0),

(1, 2)(0, 3), (1, 2)(0,−3) (2, 1)(1, 3), (2, 1)(1,−3), (1, 1)(0, 3),

(1, 1)(2, 0), (1, 1)(−2, 0) (1, 1)(0,−3), (1, 1)(−2, 3), (1, 1)(−2,−3),

(22) (SU(2), SU(2))(U(1), U(1)) (2, 2)(0, 0), (1, 1)(a, c), (2, 1)(0, 0), (1, 2)(0, 0),

(1, 1)(b, d), (1, 1)(−a,−c) (2, 1)(b, d), (2, 1)(a, c)

(1, 1)(−b,−d), (2, 1)(−a − b,−c − d),

(1, 1)(a + b, c + d), (1, 2)(a + b, c + d),

(1, 1)(−a − b,−c − d) (1, 2)(−a,−c), (1, 2)(−b,−d)
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Table 4: (Continued.)

S/R Branches of 10 Branches of 16

(23) (SU(2), SU(2))(U(1), U(1)) (2, 2)(0, 2), (2, 2)(0,−2), (3, 1)(−1, 0), (1, 3)(−1, 0), (2, 2)(1,−2),

(1, 1)(2, 0), (1, 1)(−2, 0) (2, 2)(1, 2), (1, 1)(−1, 4), (1, 1)(−1,−4),

(24) SU(3)(U(1), U(1)) 3(0, 0), 3̄(0, 0), 1(2, 0), 3(1,−1), 3(−1, 1), 3̄(1, 1), 3̄(−1,−1),

1(−2, 0), 1(0, 2), 1(0,−2) 1(1,−1), 1(−1, 1), 1(1, 1), 1(−1,−1)

(25) SU(2)(U(1), U(1)) 2(−1, 2), 2(1, 2), 2(−1,−2), 3(−1, 0), 2(2, 2), 2(0, 2), 2(0,−2), 2(2,−2),

2(1,−2), 1(2, 0), 1(−2, 0) 1(−1, 4), 1(−1,−4), 1(−3, 0), 1(1, 0), 1(−1, 0)

(26) (SU(2), SU(2))(U(1), U(1), U(1)) (2, 2)(0, 0, 0), (1, 1)(2, 0, 0), (2, 1)(1, 1, 1), (2, 1)(−1,−1, 1),

(1, 1)(−2, 0, 0), (1, 1)(0, 2, 0), (2, 1)(1,−1,−1), (2, 1)(−1, 1,−1),

(1, 1)(0,−2, 0), (1, 1)(0, 0, 2), (1, 2)(1,−1, 1), (1, 2)(−1, 1, 1),

(1, 1)(0, 0,−2) (1, 2)(1, 1,−1), (1, 2)(−1,−1,−1)

(27) (SU(2), SU(2))(U(1), U(1), U(1)) (2, 1)(3, 0, 0), (2, 1)(−3, 0, 0), (2, 2)(0, 0,−1), (2, 1)(0, 3, 1),

(1, 2)(0, 3, 0), (1, 2)(0,−3, 0), (2, 1)(0,−3, 1), (1, 2)(3, 0, 1),

(1, 1)(0, 0, 2), (1, 1)(0, 0,−2) (1, 2)(−3, 0, 1), (1, 1)(3, 3,−1),

(1, 1)(−3, 3,−1), (1, 1)(3,−3,−1),

(1, 1)(−3,−3,−1)

(28) SU(3)(U(1), U(1), U(1)) 3(−4, 0, 0), 3̄(4, 0, 0), 3(2,−1, 1), 3(2, 1,−1),

1(0, 2, 0), 1(0,−2, 0), 3̄(−2, 1, 1), 3̄(−2,−1,−1),

1(0, 0, 2), 1(0, 0,−2) 1(6, 1, 1), 1(−6,−1, 1),

1(−6, 1,−1), 1(6,−1,−1)

(29) SU(2)(U(1), U(1), U(1)) 3(2, 0, 0), 3(−2, 0, 0), 3(−1, 1, 1), 3(−1,−1,−1),

1(0, 2, 0), 1(0,−2, 0), 3(1, 1,−1), 3(1,−1, 1),

1(0, 0, 2), 1(0, 0,−2) 1(3, 1, 1), 1(3,−1,−1),

1(−3, 1,−1), 1(−3,−1, 1)

(30) SU(2)(U(1), U(1), U(1)) 2(1, 0, 0), 2(−1, 0, 0), 2(1, 1,−1), 2(1,−1, 1),

1(2, 0, 0), 1(−2, 0, 0), 2(−1, 1, 1), 2(−1,−1,−1),

1(0, 2, 0), 1(0,−2, 0), 1(2, 1, 1), 1(2,−1,−1),

1(0, 0, 2), 1(0, 0,−2) 1(−2, 1,−1), 1(−2,−1, 1),

1(0, 1, 1), 1(0,−1,−1),

1(0, 1,−1), 1(0,−1, 1)

(31) SU(2)(U(1), U(1), U(1)) 2(3, 0, 0), 2(−3, 0, 0), 2(0, 1, 3), 2(0, 1,−3),

1(0, 2, 0), 1(0,−2, 0), 2(0, 0, 0), 2(0,−2, 0),

1(0, 1, 3), 1(0,−1,−3), 1(3, 2, 0), 1(−3, 2, 0),

1(0, 1,−3), 1(0,−1, 3) 1(3, 0, 0), 1(−3, 0, 0),

1(3,−1, 3), 1(−3,−1, 3),

1(3,−1,−3), 1(−3,−1,−3)

(32) (U(1), U(1), U(1)) (2, 0, 0), (−2, 0, 0), (0,−2, 0), (3, 1,−1), (3,−1, 1), (−3,−1,−1),

(0, 2, 0), (0, 0, 2), (0, 0,−2), (−3, 1, 1), (1, 3, 1), (−1,−3, 1),

(2, 2, 0), (−2,−2, 0), (2,−2, 0), (−1, 3,−1), (1,−3, 1), (−1, 1, 1),

(−2, 2, 0) (1,−1, 1), (1,−1,−1), (−1, 1, 1),

(1, 1, 1), (−1,−1, 1), (1, 1,−1),

(−1,−1,−1)

17



Table 4: (Continued.)

S/R Branches of 10 Branches of 16

(33) SU(2)(U(1), U(1), U(1), U(1)) 2(3, 0, 0, 0), 2(−3, 0, 0, 0), 2(0, 1,−1, 1), 2(0,−1, 1, 1),

1(0, 2, 0, 0), 1(0,−2, 0, 0), 2(0, 1, 1,−1), 2(0,−1,−1,−1),

1(0, 0, 2, 0), 1(0, 0,−2, 0), 1(3, 1, 1, 1), 1(−3, 1, 1, 1),

1(0, 0, 0, 2), 1(0, 0, 0,−2) 1(3,−1 − 1, 1), 1(−3,−1,−1, 1),

1(3, 1,−1,−1), 1(−3, 1,−1,−1),

1(3,−1, 1,−1), 1(−3,−1, 1,−1)

(34) (U(1), U(1), U(1), U(1), U(1)) (2, 0, 0, 0, 0), (−2, 0, 0, 0, 0), (1, 1, 1,−1, 1), (−1,−1, 1,−1, 1),

(0, 2, 0, 0, 0), (0,−2, 0, 0, 0), (1, 1,−1, 1, 1), (−1,−1,−1, 1, 1),

(0, 0, 2, 0, 0), (0, 0,−2, 0, 0), (1, 1, 1, 1,−1), (−1,−1, 1, 1,−1),

(0, 0, 0, 2, 0), (0, 0, 0,−2, 0), (1, 1,−1,−1,−1), (−1,−1,−1,−1,−1),

(0, 0, 0, 0, 2), (0, 0, 0, 0,−2) (1,−1, 1, 1, 1, ), (−1, 1, 1, 1, 1),

(1,−1,−1,−1, 1), (−1, 1,−1,−1, 1),

(1,−1, 1,−1,−1), (−1, 1, 1,−1,−1),

(1,−1,−1, 1,−1), (−1, 1,−1, 1,−1)

(35) (U(1), U(1), U(1), U(1)) (1, 3, 0, 0), (−1,−3, 0, 0), (2, 0,−1, 1), (−2, 0, 1, 1),

(−1, 3, 0, 0), (1,−3, 0, 0), (2, 0, 1,−1), (−2, 0,−1,−1),

(2, 0, 0, 0), (−2, 0, 0, 0), (0, 0,−1, 1), (0, 0, 1, 1),

(0, 0, 2, 0), (0, 0,−2, 0), (0, 0, 1,−1), (0, 0,−1,−1),

(0, 0, 0, 2), (0, 0, 0,−2) (1, 3, 1, 1), (1,−3, 1, 1),

(−1, 3,−1, 1), (−1,−3,−1, 1),

(1, 3,−1,−1), (1,−3,−1,−1),

(−1, 3, 1,−1), (−1,−3, 1,−1)

Table 5: The gauge groups that have either complex or pseudoreal representations and their complex
and pseudoreal representations whose dimension is no larger than 1024 [65]. The groups SU(8) and
SU(9) are not listed here since they do not lead to the four-dimensional gauge group of our interest for
any of S/R in Table 3.

Group Complex representations Pseudoreal representations

SU(7) 21, 28, 35, 84, 112, 140, · · ·
SO(12) 32, 32′, 352, 352′

SO(13) 64, 768
Sp(12) 208, 364
E6 27, 351, 351′

SO(14) 64, 832
Sp(14) 350, 560, 896
Sp(16) 544, 816
SU(10) 45, 55, 120, 210, 220, 330, · · ·
SO(18) 256
SO(19) 512
Sp(18) 798
SO(20) 512
SO(21) 1024
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Table 6: The allowed candidates of the gauge group G for each choice of H and S/R. The top row
indicates H and the left column indicates S/R by the number assigned in Table 3.

SO(10) SO(10) × U(1) SU(5) × U(1) SU(3) × SU(2) × U(1) SU(3) × SU(2) × U(1) × U(1)

(1) SO(20)
(2) SO(20)
(4) SO(20), SO(21) SU(10) SU(10), SO(18), SO(19)
(5) SO(20), SO(21) SO(18), SO(19) SO(18), SO(19)
(6) SO(20), SO(21) SO(19) SO(18), SO(19), Sp(18)
(7) SO(19), Sp(18)
(8) SO(20), SO(21) SO(18), SO(19), Sp(18) Sp(16) SO(18), SO(19), Sp(18)
(9) Sp(16)
(10) SO(18), SO(19) Sp(16) SO(14), Sp(14) Sp(16)
(11) SO(18), SO(19) Sp(16) SO(14), Sp(14) Sp(16)
(12) SO(19) Sp(16) Sp(14) Sp(16)
(13) SO(14), Sp(14) SO(13), Sp(12) SO(14), Sp(14)
(14) Sp(14) Sp(12) Sp(16)
(15) SO(14) SU(7), SO(13), Sp(12) SO(10), SO(11), Sp(10) SU(7), SO(12), SO(13), Sp(12), E6
(16) Sp(16)
(17) Sp(16)
(18) SU(9), Sp(16)
(19) SU(9), Sp(16)
(20) SO(14), Sp(14)
(21) SO(14), Sp(14)
(22) SO(14), Sp(14)
(23) SO(14), Sp(14)
(24) SU(8), Sp(14)
(25) SU(7), SO(12), SO(13), Sp(12), E6

the representations of the scalars and fermions in the four-dimensional theory. In Table 7, we show all
the field contents in four dimensions for each combination of (S/R,G, F ).

(a) S/R (11) = Sp(4) × Sp(4)/[SU(2) × U(1)]non-max × [SU(2) × SU(2)], G = SO(19), and F = 512.
We embed R in the subgroup SU(2)×SU(2)×SU(2)×U(1) of SO(19) according to the decomposition

SO(19) ⊃ SO(10) × SO(9)
⊃ SO(10) × SU(4) × SU(2)
⊃ SO(10) × SU(2) × SU(2) × SU(2) × U(1). (2.33)

Notice that there is another branch of the decomposition such as

SO(19) ⊃ SO(18) ⊃ SO(10) × SO(8)
⊃ SO(10) × SU(2) × SU(2) × SU(2) × SU(2)
⊃ SO(10) × SU(2) × SU(2) × SU(2) × U(1). (2.34)

As mentioned at the beginning of this section, it gives different representations of the subgroup SO(10)×
SU(2) × SU(2) × SU(2) × U(1) for a representation of SO(19). For example, the adjoint representation
171 of SO(19) is decomposed according to decomposition branch Eq. (2.33) and Eq. (2.34) as follows
[65, 66]:
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Table 7: The field contents in four dimensions with H = SO(10)(×U(1)) for each combination of
(S/R,G, F ). Coset spaces are indicated by the number assigned in Table 3. Numbers in a superscript
of the representations denote its multiplicity.

14D model 4D model
S/R G F H Scalars Fermions

(1) SO(20) 512 SO(10) 10 16
(2) SO(20) 512 SO(10) {10}2 {16}2

(4) SO(20) 512 SO(10) × U(1) 10(2), 10(−2) 16(−1), 16(3), 16(−5)
(5) SO(20) 512 SO(10) × U(1) 10(0), 10(2), 10(−2) 16(1), 16(−1)
(6) SO(20) 512 SO(10) × U(1) 10(0), 10(1), 10(−1) 16(0), 16(1), 16(−1)
(8) SO(20) 512 SO(10) × U(1) 10(0), 10(0), 10(2), 10(−2) 16(1), 16(1), 16(−1), 16(−1)
(10) SO(18) 256 SO(10) × U(1) 10(0) 16(3), 16(−3), 16(−3), 16(3)
(11) SO(18) 256 SO(10) × U(1) 10(0) 16(2), 16(−2), 16(−2), 16(2)
(11) SO(19) 512 SO(10) × U(1) 10(0), 10(2), 10(−2) 16(1), 16(−1), 16(1), 16(−1)
(15) SO(14) 64 SO(10) × U(1) (a): 10(1), 10(−1), 1(2), 1(−2) (a): 16(0), 16(1), 16(−1),

16(0), 16(−1), 16(1)
(b): 10(3), 10(−3) (b): 16(0), 16(3), 16(−3),

16(0), 16(−3), 16(3)
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171 = (45,1,1,1)(0) + (1,3,1,1)(0)
+(1,1,3,1)(0) + (1,1,1,3)(0) + (1,1,1,1)(0)
+(1,2,2,1)(2) + (1,2,2,1)(−2) + (1,2,2,3)(0)
+(1,1,1,3)(2) + (1,1,1,3)(−2)
+(10,2,2,1)(0) + (10,1,1,1)(2)
+(10,1,1,1)(−2) + (10,1,1,3)(0), (2.35)

171 = (45,1,1,1)(0) + (1,3,1,1)(0)
+(1,1,3,1)(0) + (1,1,1,3)(0) + (1,1,1,1)(0)
+(10,1,1,1)(0) + (10,2,2,1)(0)
+(1,2,2,1)(0) + (1,1,1,1)(2) + (1,1,1,1)(−2)
+(1,2,2,2)(1) + (1,2,2,2)(−1)
+(10,1,1,2)(1) + (10,1,1,2)(−1)
+(1,1,1,2)(1) + (1,1,1,2)(−1). (2.36)

The singlets of SU(2) × SU(2) × SU(2) × U(1), which are (45,1,1,1)(0) and (10,1,1,1)(0), form
an adjoint representation of SO(11) which is (55,1,1,1)(0). This indicates that the centralizer of
SU(2)× SU(2)× SU(2)×U(1) is not H = SO(10)×U(1) but SO(11)×U(1), which is irrelevant to our
purpose.

(b) S/R (15a) = G2/SU(2) × U(1), G = SO(14), and F = 64.
We embed R in the subgroup SU(2) × U(1) of G = SO(14) according to the decomposition

SO(14) ⊃ SO(10) × SU(2) × SU(2)
⊃ SO(10) × SU(2) × U(1).

(2.37)

There are two branches of embedding which leads to the field contents of the SM in this case, owing to
the freedom of the normalization of U(1) charges as mentioned in the beginning part of this section. For
example, the adjoint representation of SO(14) can be decomposed according to Eq. (2.37) as [65, 66]

91 =(45,1)(0) + (1,3)(0) + (1,1)(0)
+ (1,1)(2x) + (1,1)(−2x)
+ (10,2)(x) + (10,2)(−x),

(2.38)

where x is an arbitrary number reflecting the freedom of the normalization. The choice of x = 1 and
x = 3 leads to the scalar contents (a) and (b) of Table 7 respectively, as can be seen by comparing the
U(1) charges of Eq. (2.38) with those in the row (15a) of Table 4.

(c) S/R (1) = SO(11)/SO(10), G = SO(20), and F = 512.
We embed R in the subgroup SO(10) of G = SO(20) according to the decomposition

SO(20) ⊃ SO(10) × SO(10). (2.39)
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(d) S/R (2) = SO(7) × Sp(4)/SO(6) × [SU(2) × SU(2)], G = SO(20), and F = 512.
We embed R in the subgroup SU(4)×SU(2)×SU(2) of G = SO(20) according to the decomposition

SO(20) ⊃ SO(10) × SO(10)
⊃ SO(10) × SU(4) × SU(2) × SU(2).

(2.40)

(e) S/R (4) = SU(6)/SU(5) × U(1), G = SO(20), and F = 512.
We embed R in the subgroup SU(5) × U(1) of G = SO(20) according to the decomposition

SO(20) ⊃ SO(10) × SO(10)
⊃ SO(10) × SU(5) × U(1).

(2.41)

(f) S/R (5) = SO(9) × SU(2)/SO(8) × U(1), G = SO(20), and F = 512.
We embed R in the subgroup SO(8) × U(1) of G = SO(20) according to the decomposition

SO(20) ⊃ SO(10) × SO(10)
⊃ SO(10) × SO(8) × U(1).

(2.42)

(g) S/R (6) = SO(7) × SU(3)/SO(6) × [SU(2) × U(1)], G = SO(20), and F = 512.
We embed R in the subgroup SU(4)× SU(2)×U(1) of G = SO(20) according to the decomposition

SO(20) ⊃ SO(10) × SO(10)
⊃ SO(10) × SU(4) × SU(2) × SU(2)
⊃ SO(10) × SU(4) × SU(2) × U(1)

(2.43)

(h) S/R (8) = {Sp(4)}2 × SU(2)/[SU(2) × SU(2)]2 × U(1), G = SO(20), and F = 512.
We embed R in the subgroup SU(2) × SU(2) × SU(2) × SU(2) × U(1) of G = SO(20) according to

the decomposition

SO(20) ⊃ SO(10) × SO(10)
⊃ SO(10) × SU(4) × SU(2) × SU(2)
⊃ SO(10) × SU(2)′ × SU(2)′

× SU(2) × SU(2) × U(1).

(2.44)

(i) S/R (10) = Sp(4) × Sp(4)/[SU(2) × U(1)]max × [SU(2) × SU(2)], G = SO(18), and F = 256.
We embed R in the subgroup SU(2) × SU(2) × SU(2) × U(1) of G = SO(18) according to the

decomposition

SO(18) ⊃ SO(10) × SO(8)
⊃ SO(10) × SU(2) × SU(2) × SU(2) × SU(2)
⊃ SO(10) × SU(2) × SU(2) × SU(2) × U(1). (2.45)

(j) S/R (11) = Sp(4) × Sp(4)/[SU(2) × U(1)]non-max × [SU(2) × SU(2)], G = SO(18) and F = 256.

22



We embed R in the subgroup SU(2)× SU(2)× SU(2)×U(1)of G = SO(18) according to the decom-
position

SO(18) ⊃ SO(10) × SO(8)
⊃ SO(10) × SU(2) × SU(2) × SU(2) × SU(2)
⊃ SO(10) × SU(2) × SU(2) × SU(2) × U(1). (2.46)

We find ten candidates of (S/R,G, F ) which give at least one fermion with representation 16 and
scalar with 10 in four dimensions. Other combinations of (S/R,G, F ) are excluded since they do not
provide both a representation 16 for fermions and a representation 10 for scalars.

In many cases we obtain several 16s for fermions. Particularly interesting candidates among them
are (G = SO(20), S/R (4), F = 512) and (G = SO(20), S/R (6), F = 512). They give three 16s
corresponding to three generations of fermions. In such cases the extra U(1) symmetry can be interpreted
as a family symmetry.

We obtain the scalar field in the 10 representation of SO(10) in all cases. This scalar field contains
the SM Higgs. Notice, however, that no scalar content belongs to 16,45,126, · · · , which are necessary
to break SO(10) to the SM gauge group. This is inevitable for H = SO(10)(×U(1)). The gauge group
G for H = SO(10)(×U(1)) is SO(N), and SO(10) appears in the decomposition

SO(N) ⊃ SO(10) × SO(N − 10) ⊃ · · · . (2.47)

Only 1 or 10 representations of SO(10) are obtained from the adjoint representation of SO(N) under
the above decomposition. Thus no scalar can break SO(10) to the SM gauge group. Fortunately,
we can construct a phenomenologically acceptable model without these scalar contents by employing
the topological symmetry breaking mechanism, known as Hosotani mechanism or Wilson flux breaking
mechanism [36, 37, 67, 68, 69, 70, 71, 72, 73]. This mechanism requires extra-dimensional spaces to
be non-simply connected. Hence we have to consider the non-simply connected coset spaces such as
(S/R)/T instead of the simply connected ones, where T is a suitable discrete symmetry group.

H = SU(5) × U(1)

Secondly, we search for viable SU(5)×U(1) models in four dimensions. We list below the combinations
of S/R, G and F which provides H = SU(5) × U(1) and representations which contain field contents
of the SM for the scalars and the fermions. The embedding of R into G is shown for each candidates
since this embedding uniquely determines all the representations of the scalars and fermions in the four-
dimensional theory. In Table 8, we show all the field contents in four dimensions for each combination
of (S/R,G, F ).

(a) S/R(15) = G2/SU(2) × U(1), G = Sp(12) and F = 208.
We embed R in the subgroup SU(2) × U(1) of G = Sp(12) according to the decomposition

Sp(12) ⊃ Sp(10) × Sp(2)
⊃ SU(5) × SU(2) × U(1).

(2.48)

(b) S/R(14) = Sp(6)/Sp(4) × U(1), G = Sp(14), and F = 350.
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Table 8: The field contents in four dimensions with H = SU(5) × U(1) for each combination of
(S/R,G, F ). Coset spaces are indicated by the number assigned in Table 3.

14D model 4D model

S/R G F Scalars Fermions

(11) Sp(16) 544 15(2), 15(−2), 5(1), 5(−1), {24(0)}2, 10(2), 10(−2), 5(1),
1(0) 5(−1), {1(0)}4

(14) Sp(14) 350 15(−2), 15(2), 5(−1), 5(1) 45(1), 45(−1), 24(0), 10(3),
10(−2), 5(1), 5(1), 5(−1)

(15) Sp(12) 208 15(2), 15(−2), 5(1), 5(−1) 45(1), 45(−1), 24(0), 10(−3),
10(3), 10(2), 10(−2), 5(1), 5(−1)

We embed R in the subgroup Sp(4) × U(1) of G = Sp(14) according to the decomposition

Sp(14) ⊃ Sp(10) × Sp(4)
⊃ SU(5) × Sp(4) × U(1).

(2.49)

(c) S/R(11) = Sp(4) × Sp(4)/[SU(2) × U(1)]non-max × [SU(2) × SU(2)], G = Sp(16), and F = 544.
We embed R in the subgroup SU(2)′ × SU(2)′ × SU(2) × U(1) of G = Sp(16) according to the

decomposition

Sp(16) ⊃ Sp(10) × Sp(6)
⊃ Sp(10) × Sp(4) × SU(2)
⊃ Sp(10) × SU(2)′ × SU(2)′ × SU(2)
⊃ SU(5) × SU(2)′ × SU(2)′ × SU(2) × U(1). (2.50)

We find three candidates of (S/R,G, F ) that give at least one pair of fermions with representation
10 and 5̄, and a scalar with 5 representation in four dimensions. Other combinations of (S/R,G, F )
are excluded since they do not provide these representations for fermions and scalars.

We obtain the scalar field in 5 representation of SU(5) for all cases. This scalar field contains the
SM Higgs. Notice, however, that no scalar contents belongs to 24, · · · , which are necessary to break
SU(5) to the SM gauge group. The lack of such scalars is a general feature for H = SU(5)×U(1). The
gauge groups G for H = SU(5) × U(1) are SU(N), SO(N), and Sp(N). These groups are decomposed
into subgroups including SU(5) × U(1), and their adjoint representations are decomposed accordingly
as well:

SU(N) ⊃ SU(5) × SU(N − 5) × U(1) ⊃ · · ·
adj SU(5) = (24,1)(0) + (1, adj SU(N − 1))(0) + (1, 1)(0)

+ (5, N − 5)(a) + (5, N − 5)(−a)
= · · ·

(2.51)
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SO(N) ⊃ SO(10) × SO(N − 10)
⊃ SU(5) × SO(N − 10) × U(1) ⊃ · · ·

adj SO(N) = (45,1) + (1, adj SO(N − 10))
+ (10,1) + (1, N − 10)

= (24,1)(0) + (1, adj SO(N − 10))(0) + (1,1)(0)

+ (10,1)(4) + (10,1)(−4) + (5,1)(2) + (5,1)(−2) + (1, N − 10)(0)
= · · ·

(2.52)

Sp(2N) ⊃ Sp(10) × Sp(2N − 10)
⊃ SU(5) × Sp(2N − 1) × U(1)
⊃ · · ·

adj Sp(2N) = (55,1) + (1, adj Sp(2N − 10))
+ (10,1) + (1, 2N − 10)

= (24,1)(0) + (1, adj Sp(2N − 10))(0) + (1,1)(0)

+ (15,1)(2) + (15,1)(−2) + (5,1)(1) + (5̄,1)(−1) + (1, N)(0)
= · · · .

(2.53)

Only 1, 5, 10, or 15 representation of SU(5) is obtained from the adjoint representations of SU(N),
SO(N), and Sp(N) under the above decompositions. Then, no scalar can break SU(5) to the SM gauge
group. Therefore we should employ the flux breaking mechanism to break SU(5) to the SM gauge group.

H = SU(3) × SU(2) × U(1)

We find no viable candidate for H = SU(3) × SU(2) × U(1). We exclude the coset spaces (16) –
(35) in Table 3. They have two or more factors of U(1) in R, and these U(1)’s become the part of
H = CG(R) = SU(3) × SU(2) × U(1), which has only one U(1). The single U(1) factor in R becomes
U(1)Y of the SM gauge group, hence the decomposition of the spinor representation 16 of SO(10) to R
need to have U(1) charges whose ratio is 1 : 2 : (−3) : (−4) : 6. Referring to Table 4, we find that the
coset spaces (4) – (15) do not have such U(1) charge and thus are excluded. The explicit analysis of the
remaining coset spaces (1), (2) and (3) shows that they do not induce the SM either.

H = SU(3) × SU(2) × U(1) × U(1)

Finally, we search for viable SU(3)× SU(2)×U(1)×U(1) models in four dimensions. We list below the
combinations of S/R, G, and F which provide H = SU(3) × SU(2) × U(1) × U(1) and representations
of the SM scalars and fermions. Embedding of R in G is also shown for each candidates. Note that we
can take a linear combination of the two U(1)’s. The U(1) charges in the decomposition are first chosen
to facilitate the decomposition of the group G, then combined to embed R into G, and subsequently
organized again to reproduce the hypercharge of the SM. We explicitly show these linear recombinations
of U(1) for each candidates. In Table 10, we show all the field contents in four dimensions for each
combination of (S/R,G, F ).

(a) S/R (15a) = G2/SU(2) × U(1), G = Sp(12), and F = 364.
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Table 9: The field contents in four dimensions with H = SU(3)× SU(2)×U(1)R ×U(1)A. Coset spaces
are indicated by the number assigned in Table 3. Numbers in a superscript of the representations denote
its multiplicity.

14D model 4D model
S/R G F Scalars Fermions

(15a) Sp(12) 364 (1,2)(−2, 3), (1,2)(2,−3), (15,1)(−1, 4), (15,1)(1,−4), (10,1)(−3,−12),
(3,1)(−1,−4), (3̄,1)(1, 4), (10,1)(3, 12), (3,1)(−1,−4), {(3̄,1)(1, 4)}3,
(6,1)(−2,−8), (6̄,1)(2, 8) (1,3)(0, 0), (1,1)(−4, 6), {(1,1)(0, 0)}2,

(1,2)(−2, 3), (1,2)(2,−3), (3,3)(−1,−4),
(3̄,3)(1, 4), (3̄,1)(5,−2), (3,1)(−1,−4),
(3,1)(3,−10), (3̄,1)(−3, 10), (3,2)(−3,−1),
(3̄,2)(3, 1), (3,2)(1,−7), (3̄,2)(−1, 7),
(8,1)(0, 0), (6,1)(2,−8), (6̄,1)(−2, 8)

(9) Sp(16) 544 (1,2)(1, 0), (1,2)(−1, 0) (1,1)(−2, 0), (1,2)(1, 0), {(1,1)(0, 0)}2,
(3̄,1)(2,−1), (3,1)(2, 1), (3̄,2)(−1,−1),
(3,2)(−1, 1), {(3,1)(0, 1)}3, {(3̄,1)(0,−1)}3,
(8,1)(0, 0), (6,1)(0,−1), (6̄,1)(0, 1)

(15a) SO(13) 768 (1,2)(3, 3), (1,2)(−3,−3), (3,3)(−2,−4), (3̄,3)(2, 4), (1,3)(0,−6), (1,3)(0, 6),
(3,1)(−2,−6), (3̄,1)(2, 6) (3,2)(1, 3), (3̄,1)(−4,−6), (3,1)(−2, 0), (3̄,1)(2, 0),

(3,2)(1, 3), (3̄,2)(−1,−3), (3̄,2)(5, 3), (1,1)(0,−6),
(1,1)(0, 6), (1,2)(3,−3), (1,2)(−3, 3),
(1,2)(−3,−9), (1,2)(3, 9), (3,2)(1, 3),
(3̄,2)(−1,−3), (3,1)(−2, 0), (3̄,1)(2, 0),
(1,1)(0, 6), (1,1)(0,−6), (1,2)(3,−3), (1,2)(−3, 3),
(3,1)(−2, 0), (3̄,1)(2, 0), (3,2)(1, 3), (3̄,2)(−1,−3),
(3̄,1)(−4, 6), (3,2)(1,−9), (3̄,2)(−1, 9), (6,1)(2, 0),
(6̄, 1)(−2, 0), (6,2)(−1,−3), (6̄, 2)(1, 3), (8,1)(2, 0),
(8,1)(−2, 0), (8,2)(−1,−3), (8,2)(1, 3),
(3,1)(−2, 0), (3̄,1)(2, 0), (3,2)(1, 3), (3̄,2)(−1,−3),
(1,1)(0,−6), (1,1)(0, 6), (1,2)(3,−3), (1,2)(−3, 3)

(14) Sp(14) 350 (1,2)(−1,−9/2), (6,1)(3,−1), (8,1)(0, 0), (1,1)(−2,−9),
(1,2)(1, 9/2), {(1,1)(0, 0)}2, (3,1)(−1, 10), (3̄,1)(1,−10),
(3,2)(−2, 11/2), {(3̄,1)(3,−1)}2, {(1,2)(−1,−9/2)}2,
(3̄,2)(2,−11/2), {(1,2)(1, 9/2)}3, (3,2)(−2, 11/2), (1,3)(0, 0),
(1,3)(−2,−9), (1,3)(2, 9) (3̄,3)(3,−1)
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Table 10: The field contents in four dimensions with H = SU(3)×SU(2)×U(1)Y ×U(1)α. Coset spaces
are indicated by the number assigned in Table 3. Numbers in superscript of the representations denote
its multiplicity. The U(1) charges are rearranged from those of Table 9 so that the charge of U(1)Y is
proportional to the hypercharge of the Standard Model.

14D model 4D model
Scalars Fermions

S/R G F SM fields Extra fields SM fields Extra fields

(15a) Sp(12) 364 (1,2)(3,−32), (3,1)(−2,−27), (3,2)(1,−59), (15, 1)(34/11,−11),
(1,2)(−3, 32) (3̄,1)(2, 27), (3̄,1)(2, 27) (15,1)(−34/11, 11),

(6,1)(−4,−54), (3̄,1)(−4, 91) (10,1)(−6,−81), (10,1)(6, 81),
(6̄,1)(4, 54) (1,2)(−3, 32) {(3,1)(−2,−27)}2, (1,3)(0, 0),

(1,1)(6,−64) {(1,1)(0, 0)}2, (1,2)(3,−32),
(3,3)(−2,−27), (3̄,3)(2, 27),
(3,1)(−8, 37), (3̄,1)(8,−37),
(3̄,2)(−1, 59), (3,2)(−5, 5),
(3̄,2)(5,−5), (8,1)(0, 0),
{(3̄,1)(2, 27)}2,
(6,1)(−68/11, 22),
(6̄,1)(68/11,−22)

(9) Sp(16) 544 (1,2)(3,−2), (1,1)(6,−4), {(1,1)(0, 0)}2, (3,1)(−8, 1),
(1,2)(−3, 2) (1,2)(−3, 2), {(3,1)(−2,−3)}3, {(3̄,1)(2, 3)}2,

(3̄,1)(−4, 7), (3̄,2)(5, 1), (8,1)(0, 0),
(3̄,1)(2, 3), (6,1)(2, 3), (6̄,1)(−2,−3)
(3,2)(1,−5)

(15a) SO(13) 768 (1,2)(−3, 66), (3,2)(1, 34), (1,1)(−6,−36), (1,2)(−9, 30), (1,2)(9,−30),
(1,2)(3,−66) (3̄,1)(2, 100), (1,2)(−9, 30), (3,1)(4,−32), (3̄,2)(−1,−34),

(3̄,1)(−4, 32), (1,2)(9,−30), (3,2)(−11, 38), (3̄,2)(11,−38),
(1,2)(−3,−102), (1,2)(3, 102), (6,1)(−4, 32), (6̄,1)(4,−32),
(1,1)(6, 36), (3̄,2)(−1,−34), (6,2)(−1,−34), (6̄,2)(1, 34),
(3,3)(0, 8), (3,1)(4,−32), (8,1)(−4, 32), (8,1)(4,−32),
(3̄,3)(0,−8), (1,1)(−6,−36) (8,2)(−1,−34), (8,2)(1, 34),
(1,3)(−6,−36), (3,1)(4,−32), (3̄,2)(−1,−34),
(1,3)(6, 36), (1,1)(−6,−36), (1,2)(−9, 30),
(3,1)(4,−32), (1,2)(9,−30), (3̄,1)(2, 100),
(3̄,2)(−1,−34), {(3,2)(1, 34)}5,
(3̄,2)(−7, 98) {(3̄,1)(−4, 32)}2, {(1,1)(6, 36)}2

(14) Sp(14) 350 (1,2)(3,−2), (1,1)(6,−4), {(1,1)(0, 0)}2, (3,1)(−8, 1),
(1,2)(−3, 2) (1,2)(−3, 2), {(3,1)(−2,−3)}3, {(3̄,1)(2, 3)}2,

(3̄,1)(−4, 7), (3̄,2)(5, 1), (8,1)(0, 0),
(3̄,1)(2, 3), (6,1)(2, 3), (6̄,1)(−2,−3)
(3,2)(1,−5)
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We decompose Sp(12) as

Sp(12) ⊃ Sp(6) × Sp(6)
⊃ Sp(6) × Sp(4) × SU(2)′

⊃ SU(3) × Sp(4) × SU(2)′ × U(1)a
⊃ SU(3) × SU(2) × SU(2) × SU(2)′ × U(1)a
⊃ SU(3) × SU(2) × SU(2)′ × U(1)a × U(1)b. (2.54)

Accordingly the adjoint representation of Sp(12) is decomposed as [65, 66]

78 = (8,1,1)(0, 0) + (1,3,1)(0, 0) + (1,1,3)(0, 0) + (1,1,1)(0, 0)
+(1,1,1)(0, 0) + (6,1,1)(2, 0) + (6̄,1,1)(−2, 0) + (3,1,2)(1, 0)
+(3̄,1,2)(−1, 0) + (3,2,1)(1, 0) + (3̄,2, 1)(−1, 0) + (3,1,1)(1, 1)
+(3̄,1,1)(−1,−1) + (3,1,1)(1,−1) + (3̄,1,1)(−1, 1) + (1,2,1)(0, 1)
+(1,2,1)(0,−1) + (1,1,2)(0, 1) + (1,1,2)(0,−1) + (1,1,1)(0, 2)
+(1,1,1)(0,−2) + (1,2,2)(0, 0)
(SU(3), SU(2),SU(2)′)(U(1)a,U(1)b). (2.55)

We take a linear combination of U(1)a and U(1)b, respecting the orthogonality of the two, to obtain
U(1) charges listed in Table 4, at the row (15a) and the columns “Branch of 10” and “Branch of 16”.
We define

QR ≡ −xQa − yQb, (2.56a)
QA ≡ −2yQa + 3xQb, (2.56b)

where Qis (i ∈ {a, b, R, A}) denote the charges of U(1)i. Embedding R in SU(2) × U(1)R, we obtain
the decomposition of the adjoint representation,

78 = (8̄,1,1)(0, 0) + (1̄,3,1)(0, 0) + (1̄,1,3)(0, 0)
+(1̄,1,1)(0, 0) + (1̄,1,1)(0, 0)
+(6̄,1,1)(−2x,−4y) + (6̄,1,1)(2x, 4y)
+(3̄,1,2)(−x,−2y) + (3̄,1,2)(x, 2y)
+(3̄,2,1)(−x,−2y) + (3̄,2,1)(x, 2y)
+(3̄,1,1)(−x − y,−2y + 3x)
+(3̄,1,1)(x + y, 2y − 3x)
+(3̄,1,1)(−x + y,−2y − 3x)
+(3̄,1,1)(x − y, 2y + 3x)
+(1̄,2,1)(−y, 3x) + (1̄,2,1)(y,−3x)
+(1̄,1,2)(−y, 3x) + (1̄,1,2)(y,−3x)
+(1̄,1,1)(−2y, 6x) + (1̄,1,1)(2y, 6x)
+(1̄,2,2)(0, 0). (2.57)
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We find that y = ±2 provides the SM Higgs doublet by comparing the U(1)R charges in the decom-
position Eq. (2.57) with those in Table 4. Further investigation shows that we can obtain the SM
fermions as well by taking x = 1 and y = 2. The resulting field contents are summarized in Table 9.
We can explicitly obtain appropriate U(1)Y hypercharges of the SM particles by taking another linear
combination of U(1)R and U(1)A as

QY ≡ − 6
11

QR +
7
11

QA, (2.58a)

Qα ≡ 19QR + 2QA, (2.58b)

where QY and Qα are the charges of U(1)Y and U(1)α, respectively. We thereby obtain SM Higgs, SM
fermions and other fermions listed as in Table 10.

(b) S/R (9) = G2 × SU(3)/SU(3) × [SU(2) × U(1)], G = Sp(16), and F = 544.
We embed R in subgroup SU(3)b × SU(2) × U(1)R of Sp(16) according to the decomposition

Sp(16) ⊃ Sp(6)a × Sp(6)b × Sp(4)
⊃ SU(3)a × Sp(6)b × Sp(4) × U(1)R

⊃ SU(3)a × SU(3)b × Sp(4)
×U(1)R × U(1)A

⊃ SU(3)a × SU(3)b × SU(2) × SU(2)
×U(1)R × U(1)A. (2.59)

The resulting field contents are summarized in Table 9. We explicitly obtain appropriate U(1)Y hyper-
charges of the SM particles by taking combination of U(1)R and U(1)A as

QY ≡ 3QA − 2QR, (2.60a)
Qα ≡ −2QA − 3QR, (2.60b)

where Qis (i ∈ {R, A, Y, α}) denote the charges of U(1)i. We thereby obtain SM Higgs, SM fermions
and other fermions listed in Table 10.

(c) S/R (15a) = G2/SU(2) × U(1), G = SO(13), and F = 768 .
We decompose SO(13) as

SO(13) ⊃ SU(4) × SO(7)
⊃ SU(4) × SU(2)′′ × SU(2)′ × SU(2)
⊃ SU(3) × SU(2) × SU(2) × SU(2) × U(1)a
⊃ SU(3) × SU(2) × SU(2) × U(1)a × U(1)b, (2.61)

where SU(2)′′ ∼ SO(3) and SU(2)′ × SU(2) ∼ SO(4). We obtain U(1) charges listed in Table 4 at the
row of (15a) and the column of “Branch of 10” and ”Branch of 16” by taking a linear combination of
U(1)a and U(1)b as

QR ≡ 3
2
Qb +

1
2
Qa (2.62)

QA ≡ 3
2
Qb − 3

2
Qa, (2.63)
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where Qi (i ∈ {a, b, R, A}) denote the charges of U(1)i. Embedding R in SU(2) × U(1)R, we obtain
the field contents summarized in Table 9. We explicitly obtain appropriate U(1)Y hypercharges of the
SM particles by taking another linear combination U(1)R and U(1)A,

QY ≡ −2QR + QA, (2.64a)
Qα ≡ 16QR + 6QA, (2.64b)

where QY and Qα are the charges of U(1)Y and U(1)α, respectively. We thereby obtain SM Higgs, SM
fermions and other fermions listed in Table 10.

(d) S/R (14) = Sp(6)/Sp(4) × U(1), G = Sp(14), and F = 350.
We decompose Sp(14) as

Sp(14) ⊃ Sp(10) × Sp(4)
⊃ Sp(6) × Sp(4)′ × Sp(4)
⊃ SU(3) × Sp(4)′ × Sp(4) × U(1)a
⊃ SU(3) × SU(2) × Sp(4) × U(1)a × U(1)b. (2.65)

We obtain U(1) charges listed in Table 4 at the row of (14) and the columns of “Branch of 10” and
”Branch of 16” by taking a linear combinations of U(1)a and U(1)b as

QR ≡ 1
2
(−9Qb + 2Qa) (2.66a)

QA ≡ −Qb − 3Qa, (2.66b)

where Qi (i ∈ {a, b, R, A}) denote the charges of U(1)i. Embedding R in Sp(4)×U(1)R, we obtain
the resulting field contents summarized in Table 9. We explicitly obtain appropriate U(1)Y hypercharges
of the SM particles by taking another linear combination of U(1)R and U(1)A as

QY ≡ − 2
29

(5QR + 21QA), (2.67a)

Qα ≡ − 2
29

(14QR − 5QA), (2.67b)

where QY and Qα are the charges of U(1)Y and U(1)α. We thereby obtain SM Higgs, SM fermions and
other fermions listed in Table 10.

We find four candidates of (S/R,G, F ) which give the SM Higgs doublet and at least one generation
of the SM fermions in four dimensions. These models, however, generate numerous undesired fields that
does not appear in the particle spectrum of the SM as tabulated in Table 10. These extra fields need
to be eliminated to construct a realistic model based on the candidates we found.

2.2.2 Models on ten-dimensional spacetime with direct product gauge group

In this section we obtain the combinations of the coset space S/R and the gauge group G of the ten-
dimensional theory [56]. We first obtain the coset space S/R and then we restrict the possible gauge
group G for each S/R.

We select the coset space S/R from the ones listed in Table 1 by the following two criteria. First,
R should be a direct product of subgroups R1 and R2 to have new freedom to embedding of R into G.
This criterion exculdes the candidates of S/R (v) and (vi) in Table 1.
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Table 11: The decompositions of the vector representation 6 and the spinor representation 4 of SO(6)
under Rs which are listed as (i) –(iv) in Table 1. The representations of rs in Eq. (2.16) and σi in
Eq. (2.20) are listed in the columns of “Branches of 6” and “Branches of 4”, respectively.

S/R Branches of 6 Branches of 4

(i) SU(2)(U(1)) 3(2), 3(−2) 1(3), 3(−1)

(ii) SU(2)(U(1)) 1(2), 1(−2), 2(1), 2(−1) 2(1), 1(0), 1(−2)

(iii) SU(3)(U(1)) 3(−4), 3̄(4) 1(−6), 3(2)

(iv) (SU(2), SU(2))(U(1)) (2, 2)(0), (1, 1)(2), (1, 1)(−2) (2, 1)(1), (1, 2)(−1)

Table 12: The embedding of R into G = G1 × G2 for the coset spaces (i) and (ii).

(i) Sp(4)/[SU(2) × U(1)]max and (ii) Sp(4)/[SU(2) × U(1)]non-max

(a) G1 ⊃ (GSM or GGUT) × SU(2), G2 ⊃ U(1)
(b) G1 ⊃ (GSM or GGUT) × U(1), G2 ⊃ SU(2)

Secondly, the four-dimensional gauge group obtained by Eq. (2.6) should be that of the SM or a
GUT with at most one extra U(1) gauge group, i.e. the SM-like gauge group GSM(×U(1)), where
GSM ≡ SU(3)× SU(2)×U(1), or a GUT-like gauge group GGUT(×U(1)), where GGUT is either SU(5),
SO(10) or E6. This criterion exculdes the candidates (vii) – (ix) in Table 1 by the following reasons.

1. We note that the U(1)s in R are also parts of its centralizer, i.e. a part of H. We thus exclude
the candidate (ix) since we consider the Hs which have at most two U(1) factors.

2. Similarly, as long as we consider the GUT-like and GSM gauge groups, we do not need to consider
the candidates (vii) and (viii).

3. The candidates (vii) and (viii) do not allow H = GSM ×U(1) either for the following reason. The
hypercharge of the SM should be reproduced by a certain linear combination of two U(1)s in R,
which should be matched to the spinor representation of SO(6). The dimension of the SO(6) spinor
representation is four, and thus no more than four different values of U(1) charges are available.
On the other hand the fermion content of the SM has five different values of U(1) charges. Hence,
this case never reproduces the hypercharges of the SM fermions.

4. Due to the above three reasons the candidates (i) – (iv) allow neither GSM nor GSM as H.

To summarize, the possible model requires coset space S/R listed in (i) – (iv) of Table 1, with either
H = GSM × U(1) or H = GGUT × U(1). In Table 11 we show the embedding of R in SO(6) for these
coset spaces. The representations of rs in Eq. (2.16) and σi in Eq. (2.20) are listed in the columns
of “Branches of 6” and “Branches of 4”, respectively. The embedding of R into higher dimensional
gauge group G = G1 × G2 is listed in Table 12–14. These embeddings are straightforwardly obtained
by decomposing gauge group G to its regular subgroup which contains an R-subgroup of G. A detailed
discussion about the embeddings is summarized in [25]. For each embedding of R, the candidates of
G are summarized in Table 15–18. Note that all the candidates of G in Table 15–18 are subgroup of
SO(32) or E8 × E8 which are required by superstring theory.
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Table 13: The embedding of R into G = G1 × G2 for the coset space (iii).

(iii) SU(4)/SU(3) × U(1)

(a) G1 ⊃ (GSM or GGUT) × SU(3), G2 ⊃ U(1)
(b) G1 ⊃ (GSM or GGUT) × U(1), G2 ⊃ SU(3)

Table 14: The embedding of R into G = G1 × G2 for the coset space (iv).

(iv) Sp(4) × SU(2)/[SU(2) × SU(2)] × U(1)

(a) G1 ⊃ (GSM or GGUT) × SU(2), G2 ⊃ SU(2) × U(1)
(b) G1 ⊃ (GSM or GGUT) × SU(2) × SU(2), G2 ⊃ U(1)
(c) G1 ⊃ (GSM or GGUT) × U(1), G2 ⊃ SU(2) × SU(2)
(d) G1 ⊃ (GSM or GGUT) × SU(2) × U(1), G2 ⊃ SU(2)

Table 15: The candidates of the gauge groups G1 and G2 for each of the coset space (i) and (ii) in
Table 1. The top row indicates the assigned number of S/R in Table 1 and embedding of R assigned in
Table 12. The leftmost column indicates H.

(i)-(a) and (ii)-(a) (i)-(b) and (ii)-(b)

SU(3) × SU(2) × U(1) × U(1) G1 = SO(10), SO(11), G1 = SU(6), SO(10),
Sp(10) SO(11), Sp(10)

G2 = SU(2), U(1) G2 = SU(2)
SU(5) × U(1) G1 = No candidate G1 = SU(6), SO(10),

SO(11), Sp(10)
G2 = SU(2), U(1) G2 = SU(2)

SO(10) × U(1) G1 = SO(13) G1 = SO(12), SO(13),
E6

G2 = SU(2), U(1) G2 = SU(2)
E6 × U(1) G1 = No candidate G1 = E7

G2 = SU(2), U(1) G2 = SU(2)

Table 16: The allowed candidates of the gauge groups G1 and G2 for the coset space (iii) in Table 1.
The top row indicates the assigned number of S/R in Table 1 and embedding of R assigned in Table 13.
The leftmost column indicates H.

(iii)-(a) (iii)-(b)

SU(3) × SU(2) × U(1) × U(1) G1 = E6 G1 = SU(6), SO(10),
SO(11), Sp(10)

G2 = SU(2), U(1) G2 = G2, SU(3)
SU(5) × U(1) G1 = No candidate G1 = SU(6), SO(10),

SO(11), Sp(10)
G2 = SU(2), U(1) G2 = G2, SU(3)

SO(10) × U(1) G1 = No candidate G1 = SO(12), SO(13)
E6

G2 = SU(2), U(1) G2 = G2, SU(3)
E6 × U(1) G1 = E8 G1 = E7

G2 = SU(2), U(1) G2 = G2, SU(3)
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Table 17: The allowed candidates of the gauge groups G1 and G2 for the coset space (iv) in Table 1.
The top row indicates the assigned number of S/R in Table 1 and embedding of R assigned in Table 14.
The leftmost column indicates H.

(iv)-(a) (iv)-(b)

SU(3) × SU(2) × U(1) × U(1) G1 = SO(10), SO(11), G1 = SO(13), Sp(12)
Sp(10)

G2 = SU(3), Sp(4), G2 = SU(2), U(1)
G2

SU(5) × U(1) G1 = No candidate G1 = No candidate
G2 = SU(3), Sp(4), G2 = SU(2), U(1)

G2
SO(10) × U(1) G1 = SO(13) G1 = SO(14), SO(15)

G2 = SU(3), Sp(4), G2 = SU(2), U(1)
G2

E6 × U(1) G1 = No candidate G1 = No candidate
G2 = SU(3), Sp(4), G2 = SU(2), U(1)

G2

Table 18: The allowed candidates of the gauge groups G1 and G2 for the coset space (iv) in Table 1.
The top row indicates the assigned number of S/R in Table 1 and embedding of R assigned in Table 14.
The leftmost column indicates H.

(iv)-(c) (iv)-(d)

SU(3) × SU(2) × U(1) × U(1) G1 = SU(6), SO(10), G1 = SU(7), SO(12),
SO(11), Sp(10) SO(13), Sp(12),

E6
G2 = G2, Sp(4) G2 = SU(2)

SU(5) × U(1) G1 = SU(6), SO(10), G1 = SU(7), SO(13)
SO(11), Sp(10) Sp(12), E6

G2 = G2, Sp(4) G2 = SU(2)
SO(10) × U(1) G1 = SO(12), SO(13), G1 = SO(14), SO(15),

E6 E7
G2 = G2, Sp(4) G2 = SU(2)

E6 × U(1) G1 = E7 G1 = E8
G2 = G2, Sp(4) G2 = SU(2)
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Table 19: The complex or real representations of the possible gauge groups [65]. The groups SU(7) and
SO(13) are not listed here since they do not lead to the four-dimensional gauge group of our interest
for any of S/R and embedding of R in Table 12–14.

Group Complex representations Real representations

SU(6) 6, 15, 21, 56, 70, 84, 105, 105′, 120, 35, 175, 189, 405, · · ·
126, 210, 210′, 252, 280, 315, 336, 384,
420, 462, 490, 504, 560, 700, 720, 792,
840, 840′, 840′′, 896, · · ·

SO(11) 11, 55, 65, 165, 275, 320, 330, 429,
462, 935, · · ·

SO(12) 12, 66, 77, 220, 352, 462, 495, 560,
792, · · ·

SO(14) 64, 832, · · · 14, 91, 104, 364, 546, 896, · · ·
SO(15) 15, 105, 119, 128, 455, 665, · · ·
F4 26, 52, 273, 324, · · ·
E6 27, 351, 351′ · · · 78, 650, · · ·
E7 133 · · ·
E8 248, · · ·

The representation F1 of G1 for the fermions should be either complex or real but not pseudoreal,
since the fermions of pseudoreal representation do not allow the Majorana condition when D = 10
and induce doubled fermion contents after the dimensional reduction [27]. Table 19 lists the candidate
groups G1 and their complex and real representations whose dimension is no more than 1024. The
representations in this table are the candidates of F1. The groups SU(7) and SO(13) are not listed here
since they do not lead to the four-dimensional gauge group of our interest for any of S/R and embedding
of R in Table 12–14.

The representation F2 of G2 has to be real as well as F1 to impose the Majorana condition. Without
this condition, F2 can be any representation. We limited ourselves to the case dimF = dim F1×dimF2 <
1025 since larger representations yield numerous higher dimensional representations of fermion under
the GSM × U(1) and GGUT × U(1).

Now we are ready to investigate the representations for fermions and scalars in four dimensions. We
first note that we need a R2 singlet in SO(6) vector to obtain the Higgs candidate hg (cf. Eq.(2.19)
and the discussion below). We can thus exclude the candidates (i) and (iii) of S/R in Table 1 (cf.
Table 11). In Tables 20–22, we list the possible candidates of G1, G2, (F1, F2), and the corresponding
representations of four-dimensional scalars and fermions for each H, which is either GSM×U(1), SU(5)×
U(1), SO(10)×U(1), or E6 ×U(1). The representations of four dimensional fermions are classified into
A, B, and C. The representations of class A are the standard representations; 5̄ and 10 for SU(5), 16
for SO(10), and 27 for E6, which lead to the SM fermions after GUT breaking. The representations of
class B lead to both of the SM fermions and non-SM fermions after GUT breaking. The representations
of class C lead only to non-SM fermions after GUT breaking.

H = GSM × U(1)

We investigate all combinations of S/R, G1 and G2 in Table 15–18 which provide H = GSM × U(1)
in four dimensions. We obtain a representation which is identified as the SM Higgs-doublet in four
dimensions from the following cases.

1. R embedded as (ii)-(b), G1 = SU(6) and G2 = SU(2).
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2. R embedded as (ii)-(b), G1 = SO(11) and G2 = SU(2).

3. R embedded as (iv)-(c), G1 = SU(6) and G2 = G2.

4. R embedded as (iv)-(c), G1 = SU(6) and G2 = Sp(4).

5. R embedded as (iv)-(c), G1 = SO(11) and G2 = G2.

6. R embedded as (iv)-(c), G1 = SO(11) and G2 = Sp(4).

7. R embedded as (iv)-(d), G1 = Sp(12) and G2 = SU(2).

8. R embedded as (iv)-(d), G1 = E6 and G2 = SU(2).

Any of these cases does not reproduce a whole generation of the SM fermions. Therefore we cannot
obtain the SM in four dimensions. The difficulty in obtaining the SM is ultimately due to the smallness
of the dimension of SO(6) spinor representation.

H = SU(5) × U(1)

We investigate the case of H = SU(5) × U(1) and summarize the result in Table 20. We obtain the
representation 5 which corresponds to the Higgs scalar in the following cases.

1. R embedded as (ii)-(b), G1 = SU(6) and G2 = SU(2).

2. R embedded as (ii)-(b), G1 = SO(11) and G2 = SU(2).

3. R embedded as (iv)-(c), G1 = SU(6) and G2 = Sp(4).

4. R embedded as (iv)-(c), G1 = SO(11) and G2 = Sp(4).

5. R embedded as (iv)-(d), G1 = E6 and G2 = SU(2).

As for the fermions, we see that the standard representations of SU(5) GUT are not obtained at all for
the cases 3, 4, and 5, while they are obtained by combining two representations of F in the cases 1 and 2.
For the example of case 1, we can choose (70,2) and (280,1) to obtain all the standard representations,
5̄ and 10, in four dimensions, along with the extra fermions of class B and C.

H = SO(10) × U(1)

We investigate all the combinations of S/R, G1, and G2 for H = SO(10) × U(1). We obtain the
representation 10 which corresponds to the Higgs scalar in the following cases.

1. R embedded as (ii)-(b), G1 = SO(12) and G2 = SU(2).

2. R embedded as (ii)-(b), G1 = E6 and G2 = SU(2).

3. R embedded as (iv)-(b), G1 = SO(14) and G2 = SU(2).

4. R embedded as (iv)-(b), G1 = SO(14) and G2 = U(1).

5. R embedded as (iv)-(b), G1 = SO(15) and G2 = SU(2).
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6. R embedded as (iv)-(b), G1 = SO(15) and G2 = U(1).

7. R embedded as (iv)-(c), G1 = SO(12) and G2 = G2.

8. R embedded as (iv)-(c), G1 = SO(12) and G2 = Sp(4).

9. R embedded as (iv)-(c), G1 = E6 and G2 = SU(2)

10. R embedded as (iv)-(c), G1 = E6 and G2 = G2.

11. R embedded as (iv)-(d), G1 = SO(15) and G2 = SU(2).

12. R embedded as (iv)-(d), G1 = E7 and G2 = SU(2).

We further obtain the standard representations of the fermions which lead to all the SM fermions of one
generation in the cases 1 – 6, 8, 11 and 12 (see Table 21).

The case 4 with F = 832(1) is intriguing since we obtain two 16s and two 144s, each of which leads
to a complete set of the SM fermions of one generation. We thus obtain four generations of fermions
which can accommodate the known three generations. Furthermore these representations can form
three distinct types of Yukawa coupling: 16 × 16 × 10, 144 × 16 × 10, and 144 × 144 × 10. These
couplings may explain the origin of the Yukawa couplings distinguishing the the generations and the
mixing among them.

H = E6 × U(1)

The results for H = E6 × U(1) are listed in Table 22. We obtain representation 27 which corresponds
to the Higgs scalar in the following cases.

1. R embedded as (ii)-(b), G1 = E7 and G2 = SU(2).

2. R embedded as (iv)-(c), G1 = E7 and G2 = G2.

3. R embedded as (iv)-(d), G1 = E8 and G2 = SU(2).

The standard representations of fermion 27, which provide all the SM fermions of one generation, are
obtained in cases 1 and 3.

Case 1 with F = (133,1) is interesting since the structure of the SM with three generations may
be explained. The Yukawa coupling of this model needs to be in the form 27(−2) × 27(2) × 78(0).
The fermion representation 27 + 78 of E6 contains three generations of 5̄ + 10 in terms of its SU(5)
subgroup, giving the origin of the known three generations. Indeed, this fermion content is analyzed in,
for example, nonlinear sigma models giving a family unification [74] based on a broken E7 symmetry [75],
under which a reproduction of the observed mixing structure among the three generations of fermions
has been attempted [76].
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Table 20: The models for H=SU(5) × U(1) which include the SM Higgs-doublet and one generation
of the SM fermions in four dimensions. The fermions in four dimensions are classified into A, B, and
C. The fermion-As contain only the SM fermions; fermion-Bs contain both the SM fermions and extra
fermions; fermion-Cs contain only extra fermions.

S/R = Sp(4)/[SU(2) × U(1)], G1 ⊃ SU(5) × U(1), G2 ⊃ SU(2)

G1 G2 (F1, F2) Scalars Fermions-A B C

SU(6) SU(2) (56, 2) 5(6), 5̄(-6) 15(-3) 35(-3)

(70, 2) 5(6), 5̄(-6) 10(-3) 15(-3), 40(-3)

(280, 1) 5(6), 5̄(-6) 5̄(-6) 70(-6) 24(0), 45(-6), 126(0)

24(0), 126(0)

(405, 1) 5(6), 5̄(-6) 5̄(-6) 70(-6) 1(0), 24(0), 200(0)

5(6), 70(6), 1(0), 24(0), 200(0)

(840, 1) 5(6), 5̄(-6) 45(6) 280’(6), 126(0), 224(0)

105(6), 126(0), 224(0)

SO(11) SU(2) (11, 1) 5(2), 5̄(-2) 5̄(-2) 1(0)

(55, 1) 5(2), 5̄(-2) 5̄(-2) 1(0), 24(0)

(65, 1) 5(2), 5̄(-2) 5̄(-2) 1(0), 24(0)

(165, 1) 5(2), 5̄(-2) 5̄(-2) 4̄5(-2) 1(0), 24(0)

(275, 1) 5(2), 5̄(-2) 5̄(-2) 7̄0(-2) 1(0), 24(0)

(320, 2) 5(2), 5̄(-2) 10(-1), 10(-1) 15(-1), 40(-1)

(330, 1) 5(2), 5̄(-2) 5̄(-2) 4̄5(-2) 1(0), 24(0), 75(0)

(429, 1) 5(2), 5̄(-2) 5̄(-2), 5̄(-2) 4̄5(-2), 7̄0(-2) 1(0), 24(0), 24(0)

(462, 1) 5(2), 5̄(-2) 5̄(-2) 4̄5(-2), 5̄0(-2) 1(0), 24(0), 75(0)

(935, 1) 5(2), 5̄(-2) 5̄(-2) 7̄0(-2) 1(0), 24(0), 200(0)
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Table 21: The models for H = SO(10) × U(1) which include the SM Higgs and one generation of
the SM fermions in four-dimensions. The fermions in four-dimensions are classified into A, B, and
C where fermion-As are 16 representation of SO(10); fermion-Bs contain both the SM fermions and
extra-fermions; fermion-Cs contain only extra-fermions. We can obtain two types of results for fermions
from one combination of (G1, G2, F ) since we have a freedom to change the overall sign of U(1) charges
which appear in the R-decomposition of SO(6) vector and spinor.

S/R = Sp(4)/[SU(2) × U(1)]. G1 ⊃ SO(10) × U(1). G2 ⊃ SU(2)

G1 G2 (F1, F2) Scalars Fermions-A B C

SO(12) SU(2) (12, 1) 10(2), 10(-2) 10(0), 1(2)

10(0), 1(-2)

(66, 1) 10(2), 10(-2) 10(2), 45(0) 1(0)

10(-2), 45(0) 1(0)

(77, 1) 10(2), 10(-2) 10(2), 54(0) 1(0)

10(-2), 54(0) 1(0)

(220, 1) 10(2), 10(-2) 45(2), 10(0), 120(0)

45(-2), 10(0), 120(0)

(352, 1) 10(2), 10(-2) 54(2), 10(0), 210’(0)

54(-2), 1(-2), 10(0), 210’(0)

(462, 1) 10(2), 10(-2) 126(2), 210(0)

¯126(-2), 210(0)

(495, 1) 10(2), 10(-2) 120(2), 45(0), 210(0)

120(-2), 45(0), 210(0)

(560, 1) 10(2), 10(-2) 54(2), 45(2), 10(0), 10(0), 320(0) 1(2)

54(-2), 45(-2), 10(0), 10(0), 320(0) 1(-2)

(792, 1) 10(2), 10(-2) 210(2), 120(0), 126(0), ¯126(0)

210(-2), 120(0), 126(0), ¯126(0)

E6 SU(2) (78, 1) 16(-3), 1̄6(3) 16(-3) 45(0) 1(0)

45(0) 1(0) 1̄6(3)

(650, 1) 16(-3), 1̄6(3) 16(3) ¯144(3), 45(0), 54(0), 210(0) 1(0)

144(-3),45(0), 54(0), 210(0) 1(0) 1̄6(-3)

S/R = Sp(4) × SU(2)/[SU(2) × SU(2)] × U(1), G1 ⊃ SO(10) × SU(2) × SU(2), G2 ⊃ U(1)

G1 G2 (F1, F2) Scalars Fermions-A B C

SO(14) SU(2) (64, 2) 10(0) 16(1),16(1) 16(-1),16(-1)

U(1) 64(1) 10(0) 16(1),16(-1)

832(1) 10(0) 16(1),16(-1) 144(1) 144(-1)

SO(15) SU(2) (128, 2) 10(0), 1(0) 16(1), 16(-1) 16(1), 16(-1)

U(1) 128(1) 10(0), 1(0) 16(1) 16(1)

S/R = Sp(4) × SU(2)/[SU(2) × SU(2)] × U(1). 　 G1 ⊃ SO(10) × SU(2) × U(1). 　 G2 ⊃ SU(2)

G1 G2 (F1, F2) Scalars Fermions-A B C

SO(15) SU(2) (128,1) 10(2),10(-2) 16(1) 1̄6(1)

E7 SU(2) (133,1) 10(2),10(-2) 16(1)
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Table 22: The models for H = E6 × U(1) which include the SM Higgs and one generation of the SM
fermions in four dimensions. The fermions in four dimensions are classified into A, B and C where
fermion-As are 27 representation of E6; fermion-Bs contain both the SM fermions and extra fermions;
fermion-Cs contain only extra-fermions. We can obtain two types of results for fermions from one
combination of (G1, G2, F ) since we have a freedom to change the overall sign of U(1) charges which
appear in R-decomposition of SO(6) vector and spinor.

S/R = Sp(4)/SU(2) × U(1), G1 ⊃ E6 × U(1), G2 ⊃ SU(2)

G1 G2 (F1, F2) Scalars Fermions-A B C

E7 SU(2) (133,1) 27(2),2̄7(−2) 27(2) 78(0) 1(0)

27(-2), 78(0) 1(0)

S/R = Sp(4) × SU(2)/[SU(2) × SU(2)] × U(1), G1 ⊃ E6 × SU(2) × U(1), G2 ⊃ SU(2)

G1 G2 (F1, F2) Scalars Fermions-A B C

E8 SU(2) F(248, 1) 27(-2), 2̄7(2) 27(1)

2̄7(-1)

2.2.3 Models on eight-dimensional spacetime

In this section we search for realistic models in the CSDR scheme in eight-dimensions [62].
First we investigate four-dimensional gauge group H and higher-dimensional gauge group G for each

coset space of (i), (ii) and (iii) listed in Table. 2. The four-dimensional gauge groups acceptable for H
are listed in Table. 23. This Table is obtained from the following considerations.

1. The number of U(1)s in H must be more than that in R, since the U(1)s in R are also part of
its centralizer, i.e. part of H. Therefore, the number of U(1)s in H must be R or more. We thus
exclude SU(5), SO(10), and E6 for coset space of (ii) and GSM, SU(5), SO(10), E6, SU(5)×U(1),
SO(10) × U(1), and E6 × U(1) for coset space of (iii).

2. We also exclude GSM for the coset space of (ii) and GSM × U(1) for the coset space of (iii). The
hypercharges of the SM should be reproduced by the U(1) charges in R, which means that all
the hypercharges must appear in the decomposition of SO(4) spinor. The dimension of the SO(4)
spinor representation is however two, and hence more than two different values of U(1) charges are
not available. Consequently, these cases never reproduce the five hypercharges of the SM fermions.

3. We allow at most one extra U(1) in four-dimensional gauge group. This excludes GSM × U(1),
SU(5)×U(1), SO(10)×U(1), E6×U(1), GSM×U(1)×U(1), SU(5)×U(1)×U(1), SO(10)×U(1)×
U(1), and E6 × U(1) × U(1) for coset space of (i), and GSM × U(1) × U(1), SU(5) × U(1) × U(1),
SO(10) × U(1) × U(1), and E6 × U(1) × U(1) for coset space of (ii).

The higher-dimensional gauge group G should have the same rank as that of H × R up to U(1)s and
possess complex representations to obtain chiral fermions. We also list the candidates of G in Table 23.

We investigate representations of four-dimensional gauge group in the CSDR scheme. The represen-
tations for scalars in four-dimensional spacetime are obtained by comparing Eq. (2.26) and Eq. (2.27),
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Table 23: The candidates of H and G.

S/R H G

(i) SU(3) × SU(2) × U(1) SU(7), E6

SU(5) SU(7), E6

SO(10) SU(8), SO(14)

E6 SU(9)

(ii) SU(3) × SU(2) × U(1) × U(1) SU(7), E6

SU(5) × U(1) SU(7), E6

SO(10) × U(1) SU(8), SO(14)

E6 × U(1) SU(9)

(iii) SU(3) × SU(2) × U(1) × U(1) × U(1) SU(7), E6

SU(5) × U(1) × U SU(7), E6

SO(10) × U(1) × U SU(8), SO(14)

E6 × U(1) × U SU(9)

while those for fermions are similarly obtained by comparing Eq. (2.29) and Eq. (2.30). Note again that
F must be complex representation in order to obtain chiral fermions in four dimensions. We limit the
dimension of F to 1000 to avoid numerous representations of the fermions under four-dimensional gauge
group.

Exhaustive investigation of all combinations of S/R, G, H and F leaves six candidates of models
which include at least one generation of known fermions; they are listed in Table 24. We find that all
of these viable models give H = SO(10) (with one or two U(1)s) in four dimensions and that no model
lead to a promising four-dimensional theory that gives H = GSM, H = SU(5) or H = E6 (with one or
two U(1)s). This result is understood as follows. For H = GSM and SU(5) (with one or two U(1)s), no
model reproduces a whole generation of the SM fermions due to the smallness of the dimension of SO(4)
spinor representation. For H = E6 (with one or two U(1)s), no gauge group has E6 as a regular subgroup
and has a complex representation at the same time. On the other hand, the models with H = SO(10)
(with one or two U(1)s) are favored since one generation of the SM fermions can be embedded into only
one representation, such as 16 and 144, and these representations are easily obtained from complex
representations of SO(14).

We summarize the details of these viable H = SO(10) (with one or two U(1)s) models below.
For coset space of (i), we embed R = SU(2)×SU(2) into G = SO(14) according to the decomposition

SO(14) ⊃ SU(2) × SU(2) × SO(10). (2.68)

The decomposition of the adjoint representation of SO(14) according to the decomposition of Eq. (2.68)
is

91 = (1,1,45) + (3,1,1) + (1,3,1) + (2,2,10), (2.69)

and thus we obtain 10 as the scalar reperesentation in four dimensions. Similarly, we decompose the
complex representations 64 and 832 of SO(14) according to the decomposition of Eq. (2.68) as

64 =(2,1,16) + (1,2,16), (2.70)

832 =(1,2,144) + (2,1,144) + (2,3,16) + (3,2,16)

+ (1,2,16) + (2,1,16), (2.71)
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Table 24: Four-dimensional scalar and fermion representations for each combination of S/R, G, H and
F .

S/R H G scalar F fermions

(i) SO(10) SO(14) 10 64 {16}2

832 {16}2, {144}2

(ii) SO(10) × U(1) SO(14) 10(1), 10(−1) 64 16(0), 16(1), 16(−1)

832 {16(0)}2, 16(1), 16(−1),

144(0), 144(1), 144(−1)

(iii) SO(10) × U(1) × U(1) SO(14) 10(1, 1), 10(1,−1) 64 16(1, 0), 16(−1, 0),

10(−1, 1), 10(−1,−1) 16(0, 1), 16(0,−1)

832 {16(1, 0)}2, {16(−1, 0)}2,

{16(0, 1)}2, {16(0,−1)}2,

144(1, 0), 144(−1, 0),

144(0, 1), 144(0,−1)

and obtain {16}2 from F = 64 and {16}2 + {144}2 from F = 832 as representations for the left-handed
fermion in four dimensions.

For coset space of (ii), we embed SU(2) × U(1) into SO(14) according to the decomposition

SO(14) ⊃ SU(2) × SU(2) × SO(10)
⊃ SU(2) × U(1) × SO(10). (2.72)

The decomposition of the adjoint representation of SO(14) according to the decomposition of Eq. (2.72)
is

91 =(1,1,45) + (3,1,1) + (1,3,1) + (2,2,10)
=(1,45)(0) + (3,1)(0) + (1,1)(2) + (1,1)(0) + (1,1)(−2)

+ (2,10)(1) + (2,10)(−1), (2.73)

and thus we obtain (10(1)) and (10(−1)) as the scalar representations in four dimensions. Similarly,
we decompose the complex representations 64 and 832 of SO(14) according to the decomposition of
Eq. 2.72) as

64 =(2,1,16) + (1,2,16)

=(2,16)(0) + (1,16)(1) + (1,16)(−1) (2.74)

832 =(1,2,144) + (2,1,144) + (2,3,16) + (3,2,16)

+ (1,2,16) + (2,1,16)

=(1,144)(1) + (1,144)(−1) + (2,144)(0) + (2,16)(2)

+ (2,16)(0) + (2,16)(−2) + (3,16)(1) + (3,16)(−1)

+ (1,16)(1) + (1,16)(−1) + (2,16)(0), (2.75)

and obtain 16(0), 16(1) and 16(−1) from F = 64 and {16(0)}2, 16(1), 16(−1), 144(0), 144(1) and
144(−1) from F = 832 as representations for the left-handed fermion in four dimensions.
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For coset space of (iii), we embed U(1) × U(1) into SO(14) according to the decomposition

SO(14) ⊃ SU(2) × SU(2) × SO(10)
⊃ SO(10) × U(1) × U(1). (2.76)

The decomposition of the adjoint representation of SO(14) according to the decomposition of Eq. (2.76)
is

91 =(1,1,45) + (3,1,1) + (1,3,1) + (2,2,10)
=45(0, 0) + 1(2, 0) + 1(0, 0) + 1(−2, 0) + 1(0, 2) + 1(0, 0)

+ 1(0,−2) + 10(1, 1) + 10(1,−1) + 10(−1, 1) + 10(−1,−1), (2.77)

and thus we obtain (10(1, 1)), (10(1,−1)), (10(−1, 1)) and (10(−1,−1)) as the scalar representations in
four dimensions. Similarly, we decompose the complex representations 64 and 832 of SO(14) according
to the decomposition of Eq. (2.76) as

64 =(2,1,16) + (1,2,16)

=16(1, 0) + 16(−1, 0) + 16(0, 1) + 16(0,−1) (2.78)

832 =(1,2,144) + (2,1,144) + (2,3,16) + (3,2,16) + (1,2,16)
+ (2,1,16)

=144(0, 1) + 144(0,−1) + 144(1, 0) + 144(−1, 0)
+ 16(1, 2) + 16(1, 0) + 16(1,−2) + 16(−1, 2)

+ 16(−1, 0) + 16(−1,−2) + 16(2, 1) + 16(2,−1)

+ 16(0, 1) + 16(0,−1) + 16(−2, 1) + 16(−2,−1)

+ 16(0, 1) + 16(0,−1) + 16(1, 0) + 16(−1, 0), (2.79)

and obtain 16(1, 0), 16(−1, 0), 16(0, 1) and 16(0,−1) from F = 64 and {16(1, 0)}2, {16(−1, 0)}2,
{16(0, 1)}2, {16(0,−1)}2, 144(1, 0), 144(−1, 0), 144(0, 1) and 144(0,−1) from F = 832 as represen-
tations for the left-handed fermion in four dimensions.

We can obtain one generation of the SM fermion from all of the candidates listed in Table 24 since
the representations 16 and 144 of SO(10) include one generation of the SM fermion. The models with
SU(3)/SU(2)×U(1) are particularly intersting in our results. We obtain the three generations of the SM
fermions for this coset space with F = 64. We also obtain odd number generation in the combination
of coset space of (ii) with F = 832. This is due to the fact that the SO(4) spinor is not self conjugate
which forbid Majorana-Weyl condition and that R, which is SU(2)×U(1), are embedded into SO(4)
lopsidedly.

We notice that these models provide anomaly-free theories in four-dimensional spacetime although
the four-dimensional theories are chiral; the SO(10) gauge symmetry does not have anomaly, and the
anomaly from the extra U(1) symmetry cancels since the traces of U(1) charges and their cubes are zero
for all cases.
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3 The Standard(-like) Model from an SO(12) Grand Unified
Theory in six-dimensions with S2 extra-space [77]

3.1 Six-dimensional gauge theory with extra-space S2 under the symmetry
condition and non-trivial boundary conditions

In this section, we develop the scheme for constructing a four-dimensional theory from a gauge theory
on six-dimensional spacetime which has extra-space as two-sphere S2 with the symmetry condition and
non-trivial boundary conditions.

3.1.1 A Gauge theory on six-dimensional spacetime with S2 extra-space

We begin with a gauge theory with a gauge group G defined on a six-dimensional spacetime M6. The
spacetime M6 is assumed to be a direct product of the four-dimensional Minkowski spacetime M4 and
two-sphere S2 such that M6 = M4 × S2. The two-sphere S2 is a unique two-dimensional coset space,
and can be written as S2 = SU(2)I/U(1)I , where U(1)I is the subgroup of SU(2)I . This coset space
structure of S2 requires that S2 has the isometry group SU(2)I , and that the group U(1)I is embedded
into the group SO(2) which is a subgroup of the Lorentz group SO(1,5). We denote the coordinate of M6

by XM = (xµ, yθ = θ, yϕ = ϕ), where xµ and {θ, ϕ} are M4 coordinates and S2 spherical coordinates,
respectively. The spacetime index M runs over µ ∈ {0, 1, 2, 3} and α ∈ {θ, ϕ}. The metric of M6,
denoted by gMN , can be written as

gMN =

(
ηµν 0

0 −gαβ

)
, (3.1)

where ηµν = diag(1,−1,−1,−1) and gαβ = diag(1, sin−2 θ) are metric of M4 and S2 respectively. Notice
that we omit the radius R of S2 in this discussion. We define the vielbein eM

A that connects the metric
of M6 and that of the tangent space of M6, denoted by hAB , as gMN = eA

MeB
NhAB. Here A = (µ, a),

where a ∈ {4, 5}, is the index for the coordinates of tangent space of M6. The explicit form of the
vielbeins are summarized in the Appendix. We introduce a gauge field AM (x, y) = (Aµ(x, y), Aα(x, y)),
which belongs to the adjoint representation of the gauge group G, and fermions ψ(x, y), which lies in a
representation F of G. The action of this theory is given by

S =
∫

dx4 sin θdθdϕ
(
ψ̄iΓµDµψ + ψ̄iΓaeα

aDαψ − 1
4g2

gMNgKLTr[FMKFNL]
)
, (3.2)

where FMN = ∂MAN (X) − ∂NAM (X) − [AM (X), AN (X)] is the field strength, DM is the covariant
derivative including spin connection, and ΓA represents the 6-dimensional Clifford algebra. Here DM

and ΓA can be written explicitly as,

Dµ = ∂µ − Aµ, (3.3)
Dθ = ∂θ − Aθ, (3.4)

Dϕ = ∂ϕ − i
Σ3

2
cos θ − Aϕ, (3.5)

Γµ = γµ ⊗ I2, (3.6)
Γ4 = γ5 ⊗ σ1, (3.7)
Γ5 = γ5 ⊗ σ2, (3.8)
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where {γµ, γ5} are the 4-dimensional Dirac matrices, σi(i = 1, 2, 3) are Pauli matrices, Id is d×d identity,
and Σ3 is defined as Σ3 = I4 ⊗ σ3.

3.1.2 The symmetry condition and the boundary conditions

We impose on the gauge field AM (X) the symmetry which connects SU(2)I isometry transformation
on S2 and the gauge transformation on the fields in order to carry out dimensional reduction, and the
non-trivial boundary conditions of S2 to restrict four-dimensional theory. The symmetry requires that
the SU(2)I coordinate transformation should be compensated by a gauge transformation [1, 21]. The
symmetry further leads to the following set of the symmetry condition on the fields:

ξβ
i ∂βAµ = ∂αWi + [Wi, Aµ], (3.9)

ξβ
i ∂βAα + ∂αξβ

i Aβ = ∂αWi + [Wi, Aα], (3.10)

where ξα
i is the Killing vectors generating SU(2)I symmetry and Wi are some fields which generate an

infitesimal gauge transformation of G. Here index i = 1, 2, 3 corresponds to that of SU(2) generators.
The explicit forms of ξα

i s for S2 are:

ξθ
1 = sinϕ, ξϕ

1 = cot θ cos ϕ,

ξθ
2 = − cos ϕ, ξϕ

2 = cot θ sin ϕ,

ξθ
3 = 0, ξϕ

3 = −1. (3.11)

The LHSs of Eq (3.9,3.10) are infintesimal isometry SU(2)I transformation and the RHSs of those are
infintesimal gauge transformation.

The non-trivial boundary conditions are defined so as to remain the action Eq (3.2) invariant, and
are written as

ψ(x, π − θ,−ϕ) = γ5Pψ(x, θ, ϕ), (3.12)
Aµ(x, π − θ,−ϕ) = PAµ(x, θ, ϕ)P, (3.13)
Aθ(x, π − θ,−ϕ) = −PAθ(x, θ, ϕ)P, (3.14)
Aϕ(x, π − θ,−ϕ) = −PAϕ(x, θ, ϕ)P, (3.15)

ψ(x, θ, ϕ + 2π) = P ′ψ(x, θ, ϕ), (3.16)
Aµ(x, θ, ϕ + 2π) = P ′Aµ(x, θ, ϕ)P ′, (3.17)
Aθ(x, θ, ϕ + 2π) = P ′Aθ(x, θ, ϕ)P ′, (3.18)
Aϕ(x, θ, ϕ + 2π) = P ′Aϕ(x, θ, ϕ)P ′, (3.19)

where P (P ′)s act on the representation space of gauge group G and satisfy P 2 = 1((P ′)2 = 1); we can
take element of P (P ′) as ±1.
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3.1.3 The dimensional reduction and a Lagrangian in four-dimensions

The dimensional reduction of gauge sector is explicitly carried out by applying the solutions of the
symmetry condition Eq (3.9,3.10). These solutions are given by Manton [1] as

Aµ = Aµ(x), (3.20)
Aθ = −Φ1(x), (3.21)
Aϕ = Φ2(x) sin θ − Φ3 cos θ, (3.22)

W1 = −Φ3
cos ϕ

sin θ
, (3.23)

W2 = −Φ3
sinϕ

sin θ
, (3.24)

W3 = 0, (3.25)

and satisfy the following constraints:

[Φ3, Aµ] = 0, (3.26)
[−iΦ3, Φi(x)] = iϵ3ijΦj(x), (3.27)

where Φ1(x) and Φ2(x) are scalar fields, and −iΦ3 are chosen as generator of U(1)I . Note that the Φ3

term in Eq. (3.22) corresponds to the background gauge field [78]. Substituting the solutions Eq (3.20)-
(3.22) into AM (X) in action Eq (3.2), we can easily integrate coordinates θ and ϕ in the gauge sector.
We then obtain a four dimensional action as

S
(gauge)
4D =

∫
d4x

(
− 1

4g2
Tr[FµνFµν(x)]

− 1
2g2

Tr[D′
µΦ1(x)D′µΦ1(x) + D′

µΦ2(x)D′µΦ2(x)]

− 1
2g2

Tr[(Φ3 + [Φ1(x), Φ2(x)])(Φ3 + [Φ1(x), Φ2(x)])]
)

, (3.28)

where D′
µΦ = ∂µ − [Aµ, Φ]. The fermion sector of four-dimensional action is obtained by expanding

fermions in normal modes of S2 and then integrating S2 coordinate in six-dimensional action. Thus,
the fermions have massive KK modes which would be a candidate of dark matter. Generally, the KK
modes do not have massless mode because of the positive curvature of S2 [39]. We, however, can show
that the fermion components satisfying the following condition have massless mode:

−iΦ3ψ =
Σ3

2
ψ. (3.29)

Square mass of the KK modes are eigenvalues of square of extra-dimensional Dirac-operator −iD̂. In
the S2 case, −iD̂ is written as

−iD̂ = −ieαaΓaDα

= −i
[
Σ1(∂θ +

cot θ

2
) + Σ2(

1
sin θ

∂ϕ + Φ3 cot θ)
]
, (3.30)
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where Σi = I4 × σi. Square of −iD̂ can be explicitly calculated:

(−iD̂)2 = −
[ 1
sin θ

∂θ(sin θ∂θ) +
1

sin2 θ
∂2

ϕ + i(2(−iΦ3) − Σ3)
cos θ

sin2 θ
∂ϕ

−1
4
− 1

4 sin2 θ
+ Σ3(−iΦ3)

1
sin2 θ

− (−iΦ3)2 cot2 θ
]
. (3.31)

We then act this operator on a fermion ψ(X) which satisfy Eq. (3.29), and obtain the reration

(−iD̂)2ψ = −
[ 1
sin θ

∂θ(sin θ∂θ) +
1

sin2 θ
∂2

ϕ

]
ψ. (3.32)

The eigenvalues of the RHS operator are less than or equal to zero. Thus the fermion components
satisfying Eq. (3.29) have massless mode, while other components only have massive KK mode. Note
that the massless mode ψ0 should be independent of S2 coordinates θ and ϕ:

ψ0 = ψ(x). (3.33)

The existence of massless fermion may indicate the meaning of the symmetry condition; though the
energy density of the gauge sector in the appearance of the background fields is higher than that of
no background fields, since we have massless fermions, it may consist a ground state as a total in the
presence of fermions. We also note that we could impose symmetry condition on fermions [22, 64]. In
that case, we obtain the massless condition Eq. (3.29) from symmetry condition of fermion, and the
solution of symmetry condition is independent from S2 coordinate: ψ = ψ(x) with no massive KK
mode. Therefore, we can apply the same discussion for this case as our case if we only focus on the
massless mode in our scheme.

3.1.4 A gauge symmetry and particle contents in four-dimensions

The symmetry conditions and the non-trivial boundary conditions substantially constrain the four di-
mensional gauge group and its representations for the particle contents. The gauge symmetry and par-
ticle contents in four-dimensions must satisfy the constraints Eq (3.26),(3.27),(3.29) and be consistent
with the boundary conditions Eq (3.12)-(3.19). We show the prescriptions to identify four-dimensional
gauge symmetry and particle contents below.

First, we show the prescriptions to identify gauge symmetry and field components which satisfy the
constrants Eq (3.26),(3.27),(3.29). The gauge group H that satisfy the constraint Eq (3.26) is identified
as

H = CG(U(1)I) (3.34)

where CG(U(1)I) denotes the centralizer of U(1)I in G [21]. Note that this implies G ⊃ H = H ′ ×
U(1)I , where H ′ is some subgroup of G.

Second, the scalar field components which satisfy the constraints Eq. (3.27) are specified by the
following prescription. Suppose that the adjoint representations of SU(2)I and G are decomposed
according to the embeddings SU(2)I ⊃ U(1)I and G ⊃ H ′ × U(1)I as

3(adj SU(2)) = (0(adjU(1)R)) + (2) + (−2), (3.35)

adjG = (adjH)(0) + 1(0(adjU(1))R) +
∑

g

hg(rg), (3.36)
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where hgs denote representation of H ′, and rgs denote U(1)I charges. The scalar components satisfying
the constraints belong to hgs whose corresponding rgs in the decomposition Eq. (3.36) are ±2.

Third, the fermion components which satisfy the constraints Eq. (3.29) are determined as follows [64].
Let the group U(1)I be embedded into the Lorentz group SO(2) in such a way that the vector repre-
sentation 2 of SO(2) is decomposed according to SO(2) ⊃ U(1)I as

2 = (2) + (−2). (3.37)

This embedding specifies a decomposition of the weyl spinor representation σ6=4 of SO(1,5) according
to SO(1,5) ⊃ SU(2) × SU(2) × U(1)I as

σ6 = (2, 1)(1) + (1, 2)(−1), (3.38)

where SU(2) × SU(2) representations (2,1) and (1,2) correspond to left-handed and right-handed spinors,
respectively. We then decompose F according to G ⊃ H ′ × U(1)I as

F =
∑

f

hf (rf ). (3.39)

Now the fermion components satisfying the constraints are identified as hf s whose corresponding rf s in
the decomposition Eq. (3.39) are (1) for left-handed fermions and (-1) for right-handed fermions.

Finally, we show which gauge symmetry and field components remain in four-dimensions by surveying
the consistency between the boundary conditions Eq. (3.12)-(3.19), the solutions Eq. (3.20)-(3.22), and
fermion massless mode Eq. (3.33). We then apply Eq (3.20)-(3.22) and Eq. (3.33) to Eq. (3.12)-(3.19),
and obtain the parity conditions

Aµ(x) = P (,)Aµ(x)P (,), (3.40)
−Φ1(x) = −P (−Φ1(x))P, (3.41)
−Φ1(x) = P ′(−Φ1(x))P ′, (3.42)

Φ2(x) + Φ3 cos θ = −PΦ2(x)P + PΦ3P cos θ, (3.43)
Φ2(x) − Φ3 cos θ = P ′Φ2(x)P ′ − P ′Φ3P

′ cos θ, (3.44)

ψ(x) = γ5Pψ(x), (3.45)
ψ(x) = P ′ψ(x). (3.46)

We find that gauge fields, scalar fields and massless fermions in four-dimensions should be even for
PAµP and P ′AµP ′; −PΦ1,2P and P ′Φ1,2P

′; γ5Pψ and P ′ψ, respectively. Φ3 always remains since it
is proportional to an U(1)I generator and commutes with P (P ′). Therefore the particle contents are
identified as the components which satisfy both the constraints Eq (3.26),(3.27),(3.29) and the parity
conditions Eq Eq (3.40)-(3.46). The gauge symmetry remained in four-dimensions can also be identified
by observing which components of the gauge fields remain.

3.2 The SO(12) model

In this section, we discuss a model based on a gauge group G=SO(12) and a representation F=32 of
SO(12) for fermions. The choice of G=SO(12) and F=32 is motivated by the study based on CSDR
which leads to an SO(10) × U(1) gauge theory with one generation of fermion in four-dimensions [27]
(for SO(12) GUT see also [79]).
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3.2.1 A gauge symmetry and particle contents

First, we show the particle contents in four-dimensions without parities Eq. (3.12)-(3.19). We assume
that U(1)I is embedded into SO(12) such as

SO(12) ⊃ SO(10) × U(1)I . (3.47)

Thus we identify SO(10) × U(1)I as the gauge group which satisfy the constraints Eq (3.26), using
Eq. (3.34). We identify the scalar components which satisfy Eq. (3.27) by decomposing adjoint repre-
sentation of SO(12):

SO(12) ⊃ SO(10) × U(1)I : 66 = 45(0) + 1(0) + 10(2) + 10(−2). (3.48)

According to the prescription below Eq. (3.34) in sec. 3.1, the scalar components 10(2)+10(-2) remains
in four-dimensions. We also identify the fermion components which satisfy Eq. (3.29) by decomposing
32 representations of SO(12) as

SO(12) ⊃ SO(10) × U(1)I : 32 = 16(1) + 16(−1). (3.49)

According to the prescription below Eq. (3.36) in sec. 3.1, we have the fermion components as 16(1) for
a left-handed fermion and 16(-1) for a right-handed fermion, respectively, in four-dimensions.

Next, we specify the parity assignment of P (P ′) in order to identify the gauge symmetry and particle
contents that actually remain in four-dimensions. We choose a parity assignment so as to break gauge
symmetry as SO(12) ⊃ SO(10) × U(1)I ⊃ SU(5)× U(1)X × U(1)I ⊃ SU(3) × SU(2)L × U(1)Y ×
U(1)X × U(1)I , and to maintain Higgs-doublet in four-dimensions. The parity assignment is written in
32 dimensional spinor basis of SO(12) such as

SO(12) ⊃ SU(3) × SU(2)L × U(1)Y × U(1)X × U(1)I

32 =(3, 2)(+−)(1,−1, 1) + (3̄, 2)(+−)(−1, 1,−1)

+ (3, 1)(−−)(4, 1,−1) + (3̄, 1)(−−)(−4,−1, 1)

+ (3, 1)(−+)(−2,−3,−1) + (3̄, 1)(−+)(2, 3, 1)

+ (1, 2)(++)(3,−3,−1) + (1, 2)(++)(−3, 3, 1)

+ (1, 1)(−−)(6,−1, 1) + (1, 1)(−−)(−6, 1,−1)

+ (1, 1)(−+)(0,−5, 1) + (1, 1)(−+)(0, 5,−1), (3.50)

where e.g. (+,−) means that the parities (P, P ′) of the associated components are (even, odd). We find
the gauge symmetry in four-dimensions by surveying parity assignment for the gauge field. The parity
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assignments of the gauge field under Aµ → PAµP (P ′AµP ′) are:

66 =(8, 1)(++)(0, 0, 0) + (1, 3)(++)(0, 0, 0) + (1, 1)(++)(0, 0, 0)

+ (1, 1)(++)(0, 0, 0) + (1, 1)(++)(0, 0, 0)

+
[
(3, 2)(−+)(−5, 0, 0) + (3̄, 2)(−+)(5, 0, 0)

+ (3, 2)(−−)(1, 4, 0) + (3̄, 2)(−−)(−1,−4, 0)

+ (3, 1)(+−)(4,−4, 0) + (3̄, 1)(+−)(−4, 4, 0)

+ (3, 1)(+−)(−2, 2, 2) + (3̄, 1)(+−)(2,−2,−2)

+ (3, 1)(++)(−2, 2,−2) + (3̄, 1)(++)(2,−2, 2)

+ (1, 2)(−−)(3, 2, 2) + (1, 2)(−−)(−3,−2,−2)

+ (1, 2)(−+)(3, 2,−2) + (1, 2)(−+)(−3,−2, 2)

+ (1, 1)(+−)(6, 4, 0) + (1, 1)(+−)(−6,−4, 0)
]
. (3.51)

The components with an underline are originated from 10(2) and 10(-2) of SO(10) × U(1)I , which do
not satisfy constraints Eq. (3.26), and hence these components do not remain in four-dimensions. Thus
we have the gauge field with (+, +) parity components without an underline in four-dimensions, and
the gauge symmetry is SU(3) × SU(2)L × U(1)Y × U(1)X × U(1)I .

The scalar particle contents in four-dimensions are determined by the parity assignment, under Φ1,2

→ −PΦ1,2P and P ′Φ1,2P
′:

66 =(8, 1)(−+)(0, 0, 0) + (1, 3)(−+)(0, 0, 0) + (1, 1)(−+)(0, 0, 0)

+ (1, 1)(−+)(0, 0, 0) + (1, 1)(−+)(0, 0, 0)

+
[
(3, 2)(++)(−5, 0, 0) + (3̄, 2)(++)(5, 0, 0)

+ (3, 2)(+−)(1, 4, 0) + (3̄, 2)(+−)(−1,−4, 0)

+ (3, 1)(−−)(4,−4, 0) + (3̄, 1)(−−)(−4, 4, 0)

+ (3, 1)(−−)(−2, 2, 2) + (3̄, 1)(−−)(2,−2,−2)

+ (3, 1)(−+)(−2, 2,−2) + (3̄, 1)(−+)(2,−2, 2)

+ (1, 2)(+−)(3, 2, 2) + (1, 2)(+−)(−3,−2,−2)

+ (1, 2)(++)(3, 2,−2) + (1, 2)(++)(−3,−2, 2)

+ (1, 1)(−−)(6, 4, 0) + (1, 1)(−−)(−6,−4, 0)
]
. (3.52)

Note that the relative sign for the parity assignment of P is different from Eq. (3.51), and that the only
underlined parts satisfy the constraints Eq. (3.27). Thus the scalar components in four-dimensions are
(1,2)(3,2,-2) and (1,2)(-3,-2,2).

We find massless fermion contents in four-dimensions, by surveying the parity assignment for each
components of fermion fields. We introduce two types of left-handed Weyl fermions that belong to
32 representation of SO(12), which have parity assignment ψ(P ′) → γ5Pψ(P ′)(P ′ψ(P ′)) and ψ(−P ′) →
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γ5Pψ(−P ′)(−P ′ψ(−P ′)) respectively. They have the parity assignment as

32(P ′)
L =(3, 2)(−−)(1,−1, 1)L + (3̄, 2)(−−)(−1, 1,−1)L

+ (3̄, 1)(+−)(−4,−1, 1)L + (3, 1)(+−)(4, 1,−1)L

+ (3̄, 1)(++)(2, 3, 1)L + (3, 1)(++)(−2,−3,−1)L

+ (1, 2)(−+)(−3, 3, 1)L + (1, 2)(−+)(3,−3,−1)L

+ (1, 1)(+−)(6,−1, 1)L + (1, 1)(+−)(−6, 1,−1)L

+ (1, 1)(++)(0,−5, 1)L + (1, 1)(++)(0, 5,−1)L, (3.53)

32(P ′)
R =(3, 2)(+−)(1,−1, 1)R + (3̄, 2)(+−)(−1, 1,−1)R

+ (3̄, 1)(−−)(−4,−1, 1)R + (3, 1)(−−)(4, 1,−1)R

+ (3̄, 1)(−+)(2, 3, 1)R + (3, 1)(−+)(−2,−3,−1)R

+ (1, 2)(++)(−3, 3, 1)R + (1, 2)(++)(3,−3,−1)R

+ (1, 1)(−−)(6,−1, 1)R + (1, 1)(−−)(−6, 1,−1)R

+ (1, 1)(−+)(0,−5, 1)R + (1, 1)(−+)(0, 5,−1)R, (3.54)

and

32(−P ′)
L =(3, 2)(−+)(1,−1, 1)L + (3̄, 2)(−+)(−1, 1,−1)L

+ (3̄, 1)(++)(−4,−1, 1)L + (3, 1)(++)(4, 1,−1)L

+ (3̄, 1)(+−)(2, 3, 1)L + (3, 1)(+−)(−2,−3,−1)L

+ (1, 2)(−−)(−3, 3, 1)L + (1, 2)(−−)(3,−3,−1)L

+ (1, 1)(++)(6,−1, 1)L + (1, 1)(++)(−6, 1,−1)L

+ (1, 1)(+−)(0,−5, 1)L + (1, 1)(+−)(0, 5,−1)L, (3.55)

32(−P ′)
R =(3, 2)(++)(1,−1, 1)R + (3̄, 2)(++)(−1, 1,−1)R

+ (3̄, 1)(−+)(−4,−1, 1)R + (3, 1)(−+)(4, 1,−1)R

+ (3̄, 1)(−+)(2, 3, 1)R + (3, 1)(−+)(−2,−3,−1)R

+ (1, 2)(+−)(−3, 3, 1)R + (1, 2)(+−)(3,−3,−1)R

+ (1, 1)(−+)(6,−1, 1)R + (1, 1)(−+)(−6, 1,−1)R

+ (1, 1)(−−)(0,−5, 1)R + (1, 1)(−−)(0, 5,−1)R, (3.56)

where L(R) means left-handedness(right-handedness) of fermions in four-dimensions, and the underlined
parts correspond to the components which satisfy constraints Eq. (3.29). Note the relative sign for
parity assignment of P between left-handed fermion and right-handed fermion, and that of P ′ between
32(P ′) and 32(−P ′). The difference between 32(P ′) and 32(−P ′) is allowed because of the bilinear form
of the fermion sector. We thus find that the massless fermion components in four-dimensions are
one generation of SM-fermions with right-handed neutrino: {(3,2)(1,-1,1)L,(3,1)(4,1,-1)R,(3,1)(-2,-3,-
1)R,(1,2)(-3,3,1)L,(1,1)(-6,1,-1)R,(1,1)(0,5,-1)R }.
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3.2.2 The Higgs sector of the model

We analyze the Higgs-sector of our model. The Higgs-sector LHiggs is the last two terms of Eq. (3.28):

LHiggs = − 1
2g2

Tr[D′
µΦ1(x)D′µΦ1(x) + D′

µΦ2(x)D′µΦ2(x)]

− 1
2g2

Tr[(Φ3 + [Φ1(x), Φ2(x)])(Φ3 + [Φ1(x), Φ2(x)])], (3.57)

where the first term of LHS is the kinetic term of Higgs and the second term gives the Higgs potential.
We then rewrite the Higgs-sector in terms of genuine Higgs field in order to analyze it.

We first note that the Φis are written as

Φi = iϕi = iϕa
i Qa, (3.58)

where Qas are generators of gauge group SO(12), since Φis are originated from gauge fields Aα = iAa
αQa;

for the gauge group generator we assume the normalization Tr(QaQb)=-2δab. Note that we assumed
the −iΦ3 as the generator of U(1)I embedded in SO(12),

−iΦ3 = QI . (3.59)

We change the notation of the scalar fields according to Eq. (3.35) such that,

ϕ+ =
1
2
(ϕ1 + iϕ2), ϕ− =

1
2
(ϕ1 − iϕ2), (3.60)

in order to express solutions of the constraints Eq. (3.27) clearly. The constraints Eq. (3.27) is then
rewritten as

[QI , ϕ+] = ϕ+, [QI , ϕ−] = −ϕ−. (3.61)

The kinetic term LKE and potential V (ϕ) term are rewritten in terms of ϕ+ and ϕ−:

LKE = − 1
g2

Tr[D′
µϕ+(x)D′µϕ−(x)], (3.62)

V = − 1
2g2

Tr[Q2
I − 4QI [ϕ+, ϕ−] + 4[ϕ+, ϕ−][ϕ+, ϕ−]], (3.63)

where covariant derivative D′
µ is D′

µϕ± = ∂µϕ± − [Aµ, ϕ±].
Next, we change the notation of SO(12) generators Qa according to decomposition Eq (3.51) such

that

QG = {Qi, Qα, QY , Q,QI , Qax(−500), Q
ax(500)

Qax(140), Q
ax(−1−40), Qa(4−40), Q

a(−440)

Qa(−22−2), Q
a(2−22), Qa(−222), Q

a(2−2−2)

Qx(322), Q
x(−3−2−2), Qx(32−2), Q

x(−3−22)

Q(640), Q(−6 − 40)}, (3.64)

where the order of generators corresponds to Eq (3.51), index i = 1 − 8 corresponds to SU(3) adjoint
rep, index α = 1 − 3 corresponds to SU(2) adjoint rep, index a = 1 − 3 corresponds to SU(3)-triplet,
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[ Qx(−3−22),Qy(32−2)] = −
√

3
10 δx

y QY + −
√

1
5 δx

y Q +δx
y QI + 1√

2
(σ∗

α)x
y Qα

[Qα,Qx] = − 1√
2

(σα)y
x Qy [Qα,Qx] = 1√

2
(σ∗

α)x
y Qy

[Qx,Qy]=0 [QY ,Qx]= −
√

3
10 Qx

[Q,Qx]= −
√

1
5 Qx [QI ,Qx] = Qx

Table 25: commutation relations of Qx(−3−22), Qx(32−2), Qα, QY , Q and QI

and index x = 1, 2 corresponds to SU(2)-doublet. We write ϕ± in terms of the genuine Higgs field ϕx

which belongs to (1,2)(3,2,-2), such that

ϕ+ = ϕxQx(−3−22) (3.65)
ϕ− = ϕxQx(32−2), (3.66)

where ϕx = (ϕx)†. We also write gauge field Aµ(x) in terms of Qs in Eq. (3.64) as

Aµ(x) = i(Ai
µQi + Aα

µQα + BµQY + CµQ + EµQI). (3.67)

We then need commutation relations of Qx(−3−22), Qx(32−2), Qα, QY , Q and QI in order to analyze
the Higgs sector; we summarized them in Table 25.

Finally, we obtain the Higgs sector with genuine Higgs field by substituting Eq. (3.65)-(3.67) into
Eq. (3.62, 3.63) and rescaling the fields ϕ → g/

√
2ϕ and Aµ → gAµ, and the couplings

√
2g = g2 and√

6/5g = gY ,
LHiggs = |Dµϕx|2 − V (ϕ), (3.68)

where the covariant derivative Dµϕx and potential V (ϕ) are

Dµϕx = ∂µϕx + ig2
1
2
(σα)y

xAαµϕy + igY
1
2
Bµϕx + i

√
1
5
gCµϕx − igEµϕx, (3.69)

V = − 2
R2

ϕxϕx +
3g2

2
(ϕxϕx)2, (3.70)

respectively. Notice that we explicitly write radius R of S2 in the Higgs potential, and that we omitted
the constant term in the Higgs potential. We note that the SU(2)L × U(1)Y parts of the Higgs sector
has the same form as the SM Higgs sector. Therefore we obtain the electroweak symmetry breaking
SU(2)L × U(1)Y → U(1)EM . The Higgs field ϕx acquires vaccume expectation value(VEV) as

< ϕ > =
1√
2

(
0

v

)
, (3.71)

v =

√
4
3

1
gR

, (3.72)
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and W boson mass mW and Higgs mass mH are given in terms of radius R

mW = g2
v

2
=

√
2
3

1
R

, (3.73)

mH =
√

3gv =
√

4
1
R

. (3.74)

The ratio between mW and mH is predicted

mH

mW
=

√
6. (3.75)

4 Universal Extra dimension model on M4 × S2/Z2 spacetime
[80]

In this section, we first recapitulate a gauge theory defined on the six-dimensional spacetime which has
extra-space as two-sphere orbifold S2/Z2. We then construct a six-dimensional Lagrangian for Universal
Extra Dimension Model on the spacetime.

4.1 The model

We consider a gauge theory defined on the six-dimensional spacetime M6 which is assumed to be a direct
product of the four-dimensional Minkowski spacetime M4 and a compact two-sphere orbifold S2/Z2,
such that M6 = M4 × S2/Z2. We denote the coordinate of M6 by XM = (xµ, yθ = θ, yϕ = ϕ), where
xµ and {θ, ϕ} are the M4 coordinates and are the S2/Z2 spherical coordinates, respectively. On the
orbifold, the point (θ, ϕ) is identified with (π− θ,−ϕ). The spacetime index M runs over µ ∈ {0, 1, 2, 3}
and α ∈ {θ, ϕ}. The metric of M6, denoted by gMN , can be written as

gMN =

(
ηµν 0

0 −gαβ

)
, (4.1)

where ηµν = diag(1,−1,−1,−1) and gαβ = diag(R2, R2 sin2 θ) are metric of M4 and S2/Z2 respectively,
and R denotes the radius of S2/Z2. We define the vielbein eM

A that connects the metric of M6 and that
of the tangent space of M6, denoted by hAB , as gMN = eA

MeB
NhAB . Here A = (µ, a), where a ∈ {4, 5}, is

the index for the coordinates of tangent space of M6. The explicit form of the vielbeins are summarized
in the Appendix.

We introduce, in this theory, a gauge field AM (x, y) = (Aµ(x, y), Aα(x, y)), SO(1,5) chiral fermions
Ψ±(x, y), and complex scalar fields Φ(x, y). The SO(1,5) chiral fermion Ψ±(x, y) is defined by the action
of SO(1,5) chiral operator Γ7, which is defined as

Γ7 = γ5 ⊗ σ3, (4.2)

where γ5 is SO(1,3) chiral operator and σi(i = 1, 2, 3) are Pauli matrices. The chiral fermion Ψ±(x, y)
satisfies

Γ7Ψ±(x, y) = ±Ψ±(x, y) (4.3)
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and is obtained by acting the chiral projection operator of SO(1,5), Γ±, on Dirac fermion Ψ(x, y), where
Γ± is defined as

Γ± =
1 ± Γ7

2
. (4.4)

We can also write Ψ±(x, y) in terms of SO(1,3) chiral fermion ψ as

Ψ+ =

(
ψR

ψL

)
, (4.5)

Ψ− =

(
ψL

ψR

)
, (4.6)

where ψR(L) is a right(left)-handed SO(1,3) chiral fermion. We should determine the boundary condition
of these fields on S2/Z2 to specify a model. The boundary conditions for each field can be defined as

Φ(x, π − θ,−ϕ) = ±Φ(x, θ, ϕ) (4.7)
Aµ(x, π − θ,−ϕ) = Aµ(x, θ, ϕ) (4.8)

Aθ,ϕ(x, π − θ,−ϕ) = −Aθ,ϕ(x, θ, ϕ) (4.9)
Ψ(x, π − θ,−ϕ) = ±γ5Ψ(x, θ, ϕ) (4.10)

by requiring the invariance of a six-dimensional action under the Z2 transformation.
The action of the gauge theory is written, in general, as

S =
∫

dx4R2 sin θdθdϕ

(
Ψ̄±iΓµDµΨ± + Ψ̄±iΓaeα

aDαΨ± − 1
4g2

gMNgKLTr[FMKFNL]

+(DMΦ)∗DMΦ − V (Φ) − λΨ̄±ΦΨ∓

)
, (4.11)

where FMN = ∂MAN (X) − ∂NAM (X) − [AM (X), AN (X)] is the field strength, DM is the covariant
derivative including a spin connection, V (Φ) is the scalar potential term, and ΓA represents the 6-
dimensional Clifford algebra. Here DM and ΓA can be written explicitly as

Dµ = ∂µ − iAµ, (4.12)
Dθ = ∂θ − iAθ, (4.13)

Dϕ = ∂ϕ − iAϕ (−i
Σ3

2
cos θ), (4.14)

Γµ = γµ ⊗ I2, (4.15)
Γ4 = γ5 ⊗ iσ1, (4.16)
Γ5 = γ5 ⊗ iσ2, (4.17)

where {γµ, γ5} are the 4-dimensional Dirac matrices, Id is d×d identity, and Σ3 is defined as Σ3 = I4⊗σ3.
We note that the spin connection term in Dϕ is applied only for fermions.

We discuss the condition to obtain massless chiral fermions in four-dimensional spacetime. The
positive curvature of an extra-space gives mass to fermions in four-dimensional spacetime even if we
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introduce chiral fermions in a higher-dimensional spacetime. The spin connection term for fermions in
Eq. (4.14) expresses the existence of positive curvature of S2 and leads mass term of fermions in four-
dimensional spacetime. We thus need some prescription to obtain a massless fermion in four-dimensional
spacetime within our model since S2 has the positive curvature. We then introduce a background gauge
field AB

ϕ which has the form [50, 1, 78]
AB

ϕ = Q̂ cos θ (4.18)

where Q̂ is a charge of some U(1) gauge symmetry, in order to cancel the mass from the curvature and
to obtain massless fermions in four-dimensional spacetime. Indeed, AB

ϕ cancel the spin connection term
for the upper(lower) component SO(1,3) fermion in Eq. (4.5) if the fermion has the charge Q = +(−) 1

2
and the upper(lower) component gets a massless Kaluza-Klein mode.

We then specify our model. Chose the gauge group G as the standard model gauge group with an
extra U(1)X gauge symmetry , i.e. G=SU(3)×SU(2)×U(1)Y ×U(1)X , and introduce background gauge
field which belongs to the gauge field of the extra U(1). We must introduce the extra U(1) to obtain all
the massless chiral SM fermions in M4, otherwise some SM fermions have masses, inevitably, from the
positive curvature of S2 when we introduce background gauge field which belongs to U(1)Y .

We introduce fermions Q(x, y), U(x, y), D(x, y), L(x, y) and E(x, y) that belong to representations
of SU(3)×SU(2)×U(1)Y , which are the same as the left-handed quark doublet, right-handed up-type
quark, right-handed down-type quark, left-handed lepton doublet and right-handed charged lepton.
We then assign the extra U(1) charge Q = 1

2 to these fermions as the simplest case in which all
massless SM fermions appear in four-dimensional spacetime. The chirality of SO(1,5) and boundary
condition for these fermions are determined to give massless SM fermions in four-dimensional spacetime,
as summarized in Table 26.

Table 26: SO(1,5) chirality and boundary conditions for each fermions in six dimensions. The signs for
boundary condition express the sign in front of γ5 in RHS of Eq. (4.10).
Fermions SO(1,5) chirality boundary conditions

Q(x, y) − −
U(x, y) + +

D(x, y) + +

L(x, y) − −
E(x, y) + +

The Higgs field H(x, y) is introduced to not have U(1)X charge and to be even under the Z2 action so
that Yukawa coupling terms can be constructed.
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The action of our model in six-dimensional spacetime is written as

S6D =
∫

dx4R2 sin θdθdϕ

[
(Q̄, Ū , D̄, L̄, Ē)iΓMDM (Q, U,D,L,E)⊤

−gMNgKL
∑

i

1
4g2

i

Tr[Fi MKFi NL] + LHiggs(H)

+[λuQŪH∗ + λdQD̄H + λeLĒH + h.c]
]
, (4.19)

where i = SU(3), SU(2), U(1)Y and U(1)X , and LHiggs(H) denotes a Lagrangian for Higgs field. The
action in four-dimensional spacetime is obtained by integrating the Lagrangian over S2/Z2 coordinate.

4.2 KK mode expansion and particle mass spectrum in four-dimensions

In this section we analyze Kaluza-Klein expansion of each field in our model, and derive mass spectrum
of the Kaluza-Klein modes.

4.2.1 KK mode expansion of the fermions

The fermions Ψ(x, y) can be expanded in terms of the eigenfunctions of square of Dirac operator iD̂ on
S2/Z2 where the Dirac operator is written as

iD̂ = ieαaiσaDα ⊗ γ5

= − 1
R

[
σ1(∂θ +

cot θ

2
) + σ2(

1
sin θ

∂ϕ + iQ̂ cot θ)
]
⊗ γ5, (4.20)

where Q̂ is the U(1)X charge operator in our model. We thus need to derive eigenfunctions of (iD̂)2

first. The square of the Dirac operator (iD̂)2 is written as

(−iD̂)2 =
1

R2

[ 1
sin θ

∂θ(sin θ∂θ) +
1

sin2 θ
∂2

ϕ + 2i(Q̂ − σ3

2
)

cos θ

sin2 θ
∂ϕ

−1
4
− 1

4 sin2 θ
+ Q̂σ3

1
sin2 θ

− Q̂2 cot2 θ
]
. (4.21)

We then obtain the eigenvalue equation of (iD̂)2 as

1
R2

[ 1
sin θ

∂θ(sin θ∂θ) +
1

sin2 θ
∂2

ϕ + 2i(Q − σ3

2
)

cos θ

sin2 θ
∂ϕ

−1
4
− 1

4 sin2 θ
+ Qσ3

1
sin2 θ

− Q2 cot2 θ
]
Ψ(θ, ϕ) = −λ2Ψ(θ, ϕ), (4.22)

where −λ2 express the eigenvalue of (iD̂)2 and Q is the U(1)X charge of the Ψ(θ, ϕ). We expand Ψ(θ, ϕ)
to solve the equation such that

Ψ(θ, ϕ) =
∑
m

eimϕ

√
2π

(
αλm(θ)

βλm(θ)

)
(4.23)
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where m is an integer. The eigenvalue equation becomes[ d

dz
(1−z2)

d

dz
−

m2 + 2m(Q − σ3
2 )z + (Q − σ3

2 )2

1 − z2

] (
αλm(z)

βλm(z)

)
= −(R2λ2 +Q2− 1

4
)

(
αλm(z)

βλm(z)

)
, (4.24)

where we changed the variable as θ → z = cos θ. Here we note that the replacement of m with −m and
Q with −Q corresponds to the exchange of αλm and βλm. We next put αλm and βλm in the following
form [39], (

αλm(z)

βλm(z)

)
=

(
(1 − z)

1
2 |m+Q− 1

2 |(1 + z)
1
2 |m−Q+ 1

2 |ξλm(z)

(1 − z)
1
2 |m+Q+ 1

2 |(1 + z)
1
2 |m−Q− 1

2 |ηλm(z)

)
. (4.25)

We finally find the equation for ηλm and ξλm by applying Eq. (4.25) to Eq. (4.24), as[
(1 − z2)

d2

dz2
− 2(|m| + 1)z

d

dz
− m2 − |m| + R2λ2

]
ξλm(z) = 0, (4.26)

and [
(1 − z2)

d2

dz2
+ {|m − 1| − |m + 1| − (|m − 1| + |m + 1| + 2)z} d

dz

−1
2
m2 − 1

2
|m − 1||m + 1| − 1

2
(|m − 1| + |m + 1|) − 1

2
+ R2λ2

]
ηλm(z) = 0 (4.27)

where we substitute 1
2 for Q since all the fermions have this charge in our model. These equations

can be attributed to the differential equation for the Jacobi polynomial P
(α,β)
n ; the properties of the

Jacobi polynomial and their differential equation are summarized in Appendix B. We thus obtain the
eigenfunctions ξλm, ηλm of the form

ξλm(z) = Clm
ξ P

(|m|,|m|)
l−|m| (z), (4.28)

ηλm(z) = Clm
η P

(|m+1|,|m−1|)
l−|m| (z), (4.29)

for m ̸= 0,

ξλ0(z) = Cl0
ξ P

(0,0)
l (z), (4.30)

ηλ0(z) = Cl−1
η P

(1,1)
l−1 (z), (4.31)

(4.32)

for m = 0, and the eigenvalue λl as

λ =

√
l(l + 1)

R
(4.33)

.
For any m, here an l is integer which satisfy l ≥ m and Clm

ξ(η)s are normalization constants. The
normalization of the eigenfunctions are chosen as

Clm
ξ =

√
n!(2l + |m| + 1)Γ(l + |m| + 1)

22|m|+1Γ(l + 1)Γ(l + 1)
, (4.34)

Clm
η = i

√
n!(2l − 2|m| + |m + 1| + |m − 1| + 1)Γ(l − |m| + |m + 1| + |m − 1| + 1)

2|m+1|+|m−1|+1Γ(l − |m| + |m + 1| + 1)Γ(l − |m| + |m − 1| + 1)
, (4.35)
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so that ∫
|αlm(z)|2dz =

∫
|βlm(z)|2dz = 1, (4.36)

where we choose relative phase of the normalization constants as defined above for later convenience.
We therefore obtain the eigenfunctions of (iD̂)2 as

Ψlm(θ, ϕ) =

(
α̃lm(z, ϕ)

β̃lm(z, ϕ)

)
=

eimϕ

√
2π

(
Clm

ξ (1 − z)
1
2 |m|(1 + z)

1
2 |m|P

(|m|,|m|)
l−|m| (z)

Clm
η (1 − z)

1
2 |m+1|(1 + z)

1
2 |m−1|P

(|m+1|,|m−1|)
l−|m| (z)

)
, (4.37)

for m ̸= 0 and

Ψlm(θ, ϕ) =

(
α̃l0(z)

β̃l0(z)

)
1√
2π

(
Cl0

ξ P
(0,0)
l (z)

Cl0
η

√
1 − z2P

(1,1)
l−1 (z)

)
, (4.38)

for m = 0. These eigenfunctions satisfy the orthogonality relations∫
dΩ(α̃lm)∗α̃l′m′ =

∫
dΩ(β̃lm)∗β̃l′m′ = δll′δmm′ . (4.39)

We note that the eigenfunction for (l = 0, m = 0) has only upper component since P0−1 (1, 1)(z) = 0.
We can obtain the KK mode functions for chiral fermions Ψ±(x, θ, ϕ) which satisfy the boundary

conditions Eq. (4.10) in terms of α̃lm(z, ϕ), β̃lm(z, ϕ), α̃l0(z) and β̃l0(z) in Eq. (4.37) and (4.38). These
KK mode functions are summarized below.

1. The KK mode function for Ψ+(x, θ, ϕ) which satisfy the boundary condition Ψ+(x, π − θ,−ϕ) =
±γ5Ψ+(x, θ, ϕ) are

(a) m ̸= 0

Ψ(±γ5)
+l|m|(x, θ, ϕ) =

(
1√
2
[α̃lm(z, ϕ) ± (−1)l−|m|α̃l−m(z, ϕ)]ψl|m|

R (x)
i√
2
[β̃lm(z, ϕ) ∓ (−1)l−|m|β̃l−m(z, ϕ)]ψl|m|

L (x)

)
≡

(
α̃±

l|m|(z, ϕ)ψl|m|
R (x)

β̃∓
l|m|(z, ϕ)ψl|m|

L (x)

)
,(4.40)

(b) m=0

Ψ(±γ5)
+l0 (x, θ, ϕ) =

(
1
2 [α̃l0(z) ± (−1)lα̃l0(z)]ψl0

R (x)
i
2 [β̃l−10(z) ± (−1)lβ̃l−10(z)]ψl0

L (x)

)
≡

(
α̃±

l0(y, ϕ)ψl0
R(L)(x)

β̃∓
l0(z)ψl0

L(R)(x)

)
. (4.41)

2. The KK mode function for Ψ−(x, θ, ϕ) which satisfy the boundary condition Ψ−(x, π − θ,−ϕ) =
±γ5Ψ−(x, θ, ϕ) are

(a) m ̸= 0

Ψ(±γ5)
−l|m|(x, θ, ϕ) =

(
1√
2
[α̃lm(z, ϕ) ∓ (−1)l−|m|α̃l−m(z, ϕ)]ψl|m|

L (x)
i√
2
[β̃lm(z, ϕ) ± (−1)l−|m|β̃l−m(z, ϕ)]ψl|m|

R (x)

)
=

(
α̃∓

l|m|(z, ϕ)ψl|m|
L (x)

β̃±
l|m|(z, ϕ)ψl|m|

R (x)

)
,(4.42)
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(b) m=0

Ψ(±γ5)
−l0 (x, θ, ϕ) =

(
1
2 [α̃l0(z) ∓ (−1)lα̃l0(z)]ψl0

L (x)
i
2 [β̃l−10(z) ∓ (−1)lβ̃l−10(z)]ψl0

R (x)

)
=

(
α̃∓

l0(z)ψl0
L (x)

β̃±
l0(z)ψl0

R (x)

)
(4.43)

where ψ(x)s are SO(1,3) spinors. We can explicitly confirm that these KK mode functions satisfy the
boundary conditions by straightforward calculation using

α̃lm(−z,−ϕ) = (−1)l−|m|α̃l−m(z, ϕ), (4.44)
β̃lm(−z,−ϕ) = (−1)l−|m|β̃l−m(z, ϕ), (4.45)

which are obtained by the definition of α̃lm(z, ϕ) and β̃lm(z, ϕ). We therefore expand the fermions in
six-dimensional space time such that

Ψ(±γ5)
+ (x, θ, ϕ) =

∑
l=0

l∑
m=0

Ψ(±γ5)
+l|m|(x, θ, ϕ) (4.46)

for fermions Ψ+(x, θ, ϕ) which satisfy the boundary condition: Ψ+(x, π − θ,−ϕ) = ±γ5Ψ+(x, θ, ϕ), and

Ψ(±γ5)
− (x, θ, ϕ) =

∑
l=0

l∑
m=0

Ψ(±γ5)
−l|m|(x, θ, ϕ) (4.47)

for fermions Ψ−(x, θ, ϕ) which satisfy the boundary condition: Ψ−(x, π − θ,−ϕ) = ±γ5Ψ−(x, θ, ϕ). We
also summarize below the action of the Dirac operator iD̂ on the KK modes, since it is useful to analyze
the KK mass terms.

1. The KK mode function for Ψ+(x, θ, ϕ) which satisfy the boundary condition Ψ+(x, π − θ,−ϕ) =
±γ5Ψ+(x, θ, ϕ) are

(a) m ̸= 0

iD̂Ψ(±γ5)
+l|m|(x, θ, ϕ) = iMl

(
− i√

2
[α̃lm(z, ϕ) ± (−1)l−|m|α̃l−m(z, ϕ)]ψl|m|

L (x)
1√
2
[β̃lm(z, ϕ) ∓ (−1)l−|m|β̃l−m(z, ϕ)]ψl|m|

R (x)

)
(4.48)

(b) m=0

iD̂Ψ(±γ5)
+l0 (x, θ, ϕ) = iMl

(
− i

2 [α̃l0(z) ± (−1)lα̃l0(z)]ψl0
L (x)

1
2 [β̃l−10(z) ± (−1)lβ̃l−10(z)]ψl0

R (x)

)
(4.49)

2. The KK mode function for Ψ−(x, θ, ϕ) which satisfy the boundary condition Ψ−(x, π − θ,−ϕ) =
±γ5Ψ−(x, θ, ϕ) are

(a) m ̸= 0

iD̂Ψ(±γ5)
−l|m|(x, θ, ϕ) = iMl

(
i√
2
[α̃lm(z, ϕ) ± (−1)l−|m|α̃−lm(z, ϕ)]ψl|m|

R (x)

− 1√
2
[β̃lm(z, ϕ) ∓ (−1)l−|m|β̃l−m(z, ϕ)]ψl|m|

L (x)

)
(4.50)
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(b) m=0

iD̂Ψ(±γ5)
−l0 (x, θ, ϕ) = iMl

(
i
2 [α̃l0(z) ∓ (−1)lα̃l0(z)]ψl0

R (x)
−1
2 [β̃l−10(z) ∓ (−1)lβ̃l−10(z)]ψl0

L (x)

)
(4.51)

where Ml =
√

l(l+1)

R . These results respect the choice of the phase between normalization constants
of upper and lower components in Eq. (4.34) and (4.35) since the Dirac operator exchange upper and
lower components.

We then derive the kinetic terms and the KK mass terms for each KK modes of the fermion in
four-dimensional spacetime. The kinetic terms for the fermion KK modes are obtained by expanding
the higher-dimensional chiral fermion Ψ± in terms of mode functions Eq. (4.40),(4.41),(4.42), and (4.43)
and integrating over θ and ϕ. We thus obtain the kinetic terms such that

1. For Ψ(+γ5)
+ (x, θ, ϕ)

(a) m ̸= 0 ∫
dΩΨ̄(+γ5)

+l|m|iΓ
µ∂µΨ(+γ5)

+l|m| = ψ̄
l|m|
R (x)iγµ∂µψ

l|m|
R + ψ̄

l|m|
L (x)iγµ∂µψ

l|m|
L (4.52)

(b) m = 0∫
dΩΨ̄(+γ5)

+00 iΓµ∂µΨ(+γ5)
+00 = ψ̄00

R (x)iγµ∂µψ00
R for l = 0 (4.53)∫

dΩΨ̄(+γ5)
+l0 iΓµ∂µΨ(+γ5)

+l0 =
(1 + (−1)l)2

4
[ψ̄l0

R (x)iγµ∂µψl0
R + ψ̄l0

L (x)iγµ∂µψl0
L ] for l ̸= 0

(4.54)

2. For Ψ(−γ5)
− (x, θ, ϕ)

(a) m ̸= 0 ∫
dΩΨ̄(−γ5)

−l|m|iΓ
µ∂µΨ(−γ5)

−l|m| = ψ̄
l|m|
R (x)iγµ∂µψ

l|m|
R + ψ̄

l|m|
L (x)iγµ∂µψ

l|m|
L (4.55)

(b) m = 0∫
dΩΨ̄(−γ5)

−00 iΓµ∂µΨ(−γ5)
−00 = ψ̄00

L (x)iγµ∂µψ00
L for l = 0 (4.56)∫

dΩΨ̄(−γ5)
−l0 iΓµ∂µΨ(−γ5)

−l0 =
(1 + (−1)l)2

4
[ψ̄l0

R (x)iγµ∂µψl0
R + ψ̄l0

L (x)iγµ∂µψl0
L ] for l ̸= 0

(4.57)

We obtain the mass terms of the fermion KK modes by using Eq. (4.40)-(4.43) and Eq. (4.48)-(4.51)
and integrating over θ and ϕ, such that

1. For Ψ(+γ5)
+ (x, θ, ϕ)

(a) m ̸= 0 ∫
dΩΨ̄(+γ5)

+l|m|iD̂Ψ(+γ5)
+l|m| = Ml[ψ̄

l|m|
R (x)ψl|m|

L + ψ̄
l|m|
L (x)ψl|m|

R ] (4.58)
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(b) m = 0 ∫
dΩΨ̄(+γ5)

+00 iD̂Ψ(+γ5)
+00 = 0 for l = 0 (4.59)∫

dΩΨ̄(+γ5)
+l0 iD̂Ψ(+γ5)

+l0 =
(1 + (−1)l)2

4
Ml[ψ̄l0

R (x)ψl0
L + ψ̄l0

L (x)ψl0
R ] for l ̸= 0

(4.60)

2. For Ψ(−γ5)
− (x, θ, ϕ)

(a) m ̸= 0 ∫
dΩΨ̄(−γ5)

−l|m|iD̂Ψ(−γ5)
−l|m| = −Ml[ψ̄

l|m|
R (x)ψl|m|

L + ψ̄
l|m|
L (x)ψl|m|

R ] (4.61)

(b) m = 0∫
dΩΨ̄(−γ5)

−00 iD̂Ψ(−γ5)
−00 = 0 for l = 0 (4.62)∫

dΩΨ̄(−γ5)
−l0 iD̂Ψ(−γ5)

−l0 = − (1 + (−1)l)2

4
Ml[ψ̄l0

R (x)ψl0
L + ψ̄l0

L (x)ψl0
R ] for l ̸= 0.

(4.63)

We have thus confirmed that the fermion Ψ(−γ5)
− (x, θ, ϕ)(Ψ(+γ5)

+ (x, θ, ϕ)) has the chiral left(right)-handed
massless mode.

We must consider Yukawa coupling of Higgs zero mode and fermion KK modes to obtain mass
spectrum of the KK particles after the electroweak symmetry breaking. The Yukawa coupling term in
six-dimensional spacetime has the form

LY ukawa =
∫

dΩ
[
λΨ̄(+γ5)

+ (x, θ, ϕ)H(x, θ, ϕ)Ψ(−γ5)
− (x, θ, ϕ) + h.c

]
, (4.64)

and we obtain the coupling of Higgs zero mode and fermion KK mode in four-dimensional spacetime as

LY ukawa0 =
∑
lm

λ

[
ψ̄

l|m|
R (x)H00(x)ψ̃l|m|

L (x) + ψ̄
l|m|
L (x)H00(x)ψ̃l|m|

R (x)
]

+ h.c, (4.65)

where we put tilde on fermions which are obtained from Ψ(−γ5)
− . After the electroweak symmetry

breaking, the Higgs zero mode have a vacuum expectation value(v.e.v) and we have the mass term of
the kk mode of the form (

ψ̄lm
¯̃
ψlm

) (
Ml mf

mf −Ml

)(
ψlm

ψ̃lm

)
(4.66)

where mf s express the masses of the SM fermions originated from the Yukawa coupling term. Since
this mass term mix ψ and ψ̃ we must diagonalize the mass term. We change the basis of ψ and ψ̃ as(

ψlm

ψ̃lm

)
=

(
γ5 cos αl sin αl

−γ5 sin αl cos αl

)(
ψ′

lm

ψ̃′
lm

)
(4.67)
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to diagonalize the mass term, where
tan 2αl =

mf

Ml
. (4.68)

After diagonalizing mass term, we obtain the mass spectrum

M l
f = ±

√
M2

l + m2
f . (4.69)

We note that the KK mass Ml do not depend on m and ms are not mixed in mass terms, so that
degeneracy of KK masses is

l + 1 for l = even, (4.70)
l for l = odd, (4.71)

since m runs 0 to l.

4.2.2 KK mode expansion of gauge field

Let us focus on the quadratic terms of gauge field Lagrangian in (3.2) since we would like to know the
mass spectrum of gauge fields. Decomposing the Lagrangian into 4D components, we obtain

Lquadratic
gauge

= − 1
4g2

sin θ
[
R2(∂µAν − ∂νAµ)(∂µAν − ∂νAµ)

−2 {(∂µAθ)(∂µAθ) − 2(∂µAθ)(∂θA
µ) + (∂θAµ)(∂θA

µ)}

−2
{

(∂µÃϕ)(∂µÃϕ) − 2
sin θ

(∂µÃϕ)(∂ϕAµ) +
1

sin2 θ
(∂ϕAµ)(∂ϕAµ)

}
+

2
R2 sin2 θ

{
(∂θ sin θÃϕ)(∂θ sin θÃϕ) − 2(∂θ sin θÃϕ)(∂ϕAθ) + (∂ϕAθ)(∂ϕAθ)

}]
(4.72)

where we defined Ãϕ as Ãϕ ≡ Aϕ/ sin θ for the kinetic term to be canonical. We note that the background
field ⟨Aϕ⟩ belongs to the U(1)X gauge field and hence [Aµ,θ, ⟨Aϕ⟩] = 0. Namely, we have no background
gauge field which induces masses of Aµ and Aθ.

In order to fix the gauge, the follwing gauge-fixing Lagrangian that cancels the mixing terms Aµ and
Aθ, Ãϕis added.

Lgf = −
√
−g

1
2ξg2

[
∂µAµ +

ξ

R2 sin θ

(
∂θ(sin θAθ) +

1
sin θ

∂ϕAϕ

)]2

= −R2 sin θ

2ξg2

[
(∂µAµ)2 +

ξ2

R4 sin2 θ

(
∂θ(sin θAθ) +

1
sin θ

∂ϕAϕ

)2

− 2ξ

R2 sin θ
(∂µAµ)

(
∂θ(sin θAθ) +

1
sin θ

∂ϕAϕ

)]
(4.73)

where ξ is a gauge-fixing parameter.
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Combining (4.72) and (4.73) and after partial integration, we obtain

Lquadratic
gauge + Lgf

= − 1
4g2

sin θ
[
R2(∂µAν − ∂νAµ)(∂µAν − ∂νAµ)

−2
{

(∂µAθ)(∂µAθ) + (∂θAµ)(∂θA
µ) + (∂µÃϕ)(∂µÃϕ) +

1
sin2 θ

(∂ϕAµ)(∂ϕAµ)
}

+
2

R2 sin2 θ

{
(∂θ sin θÃϕ)(∂θ sin θÃϕ) − 2(∂θ sin θÃϕ)(∂ϕAθ) + (∂ϕAθ)(∂ϕAθ)

}]
− R2 sin θ

2ξg2

[
(∂µAµ)2 +

ξ2

R4 sin2 θ

(
∂θ(sin θAθ) + ∂ϕÃϕ

)2
]

= − 1
4g2

sin θ
[
R2(∂µAν − ∂νAµ)(∂µAν − ∂νAµ)

−2
{

(∂θAµ)(∂θA
µ) +

1
sin2 θ

(∂ϕAµ)(∂ϕAµ)
}

−2
{

(∂µAθ)(∂µAθ) + (∂µÃϕ)(∂µÃϕ)
}

+
2

R2 sin2 θ

(
(∂θ sin θÃϕ) − (∂ϕAθ)

)2
]

− R2 sin θ

2ξg2

[
(∂µAµ)2 +

ξ2

R4 sin2 θ

(
∂θ(sin θAθ) + ∂ϕÃϕ

)2
]

. (4.74)

We find that KK mass term for the four-dimensional components of gauge field can be diagonalized by
expanding them by spherical harmonics since the extra-kinetic terms can be expressed by the square
of angular momentum operator. Extra-components of guage field, however, do not have clear form of
extra-kinetic terms to be diagonalized. We then perform following substitutions,

Ãϕ(x, θ, ϕ) = ∂θϕ1(x, θ, ϕ) +
1

sin θ
∂ϕϕ2(x, θ, ϕ) (4.75)

Aθ(x, θ, ϕ) = ∂θϕ2(x, θ, ϕ) − 1
sin θ

∂ϕϕ1(x, θ, ϕ). (4.76)

Here we note that there is no component which is independent of S2/Z2 coordinates since they are
forbidden by the boundary conditions. This substitution leads

1
sin θ

(∂θ sin θÃϕ) − 1
sin θ

∂ϕAθ =
1

sin θ
∂θ(sin θ∂θϕ1) +

1
sin2 θ

∂2
ϕϕ1, (4.77)

1
sin θ

(∂θ sin θAθ) +
1

sin θ
∂ϕÃϕ =

1
sin θ

∂θ(sin θ∂θϕ2) +
1

sin2 θ
∂2

ϕϕ2, (4.78)

where RHS’s are expressed by square of angular momentum opperator acting on ϕ1(2). The four-
dimensional kinetic term of Aϕ and Aθ is also rewritten as
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sin θ[∂µAθ∂
µAθ + ∂µÃϕ∂µÃϕ]

= sin θ

[
−∂µϕ1∂

µ
[ 1
sin θ

∂θ(sin θ∂θϕ1) +
1

sin2 θ
∂2

ϕϕ1

]
−∂µϕ2∂

µ
[ 1
sin θ

∂θ(sin θ∂θϕ2) +
1

sin2 θ
∂2

ϕϕ2

]]
−2∂µ(∂θϕ2)∂µ(∂ϕϕ1) + 2∂µ(∂θϕ1)∂µ(∂ϕϕ2). (4.79)

Note that the last two terms are canceled between them after expanding ϕ1(2) by spherical harmonics
and performing partial integration. After substitution Eq. (4.75) and (4.76), we obtain

Lquadratic
gauge + Lgf

= − 1
4g2

sin θ
[
R2(∂µAν − ∂νAµ)(∂µAν − ∂νAµ) − 2AµL̂2Aµ

+2
{

∂µϕ1∂
µ(L̂2ϕ1) + ∂µϕ2∂

µ(L̂2ϕ2)+
}
− 2

R2
(L̂2ϕ1)2

]
− R2 sin θ

2ξg2

[
(∂µAµ)2 +

ξ2

R4
(L̂2ϕ2)2

]
, (4.80)

where L̂2 = −(1/ sin θ)∂θ(sin θ∂θ) − (1/ sin2)θ∂2
ϕ is the square of angular momentum operator. It

is now clear that diagonal KK mass terms can be obtained by expanding gauge fields using spherical
harmonics. The mode expansions are then carried out in the following way.

Aµ(x, θ, ϕ) =
∑
l,m

Alm
µ (x)Y +

lm(θ, ϕ), (4.81)

ϕ1(2)(x, θ, ϕ) =
∑

l(̸=0),m

ϕlm
1(2)(x)

Y +
lm(θ, ϕ)√
l(l + 1)

(4.82)

where the mode finction Y ±
lm(θ, ϕ) is defined as

Y +
lm(θ, ϕ) ≡ (i)l+m

√
2

[Ylm(θ, ϕ) ± (−1)lYl−m(θ, ϕ)] for m ̸= 0 (4.83)

Y −
lm(θ, ϕ) ≡ (i)l+m+1

√
2

[Ylm(θ, ϕ) ± (−1)lYl−m(θ, ϕ)] for m ̸= 0 (4.84)

Y
+(−)
l0 (θ) ≡ Yl0(θ) for m = 0 and l = even(odd)

≡ 0 for m = 0 and l = odd(even) (4.85)

We note that the mode functions Y ±
lm are eigenfunctions with Z2 parity ± under Z2 action (θ, ϕ) →

(π−θ,−ϕ) because of the property Ylm(π−θ,−ϕ) = (−1)lYl−m(θ, ϕ). We further notice that the phase
factors (i)l+m(+1) in the mode functions Eq. (4.83) and (4.84) are required since the fields Aµ and ϕ1(2)

must be real and the spherical harmonics satisfy (Ylm)∗ = (−1)mYl−m.
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Substituting the mode expansions into the Lagrangian (4.80) and integrating out θ, ϕ coordinates
leads to

Lquadratic
gauge + Lgf

= −1
4

∑
l,m(̸=0)

(∂µAlm
ν − ∂νAlm

µ )(∂µAνlm − ∂νAµlm)

− 1
4

∑
l:even

(∂µAl0
ν − ∂νAl0

µ )(∂µAνl0 − ∂νAµl0)

+
1
2

∑
l,m( ̸=0)

(∂µϕlm
1 )(∂µϕlm

1 ) +
∑

l( ̸=0):even

(∂µϕl0
1 )(∂µϕl0

1 )

+
1
2

∑
l,m( ̸=0)

(∂µϕlm
2 )(∂µϕlm

2 ) +
∑

l( ̸=0):even

(∂µϕl0
2 )(∂µϕl0

2 )

+
∑
l,m

l(l + 1)
2R2

Alm
µ Aµlm −

∑
l,m(̸=0)

l(l + 1)
2R2

(ϕlm
1 )2 − ξ

∑
l,m(̸=0)

l(l + 1)
2R2

(ϕlm
2 )2

−
∑

l( ̸=0):even

l(l + 1)
2R2

[
(ϕl0

1 )2 + ξ(ϕl0
2 )2

]
− 1

2ξ

∑
lm( ̸=0)

(∂µAµlm)2 − 1
2ξ

∑
l:even

(∂µAµl0)2

(4.86)

A rescaling Aµ → R−1Aµ was done so that the gauge kinetic term is canonical. The KK modes of
the ϕ2 are interpreted as Nambu-Goldstone(NG) bosons since their KK masses are proportional to the
gauge fixing parameter ξ. These NG bosons will be eaten by KK modes of four dimensional components
of gauge field giving their longitudinal component.

Next, let us turn to the Higgs part to incorporate the electroweak symmetry breaking effects. Higgs
part of the Lagrangian is given by

LHiggs =
√
−g

[
gMN (DMH)†DNH − V (H)

]
= R2 sin θ

[
ηµν(DµH)†DνH

− 1
R2

|DθH|2 − 1
R2 sin2 θ

|DϕH|2 − V (H)
]

, (4.87)

DM = ∂M − ig2AM − i

2
g1BM (4.88)

where g1,2 and AM , BM are the gauge coupling constants and gauge fields of SU(2)L, U(1)Y gauge
groups, respectively. V (H) denotes a Higgs potential. The gauge boson masses are obtained from the
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covariant derivatives as in the standard model by putting the Higgs VEV HT = (0, v√
2
),

LHiggs ⊃ R2 sin θ
1
4

1
2

∣∣∣∣∣
(

g2A
3
M + g1BM g2(A1

M − iA2
M )

g2(A1
M + iA2

M ) −g2A
3
M + g1BM

)(
0

v

)∣∣∣∣∣
2

= R2 sin θ

[
m2

W W+
µ Wµ− +

1
2
m2

ZZµZµ

− 1
R2

(
m2

W W+
θ W−

θ +
1
2
m2

ZZθZθ

)
− 1

R2

(
m2

W W̃+
ϕ W̃−

ϕ +
1
2
m2

ZZ̃ϕZ̃ϕ

)]
=

∑
l,m

[
m2

W W+lm
µ Wµ−lm +

1
2
m2

ZZlm
µ Zµlm

−
(

m2
W W+lm

1 W−lm
1 +

1
2
m2

ZZlm
1 Zlm

1

)
−

(
m2

W W+lm
2 W−lm

2 +
1
2
m2

ZZlm
2 Zlm

2

)]
(4.89)

where W1(2) and Z1(2) are defined by the substitution Eq. (4.75) and (4.76).
Combining the results (4.86) and (4.89), the mass spectrum of SU(2)L × U(1)Y gauge sector is

summarized as follows.

W lm
µ : m2

W +
l(l + 1)

R2
, Zlm

µ : m2
Z +

l(l + 1)
R2

, γlm
µ :

l(l + 1)
R2

,

W lm
1 : m2

W +
l(l + 1)

R2
, Zlm

1 : m2
Z +

l(l + 1)
R2

, γlm
1 :

l(l + 1)
R2

,

W lm
2 : m2

W + ξ
l(l + 1)

R2
, Zlm

2 : m2
Z + ξ

l(l + 1)
R2

, γlm
2 : ξ

l(l + 1)
R2

. (4.90)

Here we mention extra U(1)X sector in our model. We notice that the U(1)X symmetry is anomalous
and is broken at the quantum level, so that its gauge boson should be heavy [81]. We thus expect the
U(1)X gauge boson and its KK modes are decoupled from the low energy sector of our model.

We, theore, conclude that the lightest KK particles are 1st KK mode of four-dimensional components
of massless gauge bosons and that of physical scalar boson originated from extra components of gauge
field. These kk particles are the 1st KK mode of photon γ11

µ , scalar photon γ11
1 , gluon g11

µ and scalar
gluon g11

1 at tree level. We can also guess that the 1st KK photon is the promising candidate of the
lightest KK particle after including a quantum correction and it would be a good candidate for the dark
matter [82].
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4.3 KK mode expansion of the Higgs field

Here we discuss the KK mode expansion and mass spectrum of the Higgs field. We thus focus on the
kinetic-mass terms of the Higgs field in six-dimensional space time. The kinetic-mass term has the form

L
(6D)
Higgs−kinetic = R2 sin θ

[
∂µH†(X)∂µH(X)

− 1
R2

∂θH
†(X)∂θH(X) − 1

R2 sin2 θ
∂ϕH†(X)∂ϕH(X)

]
. (4.91)

After partial integration, we obtain

L
(6D)
Higgs−kinetic = R2 sin θ

[
∂µH†(X)∂µH(X)

+
1

R2
H†(X)

(
1

sin θ
∂θ(sin θ∂θ) +

1
sin2 θ

∂2
ϕ

)
H(X)

]
, (4.92)

where the derivative operator in the second term has the form of square of angular momentum operator.
The mode expansion of the Higgs field is carried out as follows,

H(x, θ, ϕ) =
∑
l,m

H lm(x)Y +
lm(θ, ϕ) (4.93)

since the Higgs field has even parity under the Z2 action.
Substituting the mode expansion into the Lagrangian Eq. (4.92) and integrating out θandϕ coordi-

nates, we find the kinetic and mass terms of the Higgs field in four-dimensional spacetime

L
(4D)
Higgs−kinetic−mass = ∂µ(H lm(x))†∂µH lm(x) − l(l + 1)

R2
(H lm(x))†H lm(x). (4.94)

We, therefore, find the mass spectrum of the Higgs field such that

Ml =

√
l(l + 1)

R2
+ m2

H , (4.95)

where mH is the Higgs zero mode mass obtained from the Higgs potential after electro weak symmetry
breaking. There are l + 1(l) mass degeneracies of the KK modes for even(odd) l since m runs from 0 to
l for each l and Y +

l0 = 0 for l =odd.

4.3.1 The KK-parity for each KK modes

We discuss the KK-parity for each KK modes to investigate the stability of the lightest KK particle.
In our model, the KK momentum is not conserved due to the orbifolding, but the discrete part is
still conserved as a remnant of KK momentum conservation. We can see that there is an additional
discrete Z ′

2 symmetry of (θ, ϕ) → (θ, ϕ + π), which is different from the previous Z2 symmetry. This
Z ′

2 symmetry is understood as the symmetry of interactions under the exchange of two fixed points on
S2/Z2 orbifold which are points (π

2 , 0) and (π
2 , π). Note that the fixed points have different ϕ coordinates

0 and π but the same θ coordinate π/2 so that the Z ′
2 action shift only in the ϕ coordinate. The mode
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functions for each fields in Eqs. (4.46),(4.47),(4.81),(4.82), and (4.93) are transformed under the Z ′
2

action (θ, ϕ) → (θ, ϕ + π) such that

Ψ±γ5
+l|m|(x, θ, ϕ + π) = (−1)mΨ±γ5

+l|m|(x, θ, ϕ), (4.96)

Ψ±γ5
−l|m|(x, θ, ϕ + π) = (−1)mΨ±γ5

+l|m|(x, θ, ϕ), (4.97)

Y ±
lm(θ, ϕ + π) = (−1)mY ±

lm(θ, ϕ + π). (4.98)

Thus the KK-parity is defined as (−1)m and we find the KK-parity is conserved as a consequence of the
Z ′

2 symmetry of the Lagrangian in six-dimensional spacetime. We, therefore, can confirm the stability
of the lightest KK particle which would be the 1st KK mode of photon γ11

µ since this mode has m = 1
and cannot decay into SM particles. We summarize the KK particle masses, mass degeneracy and the
KK parity in Table. 27

Table 27: Summary of the KK particle masses, mass degeneracy and the KK parity for KK modes
of fermion ψlm, four dimensional gauge bosons Alm

µ , scalar gauge bosons ϕlm
1(2) and Higgs boson H lm,

where the mf , mg and mH are the zero mode masses for the fermions, the gauge bosons and the Higgs
boson respectively, which correspond to the masses of SM particles.

particle KK mass2 mass degeneracy KK parity

ψlm(x) l(l+1)
R2 + m2

f l + 1 for l =even (0 ≤ m ≤ l) (−1)m

l for l =odd (0 < m ≤ l)

Alm
µ (x) l(l+1)

R2 + m2
g l + 1 for l =even (0 ≤ m ≤ l) (−1)m

l for l =odd (0 < m ≤ l)

ϕlm
1 (x) l(l+1)

R2 + m2
g l + 1 for l =even(̸= 0) (0 ≤ m ≤ l) (−1)m

l for l =odd (0 < m ≤ l)

ϕlm
2 (x) ξ l(l+1)

R2 + m2
g l + 1 for l =even(̸= 0) (0 ≤ m ≤ l) (−1)m

l for l =odd (0 < m ≤ l)

H lm(x) l(l+1)
R2 + m2

H l + 1 for l =even (0 ≤ m ≤ l) (−1)m

l for l =odd (0 < m ≤ l)

4.3.2 KK particles contribution to Higgs production via gluon fusion

We here examine Higgs boson production process via gluon fusion in our model. Higgs production by
gluon fusion is very important because it is the dominant production mode at LHC and it has been
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studied in various models beyond the SM [88, 89, 90, 91, 92] as well as the SM [93].
Before calculating contributions of KK fermions to one-loop effective couplings between Higgs boson

and gluons, it is instructive to recall the SM result. We parameterize the effective coupling between
Higgs boson and gluons as

Leff = CSM
g h GaµνGa

µν , (4.99)

where h is a SM higgs boson and Ga
µν is a gluon field strength tensor. This operator is a dimension

six (five) one before (after) electroweak symmetry breaking. The coupling is generated by one-loop
corrections (triangle diagram) where quarks are running. The top quark loop diagram gives the dominant
contribution and the coupling CSM

g is described in the following instructive form [93]:

CSM
g = −mt

v
×

αsF1/2(4m2
t /m2

h)
8πmt

× 1
2
, (4.100)

where, in the right hand side, the first term −mt

v is top Yukawa coupling, the second term is from the
loop integral with the QCD coupling αs at QCD vertices, the loop function F1/2(τ) given by (for τ ≥ 1)

F1/2(τ) = −2τ
(
1 + (1 − τ) arcsin2(1/

√
τ)

)
→ −4

3
for τ ≫ 1, (4.101)

and 1/2 is a QCD group factor (Dynkin index). Mass of the fermion (top quark) running in the loop
appears in the denominator in the second term of (4.100), which is canceled with top quark mass from
Yukawa coupling. It is well-known that in the top quark decoupling limit, namely top quark mass mt is
much heavier than Higgs boson mass mh, F1/2 becomes a constant and the resultant effective coupling
becomes independent of mt and mh.

A calculation of KK mode contributions in a 6D UED model on S2/Z2 is completely analogous to
the top loop correction in the SM case. To carry out the calculation, we need to know top Yukawa
coupling constant and KK mass spectrum of top quark in our model. The relevant top Yukawa coupling
and mass terms after electroweak symmetry breaking are given by

L ⊃
∑
lm

[
Mlψ̄

lm
R ψlm

L − Ml
¯̃
ψlm

R ψ̃lm
L

+
mt

v

(
ψ̄lm

R (x)H00ψ̃lm
L + ψ̄lm

L H00ψ̃lm
R

)
(4.102)

+mt

(
ψ̄lm

R ψ̃lm
L + ψ̄lm

L ψ̃lm
R

)
+ h.c.

]
.

where L,R denote chirality in four dimensional sense. ψlm, ψ̃lm are chiral fermions in a six dimensional
sense, namely they are classified by the eigenvalues of Γ7 as Γ7ψ

lm = ψlm,Γ7ψ̃
lm = −ψ̃lm. mt is top

quark mass, Ml is top quark KK masses with M2
l = l(l + 1)/R2, and v is a vacuum expectation value

of Higgs field.
The mass terms for KK modes can be written down in a matrix form by using Dirac fermion

(
ψ̄lm ¯̃

ψlm
) (

Ml mt

mt −Ml

)(
ψlm

ψ̃lm

)
, (4.103)

69



which is diagonalized by the change of basis(
ψlm

ψ̃lm

)
=

(
γ5 cos αl sinαl

−γ5 sinαl cos αl

)(
ψ′lm

ψ̃′lm

)
(4.104)

where tan 2αl = mt/Ml. Rewriting (4.102) in terms of mass eigenstates ψ′lm and ψ̃′lm, we find

that top KK mass eigenvalue is m
(l)
t =

√
l(l+1)

R2 + m2
t and top Yukawa coupling is −(mt sin 2αl)/v =

−m2
t /(vm

(l)
t ), respectively [87]. Making use of this information, the KK mode contributions in our

model are found to be

Leff = C
KK(UED2)
g h GaµνGa

µν (4.105)

where

C
KK(UED2)
g

= −
∞∑

l=1

n(l)

[
mt

v

mt

m
(l)
t

×
αsF1/2(4(m(l)

t )2/m2
h)

8πm
(l)
t

1
2

]
× 2

=
αs

πv

m2
t

m2
h

∞∑
l=1

[(2l + 1)×{
1 +

(
1 − 4(m(2l)

t )2

m2
h

)
arcsin2

(
mh

2m
(2l)
t

)}
+ (2l − 1)×{

1 +

(
1 − 4(m(2l−1)

t )2

m2
h

)
arcsin2

(
mh

2m
(2l−1)
t

)}]

≃ αs

6πv

∞∑
l=1

[
(2l + 1)m2

t
2l(2l+1)

R2 + m2
t

+
(2l − 1)m2

t
2l(2l−1)

R2 + m2
t

]
(4.106)

where “UED2(1)” denotes our 6D UED model on S2/Z2 [87] (5D UED model on S1/Z2 [83], which
will be discussed later), respectively. A factor “2” is multiplied in the second line, since the degrees of
freedom of 6D fermion are doubled compared with the SM case. In the second and the third equalities,
the mode sum is decomposed into even or odd number term of l since the degeneracy n(l) with respect
to m is different, e.g. n(l) = l + 1(l) for l : even (odd) [87]. The limit m2

h, m2
t ≪ (1/R)2 have been

taken in the last line to simplify the results. As expected from the dimensional analysis, the mode sum
is logarithmically divergent. Also, note that the KK mode contribution is constructive against the top
quark contribution in the SM.

It is interesting to compare our result with that in the minimal UED model on S1/Z2 [89], where the
KK mode mass spectrum and Yukawa couplings are given by Mn =

√
(n/R)2 + m2

t and −(m2
t /Mnv),

respectively. In this case, we find the effective coupling as

Leff = C
KK(UED1)
g h GaµνGa

µν (4.107)
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where

C
KK(UED1)
g

= −
∞∑

n=1

[
mt

v

mt

Mn
×

αsF1/2(4M2
n/m2

h)
8πMn

× 1
2

]
× 2

≃ αs

6πv

∞∑
n=1

m2
t

(n/R)2
(4.108)

where we have taken the limit m2
h, m2

t ≪ (1/R)2 again to simplify the result. This KK mode contribu-
tion is finite and constructive to the top quark one in the SM.

As we have shown, the KK mode loop contribution to the effective coupling between Higgs boson
and gluons is constructive similar to the top quark loop contribution in the SM. This fact leads to
remarkable effects on Higgs boson search at the LHC. Since the main production process of Higgs boson
at the LHC is through gluon fusion, so that the deviation of the effective coupling between Higgs boson
and gluons from the SM and other model’s predictions directly affects the Higgs boson production cross
section.

Let us consider the ratio of the Higgs boson production cross section in the UED model on S2/Z2

and S1/Z2 to the SM one, which is described as

∆ ≡ σ(gg → h; SM + KK)
σ(gg → h; SM)

=

(
1 +

C
KK(UED2(1))
g

CSM
g

)2

. (4.109)

The numerical results of this ratio as a function of the compactification scale 1/R are shown in Fig. 1

where these plots are calculated by using exact expressions of CSM
g , C

KK(UED2(1))
g not approximated ones.

The bold (dashed) line corresponds to the UED model on S2/Z2(S1/Z2). The horizontal line ∆ = 1
is the SM prediction. In this analysis, we have taken Higgs mass to be mh = 120, 150, 180 GeV (from
the left to the right in Fig. 1). The results are not sensitive to the Higgs boson mass. The KK fermion
contribution is constructive and the Higgs production cross section is increased in the UED scenario
in contrast to the case of little Higgs [90] or gauge-Higgs unification [91]. The present UED model on
S2/Z2 gives rise to more enhanced Higgs production cross section than that of the minimal UED model
on S1/Z2. This is very natural because the number of KK particles is larger. For 1/R = 1 TeV, the
KK fermion contribution of our model is sizable and the production cross section is more enhanced by
around 30(10)% than the SM (minimal UED on S1/Z2) prediction. Thus, we have found that our model
predicts a remarkable collider signature of Higgs production at LHC. We expect that our prediction will
be soon verified by the forthcoming experiment.

In our analysis, we have summed only the first five KK mode contributions. The reason is the
following. Our model is a six dimensional model, so the gluon fusion amplitude is logarithmically
divergent as mentioned earlier. More specifically, the mode sum behaves as log(ΛR) with the cutoff
scale Λ. Therefore, one might worry about the cutoff dependence of the result. We can find an upper
bound for the cutoff scale by using naive dimensional analysis. A loop expansion parameter ε of six
dimensional theories is given by

ε =
π3

2(2π)6
g2
6Λ2 =

α

8π
(RΛ)2 (4.110)
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Figure 1: The ratio of the Higgs boson production cross section via gluon fusion in 6D UED on S2/Z2,
5D UED on S1/Z2 and in the SM, as a function of the compactification scale 1/R in a unit of GeV.
The vertical axis denotes ∆ defined above and ∆ = 1.0 corresponds to the SM prediction. The bold
(dashed) line corresponds to the 6D UED on S2/Z2 (5D UED on S1/Z2) prediction, respectively. Higgs
mass is taken to be 120, 150, 180 GeV from the left to the right.

where g6 is a gauge coupling constant in six dimensional gauge theories. The cutoff scale is introduced
to make ε dimensionless. α ≡ g2

4/(4π)(g4 : 4D gauge coupling constant). Requiring that our theory is
perturbative at the cutoff scale, ε . 1, we obtain

RΛ .
√

8π

α
. (4.111)

The most stringent bound is found for the case that our 4D effective theory becomes strong coupling at
the cutoff scale α ≃ 1. Thus, we finally obtain the upper bound of the cutoff scale

Λ .
√

8π/R ≃ 5/R. (4.112)

Here is a comment on collider physics. If we take into account the Higgs boson decay process, our
result holds true for the case where Higgs mass is heavier than around 150 GeV. In that situation, Higgs
boson will mainly decay into W+W− pair via the SM vertex at tree level. Therefore, ∆ is unchanged.
However, if Higgs boson mass is lighter than 150 GeV, the most promising discovery mode is two photon
decay process. This process is also given by one-loop triangle diagram and KK modes of top quark and
W-boson contribute. The analysis of Higgs boson decay into two photons is beyond the scope of this
paper and is left for future work [94].
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5 Summary

We proposed new approaches to construct a Gauge-Higgs Unification(GHU) model and Universal Extra
Dimensional(UED) model.

For GHU model, we applied Coset Space Dimensional Reduction(CSDR) scheme since this scheme
provides well determined four-dimensional theory starting from higher-dimensional theory. We con-
structed GHU model with CSDR scheme based on gauge theory in fourteen and eight dimensional
spacetime with simple gauge group and gauge theory in ten dimensional spacetime with direct product
gauge group. We then exhaustively searched for the phenomenologically acceptable models. Several
models are found which lead phenomenologically acceptable theory in four dimensions; four fourteen
dimensional models provide SM like gauge symmetry SU(3)×SU(2)×U(1)×U(1) and SM particle con-
tents in four dimensions and many fourteen, ten and eight dimensional models provide GUT like model
with particle contents which contain SM Higgs and generations of SM fermions. Apparent difficulties
are, however, also found in these models e.g. appearance of extra particles in SM like case and lack of
Higgs particle which break GUT gauge symmetry in GUT like case.

We then provide new approach to construct a GHU model, which are based on gauge theory defined
on the six-dimensional spacetime which has an S2/Z2 extra-space, with the symmetry condition and
non-trivial boundary conditions.

We first provided the scheme for constructing a four-dimensional theory from a gauge theory on
six-dimensional spacetime which has extra space S2 with the symmetry condition of gauge field and
the non-trivial boundary conditions. We showed the prescriptions to identify the gauge field and the
scalar field, which satisfy the symmetry condition and the boundary conditions. A fermion sector of
four-dimensional theory is also obtained by expanding fermions in normal mode and integrating the
S2 coordinates, although explicit form was not shown. Massive KK modes of fermions then appear in
contrast to scalar and gauge field, which would provide a candidate of dark-matter. They may give a rich
phenomena in near future collider experiment. To discuss these matters, we have to find the eigenvalues
of Eq. (3.30). We leave this in future work. We also showed that fermions can have massless mode
because of the existence of a background gauge field. The fermion components which have massless
modes are then determined by the background gauge field and the boundary conditions.

Note that by imposing the symmetry condition, we can get massless fermions. It may indicate the
meaning of the symmetry condition; though the energy density of the gauge sector in the appearance
of the background fields is higher than that of no background fields, since we have massless fermions, it
may consist a ground state as a total in the presence of fermions.

We then constructed the model based on the SO(12) gauge theory with fermions which lies in a 32
representation of SO(12). We showed that SU(3) × SU(2)L × U(1)Y × U(1)X × U(1)I gauge symmetry
is remained in four-dimensions, and that the SM Higgs-doublet is obtained without appearance of extra
scalar contents. One generation of SM fermions are successfully obtained by introducing two types of
fermions which have different parity assignment under θ → π − θ. We also analyzed the Higgs sector
that are obtained from gauge sector of the six-dimensional gauge theory. The electroweak symmetry
breaking is then realized and the Higgs mass value is predicted.

To make our model more realistic, there are several challenges such as eliminating the extra U(1)
symmetries and constructing the realistic Yukawa couplings, which are the same as other gauge-Higgs
unification models. We, however, can get not only appropriate one-generation fermion fields but also
Kaluza-Klein modes. This suggests that we obtain the dark matter candidate in our model.

For UED model, we proposed a approach which is defined on the six-dimensional spacetime whose
extra space is the two-sphere orbifold S2/Z2 and analyzed the mass spectrum of Kaluza-Klein particles
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in the model.
We first specified our model in six-dimensional spacetime M4×S2/Z2. The orbifold S2/Z2 is clarified

by operating the Z2 action on S2 and the feature of the gauge theory on M4 × S2/Z2 is summarized
in section 2. There, we mentioned that a massless mode of fermion is obtained if we introduce a
background gauge field to cancel the mass of fermions which arise from the spin connection for the
positive curvature of S2. The Lagrangian of our model is then constructed by specifying the gauge
symmetry, the field contents and the boundary conditions for each fields. The gauge symmetry is chosen
as the SM gauge symmetry with the extra U(1)X symmetry, which is SU(3)×SU(2)×U(1)Y ×U(1)X ,
where the extra U(1)X symmetry is introduced so that all the fermions in our model have the massless
modes corresponding to the SM fermions. We then introduced the field contents where the zero modes of
the fields correspond to the SM field contents under their boundary conditions. Thus the combinations
of chirality and boundary conditions for each fermions are determined to give the zero mode which
correspond to the SM fermions as summarized in Table. 26.

We then analyzed the KK mode expansion for fermions, gauge fields, and Higgs field. The fermions
are expanded in terms of the linear combinations of the eigenfunctions of the extra-space Dirac operator
which contains background gauge field. Those linear combinations are defined to satisfy the boundary
conditions of the fermions. After the mode expansion and integrating S2 coordinates, we obtained the
kinetic term and the KK mass term of fermions in four-dimensional spacetime, and confirmed that each
fermions have the chiral massless mode. The mass spectrum of the fermion KK mode is then obtained
as in Eqs. (4.69),(4.70) and (4.71). The gauge fields are expanded in terms of the linear combinations
of the spherical harmonics which satisfy the boundary condition. We obtained the quadratic terms of
the gauge fields in four-dimensional spacetime as in Eq. (4.86), after gauge fixing and integration of the
S2 coordinates. We then analyzed the mass spectrum of the gauge fields and summarized the feature
of the mass spectrum in Eq. (4.90) and in the sentences below Eq. (4.90). There we noted that the
U(1)X symmetry is anomalous and is broken at the quantum level, so that its gauge boson should be
heavy. We thus expect the U(1)X gauge boson and its KK modes are decoupled from the low energy
sector of our model. The Higgs field is also expanded in terms of the linear combinations of the spherical
harmonics which satisfy the boundary condition. The mass spectrum of the Higgs KK modes is specified
in Eq. (4.95) and sentences below Eq. (4.95). These mass spectrum are summarized in Table 27

We also investigated the KK-parity in our model and found that the KK-parity is defined as (−1)m.
This KK-parity is conserved as a result of Z ′

2 symmetry of the Lagrangian and when the stability of the
lightest KK particle with m=odd is confirmed. We, therefore, found that the lightest KK photon γ11

µ ,
which is the promising candidate of the lightest KK particle, is stable and can be a good candidate of
the dark matter. We must take into account the quantum correction to the masses of the KK particles
in order to clarify the lightest KK particle and the dark matter candidate. Furthermore we need to
derive all interaction terms. However this is beyond the scope of this paper and we leave this for future
work. It would be very interesting to study experimental signatures of our model and compare them
with other extra dimensional model predictions.

We, furthermore, investigated the main Higgs production process via gluon fusion at LHC in our 6D
UED model compactified on S2/Z2. Higgs production cross section in our model has 30 (10)% enhance-
ment comparing with the prediction of the SM (minimal UED model on S1/Z2) for the compactification
scale of order 1 TeV. We expect that our remarkable prediction will be soon verified by a forthcoming
LHC experiment.

We, therefore, found that the GHU model and the UED model with S2 extra space are very inter-
esting in phenomenological point of view and it is very important to these model further.
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A Geometrical quantity on S2

We summarize the geometrical quantity on S2 such as vielveins ea
α, killing vectors ξα

a and spin connection
Rab

α . The vielveins are expressed as

e1
θ = R,

e2
ϕ = R sin θ,

e1
ϕ = e2

θ = 0. (A.1)

The non-zero components of spin connection are

R12
ϕ = −R21

ϕ = − cos θ. (A.2)

B Summary of the Jacobi polynomial

We summarize the feature of the Jacobi polynomial Pα,β
n (z) (α, β > −1) [39]. The Jacobi polynomial

Pα,β
n (z) obey the differential equation of the form

σ(y)P ′′ + τ(y)P ′ + λnP =
1

ρ(α,β)(y)
d

dy
[σ(y)ρ(α,β)(y)P ′] + λnP = 0, (B.1)

where ρα,β , σ(z), τ(z) and λn are given by

ρ(α,β)(z) = (1 − z)α(1 + z)β , (B.2)
σ(y) = 1 − z2, (B.3)
τ(z) = β − α − (α + β + 2)z, (B.4)

λn = n(n + α + β + 1), (B.5)

where n is a non-negative integer.
The explicit form of the Jacobi polynomials are given by both the differential and integral of Ro-

drigues’ formulas
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P (α,β)
n (z) =

(−1)n

2nn!
1

ρ(α,β)(z)
dn

dzn
[σ(z)nρ(α,β)(z)], (B.6)

P (α,β)
n (z) =

(−1)n

2nn!
1

ρ(α,β)(z)
n!
2πi

∮
σn(z)ρ(α,β)(w)

(w − z)n+1
dw, (B.7)

where the contour of complex integration in the second equation must encircle the point z. The orthog-
onal relation of the Jacobi polynomials is given as∫ 1

−1

P (α,β)
m (z)P (α,β)

n (z)ρ(α,β)(z)dz = δmn
2α+β+1Γ(n + α + 1)Γ(n + β + 1)

n!(2n + α + β + 1)Γ(n + α + β + 1)
. (B.8)

The recurrence equations for the Jacobi polynomials are summarized such that

d

dy
P (α,β)

n (y) =
1
2
(n + α + β + 1)P (α+1,β+1)

n−1 (y) (n > 0), (B.9)

(
α

1 − y
− d

dy
)P (α,β)

n (y) =
n + α

1 − y
P (α−1,β+1)

n (y), (B.10)

(
β

1 + y
+

d

dy
)P (α,β)

n (y) =
n + β

1 + y
P (α+1,β−1)

n (y). (B.11)
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[32] D. Lüst and G. Zoupanos, Phys. Lett. 165B (1985) 309.

[33] K.J. Barnes and M. Surridge, Nucl. Phys. B263 (1986) 557.

[34] N.G. Kozimirov and I.I Tkachev, Z. Phys. C36 (1987) 83.

[35] K. Plich and A.N. Shellekens, Phys. Lett. B164 (1985) 31.

[36] K. Farakos, D. Kapetanakis, G. Koutsoumbas and G. Zoupanos, Phys. Lett. B211 (1988) 322.

[37] D. Kapetanakis and G. Zoupanos, Phys. Lett. B249 (1990) 66.

[38] B.E. Hanlon and G.C. Joshi, Phys. Rev. D48 (1993) 2204.

[39] A.A. Abrikosov, arXiv:hep-th/0212134.

[40] Y. Kawamura, Prog. Theor. Phy. 105 (2001) 999.

[41] Y. Kawamura, Prog. Theor. Phy. 105 (2001) 691.

[42] T. Appelquist, H. C. Cheng and B. A. Dobrescu Phys. Rev. D64 (2001) 035002.

77



[43] I. Antoniadis Phys. Lett. B246 (1990) 377.

[44] K. Agashe, N. G. Deshpande and G. H. Wu, Phys. Lett. B 511 (2001) 85; K. Agashe, N. G. Desh-
pande and G. H. Wu, Phys. Lett. B 514 (2001) 309; T. Appelquist and B. A. Dobrescu, Phys.
Lett. B 516 (2001) 85; T. Appelquist and H. U. Yee, Phys. Rev. D 67 (2003) 055002; J. F. Oliver,
J. Papavassiliou and A. Santamaria, Phys. Rev. D 67 (2003) 056002; D. Chakraverty, K. Huitu and
A. Kundu, Phys. Lett. B 558, (2003) 173; A. J. Buras, M. Spranger and A. Weiler, Nucl. Phys.
B 660, (2003) 225; P. Colangelo, F. De Fazio, R. Ferrandes and T. N. Pham, Phys. Rev. D 73,
(2006) 115006; I. Gogoladze and C. Macesanu, Phys. Rev. D 74 (2006) 093012.

[45] H. C. Cheng, J. L. Feng and K. T. Matchev, Phys. Rev. Lett. 89 (2002) 211301; G. Servant and
T. M. P. Tait, Nucl. Phys. B 650 (2003) 391; M. Kakizaki, S. Matsumoto, Y. Sato and M. Senami,
Phys. Rev. D 71 (2005) 123522; S. Matsumoto and M. Senami, Phys. Lett. B 633 (2006) 671;
F. Burnell and G. D. Kribs, Phys. Rev. D 73 (2006) 015001; M. Kakizaki, S. Matsumoto and
M. Senami, Phys. Rev. D 74 (2006) 023504; K. Kong and K. T. Matchev, JHEP 0601 (2006) 038;
S. Matsumoto, J. Sato, M. Senami and M. Yamanaka, Phys. Rev. D 76 (2007) 043528.

[46] A. Datta, K. Kong and K. T. Matchev, Phys. Rev. D 72 (2005) 096006 [Erratum-ibid. D 72 (2005)
119901]; S. Matsumoto, J. Sato, M. Senami and M. Yamanaka, arXiv:0903.3255 [hep-ph].

[47] S. Matsumoto, J. Sato, M. Senami and M. Yamanaka, Phys. Lett. B 647 (2007) 466.

[48] B. A. Dobrescu and E. Poppitz, Phys. Rev. Lett. 87, 031801 (2001)

[49] T. Appelquist, B. A. Dobrescu, E. Ponton and H. U. Yee, Phys. Rev. Lett. 87, 181802 (2001)

[50] S. Randjbar-Daemi, A. Salam, J.A. Strathdee, Nucl. Phys. B 214 (1983) 491.

[51] S. Randjbar-Daemi, A. Salam and J. A. Strathdee, Phys. Lett. B 124, 345 (1983) [Erratum-ibid.
B 144, 455 (1984)].

[52] C. S. Lim, N. Maru and K. Hasegawa, J. Phys. Soc. Jap. 77, 074101 (2008)

[53] T. Nomura and J. Sato, Nucl. Phys. B 811, 109 (2009) [arXiv:0810.0898 [hep-ph]].

[54] A. Lichnerowicz, Bull. Soc. Math. Fr. 92 (1964) 11.

[55] Z. Horvath, L.Palla, E. Cremmer and J. Scherk, Nucl. Phys. B 127 (1977) 57.

[56] Masafumi. Koike, Toshifumi. Jittoh Takaaki. Nomura, Joe. Sato, Takashi. Shimomura, Physical
Review D, 79, 056004, 2008.

[57] E. Witten, Phys. Rev. Lett. 38(1977) 121.

[58] R. Jackiw, Acta Phys. Austriaca Suppl. XXII (1980) 383.

[59] D. Olive and P. West, Nucl. Phys. B217 (1983) 248.

[60] Y.A. Kubyshin, J.M. Mourão and I.P. Volobujev, Nucl. Phys. B322 (1989) 531.

[61] Y.A. Kubyshin, and I.P. Volobujev, Theor. Math. Phys. 68 (1986) 225, 368, 885.

78



[62] Masafumi. Koike, Toshifumi. Jittoh, Takaaki. Nomura, Joe. Sato, Yutsuki. Toyama, Physics Letters
B, 675, 450-454, 2009.

[63] R. Bott, Differential and combinatorial topology, (Princeton University Press, Princeton, 1965).

[64] N.S. Manton, Nucl. Phys. B 193 (1981) 502.

[65] W. Mckay and J. Patera, Tables of Dimensions, Indices and branching Rules for Representations
of simple Algebra, (Dekker, New York, 1981).

[66] R. Slansky, Phys. Rept. 79 (1981) 1.

[67] Y. Hosotani, Phys. Lett. B 126 (1983) 309.

[68] Y. Hosotani, Phys. Lett. B 129 (1983) 193.

[69] E. Witten, Nucl. Phys. B258 (1985) 75.

[70] J.D. Breit, B.A. Ovrut and G.C. Segre, Phys. Lett. B158 (1985) 33.

[71] B.R. Greene, K. Kirklin and P.J. Miron, Nucl. Phys. B274 (1986) 575.

[72] B.R. Greene, K. Kirklin, P.J Miron and G.G. Rpss, Nucl. Phys. B278 (1986) 667.

[73] G. Zoupanos, Phys. Lett. B 201 (1983) 301.

[74] W. Buchmuller, R. D. Peccei and T. Yanagida, Nucl. Phys. B 227, 503 (1983).

[75] T. Kugo and T. Yanagida, Phys. Lett. B 134, 313 (1984).

[76] J. Sato and T. Yanagida, Phys. Lett. B 430, 127 (1998).

[77] Takaaki. Nomura and Joe.Sato, Nuclear Physics B, 811, 109-122, 2008

[78] S. Randjbar-Daemi and R. Percacci, Phys. Lett. B117 (1982) 41.

[79] S. Rajpoot and Sithikong Phys. Rev. D23 (1981) 1649-1656.

[80] Nobuhito.Maru Takaaki. Nomura, Joe.Sato, Masato.Yamanaka ” The Universal Extra Dimensional
Model with S2/Z2 extra-space.”, arXiv:0904.1909 [hep-ph], 2009

[81] C. A. Scrucca,M. Serone and L. Silvestrini, Nucl. Phys. B 669 (2003) 128.

[82] H. Cheng, K. T. Matchev and M.Schmaltz, Phys. Rev. D66 (2002) 036005.

[83] T. Appelquist, H. C. Cheng and B. A. Dobrescu, Phys. Rev. D 64, 035002 (2001) .

[84] N. Arkani-Hamed, H. C. Cheng, B. A. Dobrescu and L. J. Hall, Phys. Rev. D 62, 096006 (2000).

[85] B. A. Dobrescu and E. Poppitz, Phys. Rev. Lett. 87, 031801 (2001).

[86] T. Appelquist, B. A. Dobrescu, E. Ponton and H. U. Yee, Phys. Rev. Lett. 87, 181802 (2001).

[87] N. Maru, T. Nomura, J. Sato and M. Yamanaka, arXiv:0904.1909 [hep-ph].

79



[88] J. F. Gunion and H. E. Haber, Nucl. Phys. B 278, 449 (1986).

[89] F. J. Petriello, JHEP 0205, 003 (2002); S. K. Rai, Int. J. Mod. Phys. A 23, 823 (2008).

[90] T. Han, H. E. Logan, B. McElrath and L. T. Wang, Phys. Lett. B 563 (2003) 191 [Erratum-ibid.
B 603 (2004) 257]; C. Dib, R. Rosenfeld and A. Zerwekh, arXiv:hep-ph/0302068. C. R. Chen,
K. Tobe and C. P. Yuan, Phys. Lett. B 640, 263 (2006).

[91] A. Falkowski, Phys. Rev. D 77, 055018 (2008); N. Maru and N. Okada, Phys. Rev. D 77, 055010
(2008); N. Maru, Mod. Phys. Lett. A 23, 2737 (2008).

[92] A. Djouadi and G. Moreau, Phys. Lett. B 660, 67 (2008).

[93] H. M. Georgi, S. L. Glashow, M. E. Machacek and D. V. Nanopoulos, Phys. Rev. Lett. 40, 692
(1978); T. G. Rizzo, Phys. Rev. D 22, 178 (1980) [Addendum-ibid. D 22, 1824 (1980)].

[94] N. Maru, T. Nomura, J. Sato and M. Yamanaka, work in progress.

80


