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Abstract. In this paper we relate the lax modality O to Intuitionistic
Propositional Logic (IPL) and give a complete characterisation of inhab-
itation in Computational Type Theory (CTT) as a logic of constraint
contexts. This solves a problem open since the 1940’s, when Curry was
the first to suggest a formal syntactic interpretation of O in terms of
contexts.

1 Introduction

Recently, modal extensions to type theory have received a lot of attention as
a natural enrichment suggested by a variety of typing problems that occur in
programming and encodings of logic in type-theoretical frameworks.

Modalities may be used for enriching intuitionistic type theories, which tra-
ditionally focus on pure function and data, so as to include also various forms
of reactive program features. In type theories for functional programming, for
instance, modalities are added to accommodate non-functional (“impure”) se-
mantic features such as non-termination, side-effects or different operational
modes [21, 20]. In applications to strictness analysis [3] and program optimi-
sation [12, 6] modalities have been used to integrate static and dynamic types,
while in other applications they provide a rigorous interface between inductive
and non-inductive data-types, for instance in type systems to internalise higher-
order abstract syntax [8, 7]. In strong functional programming [19] modalities
occur (implicitly) as least or greatest fixpoint operators constructing data and
codata types. Modalities have also proved useful in studying the relationship
between second order encodings of logic in type theory [1].

In this paper we take a fresh look at one of the oldest modal extensions of type
theory which arose with Moggi’s influential work on computational monads [18].
This system, which we call Computational Type Theory (CTT), is an extension
of simple type theory that features a single modality O satisfying the axioms

OI :¢pDOp
OM : OOy D Op
OS : (Op AOY) D O(p A1)

* This work is supported by EPSRC grants GR/L86180 and GR/M99637, by the EU
Types Working Group IST-EU-29001 and by the British Council.

M. Fairtlough, M. Mendler: On the Logical Content of Computational Type Theory: A Solution to Curry's Problem.
In P. Callaghan, Z. Luo, J. McKinna (eds.), Types for Proofs and Programs, Springer 2002 (LNCS 2277), pp. 63-78.



PRELIMINARY VERSION of a paper under copyright with Springer Verlag

together with the rule of Modus Ponens as well as the Extensionality Rule Eaxt:
FeDy =FOp D Oy.

CTT can be given an alternative formulation as an axiomatic extension of IPL
by OI+OL : (¢ D O¢) D (Op D O), which is extensionally equivalent to CTT
in the sense that CTT F ¢ iff IPC 4+ OI + OL F ¢. We prefer our presentation
of CTT because it fits better with other algebraic and categorical treatments of
the modality O. This point is taken up in the concluding remarks to this paper.
The logic of inhabitation of CTT is also known as Propositional Lax Logic (PLL)
[9, 10] or Computational Logic [2]. Our analysis illuminates the characteristic role
and the duality between two particular computational monads: the state readers
monad Op = K D ¢ and the exceptions monad Op = ¢ V L. Specifically, we
define a notion of standard context as a context C[-] where C[p] has the form
Nicr Ki D (¢ V L;) with K; and L; arbitrary formulas of IPL. We then show
that the set S of standard contexts forms a Boolean algebra. Each such context
provides a sound interpretation of CTT under the correspondence ¢ — ¢,
where ¢ is the formula ¢ with every subformula O replaced! by C[¢)]. The
contexts K D - and - V L have a simple computational interpretation in type
theory: K D ¢ represents the state reader lifting of type ¢. Terms of K D ¢
may be thought of as elements of type ¢ which depend on an additional state
variable of type K which can be read from but not written to. The weakening
@ V L corresponds to an exception lifting of type . Terms of type ¢ V L either
denote proper elements of type ¢ or raise an exception of type L.

Our main theorem is that standard contexts are sound and complete for CTT,
that is, CTT I ¢ iff for any standard context C, IPL  ¢“. We go on to show
that no finite set of standard contexts is complete for CTT. These results answer
a question raised by Curry, as we shall shortly show.

Our paper concentrates on the logic of inhabitation of CTT, namely PLL.
Of course, type theory is not simply concerned with whether or not types are
inhabited. For any concrete interpretation of O in CTT, there must be A-terms
corresponding to the axioms and rules. Before proceeding further, we therefore
present a set of such terms for every standard context C'. For the “state readers
plus exceptions” interpretation Cp] = K D (¢ V L) we have (¢ D Op)® = A D
(K D (AV L)) with A= ¢, and this type is inhabited by C; =4 Aa. \k. 11 (a).
Next we have (OO¢ D Op)¢ = (K D (K D (AVL))VL)>D(K>(AVL)),
and this type is inhabited inter alia by

casee k of
Cyv =dr Ae. Mk.case ¢ k of [ui(e) = | [t1(a) = ti(a), , 12(l2) = 2(l2)] -
Lz(ll) — L2(l1)]

Now let B be ¢¢. For the axiom OS, ((Op A Op) D O(p A ))¢ is the type
(KD>AVL)ANK D(AVL)) DK D ((AAB)V L) which is inhabited inter

! Note that all occurrences of O must be replaced by the same constraint context. It
would not be sound to permit independent expansion of different O occurrences by
different contexts. Consider the trivial theorem O¢ D O¢. Replacing the first Op
by K D ¢ and the second by ¢ V L does not give a theorem of IPL.
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alia by

case cy k of
Cs =df A(Cl,CQ). Ak.case ¢; k of [Ll (a) — ([Ll (b) — L1 (a, b),) , L2 (12) — L2 (12)] .
2 (ll) — Lg(ll)]

Finally, if f: A D B then
Crn(f) =ar Ae- Mk.case c k of [t1(a) = vi(f a), ta(l) — 12(1)]

inhabits (OA D OB)“ = (K D (AVL)) D (K D (BVL)). In fact, as PLL has the
deduction property, the term \f.Cgy(f) inhabits (A D B) D (OA D OB))“.
Suppose we have a suitable set of A-terms for C; and C5. We now wish to find
A-terms for the conjunction of constraints Cy M Cy, defined by (Cy M C2)[p] =
Ci[p] A Cs[p]. Suppose therefore that for j = 1,2 and f : A D B we have terms
Cj :AD Cj [A] R
Cium = GC5[A]l 5 C5[4],
Cjs: Cj[A]AC4[B] D Cj[AN B,
CjEnt(f) : Cj[A] D C4[B] .
Then we may define the following A-terms
(Cr N Cy)r =gr Aa.(Cir(a), Car(a)),
(C1 M Co)ar =qr Ae, €2).(Ciam(Cir(mi) 1), Conr(Car(m2) c2)),
(C1 M Cs)s =4 A(c11, €21), (€12, 22)).(Cis(e1n, c12), (Cas(ca1, €22))),
(C1 N Co) et (f) =ar Aer, €2)-(Craa(f) e1, Comg(f) c2) s

and assign types to them as follows:

(C1NCy)r: AD (CrNCL)[A] = AD CL[A] A Co[A],
(C1 M Co)ar = (C1 1 CR)?[A] D (Cy 1 CR)[A],
(C1NCy)s: (CLMCy)[AlN(CL M Cy)[B] D (CL N Cy)[ANB],
(Cy N CY)Eee(f) : (C1 M Cy)[A] D (Cy N Co)[B] .

In the above we assume the following syntax for typed A-terms:

I't-p:A TItFgq:B I'-r:AANB I'r:AAB
I't+(p,q): ANB I'tm(r): A I'tma(r): B

I'-r:AvB Ty:Arp:C I,z:Bkgqg:C
I'tcaserof [11(y) = p, t2(2) = q]: C

I'kp:A I'+q:B
I'u(p):AVB I't12(q): AV B
I'z:AF:B I'tp:ADB TI'hkgq:A

I'Xz.p:ADB I'kpq:B

The interpretation of the results of this paper with respect to these A-terms is
left as future work.
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2 Curry’s Problem

“

In [16, 17, 9] we proposed to read O¢ as a weakened notion of validity, viz. “p
up to constraints.” This constraint interpretation is related to an idea originally
suggested by Curry in his 1948 Notre Dame Lectures on a Theory of Formal
Deducibility reprinted as [5]. Indeed, Curry was probably the first to study the
constructive modality O (see also [4]) and to suggest a formal interpretation
inside IPL in terms of constraints and hidden assumptions.

Curry’s proposal was to take Oy as the statement “in some outer (stronger)
theory, ¢ holds.” As examples of such nested systems of reasoning (with two
levels) he suggested Mathematics as the inner and Physics as the outer system,
or Physics as the inner system and Biology as the outer. In both examples
the outer system is more encompassing than the inner system where reasoning
follows a more rigid notion of truth and deduction. The modality O, which Curry
conceived of as a modality of possibility, is a way of reflecting the relaxed, outer,
notion of truth within the inner system.

Assuming that the outer theory can be axiomatised by some, possibly very
complex, formula K inside the inner system the formal semantics of O would
come down to

Or = “p under the assumption K” = K D .

It is evident that this interpretation within IPL provably satisfies the axioms
of O, hence provides a sound semantics of PLL. In fact, O is a particular
constraint interpretation in the sense of [17], with fixed implicational constraint
K. However, Curry’s guess [4, § 5,p.261] that the interpretation Ox¢ generates
the theory PLL is unjustified: Ox¢ validates (Oxyp D Ogv) D Ox(¢ D )
which is not a theorem of PLL (see [9]).

So, is Curry’s idea ill-conceived? Let us follow the constraint paradigm a
bit further. Surely, implicational contexts are not the only way to weaken a
proposition by constraints. Another, dual, way for doing this are the disjunctive
constraint contexts OFp = ¢ V L. Again, it is not difficult to show that this
interpretation provably satisfies the axioms of O. The contexts K D - and -V L are
dual in the following semantical sense: Let M (¢)), for proposition ¢ and Kripke
model M, denote the set of worlds of M where ¢ is true. Then M E K D ¢
ifft M(K) C M(yp), while M = ¢V L iff M(L) C M(p), where M (L) is the
complement of M (L). Intuitively speaking, the difference is that the weakening
of ¢ by K D ¢ is obtained by “switching ¢ on” only in those worlds where the
constraint K is true, while in ¢ V L the weakening is obtained by switching ¢
on where L is false.

Let us call any syntactic context C[-] for which the axioms and rule for O
are provable in IPL a constraint context or simply a constraint. Let the set of
constraint contexts be C. Now if O is to be the modality of truth under con-
straints then there should be a natural collection of constraints that completely
characterise PLL. A suitable refinement of the original problem posed by Curry,
then, is this:
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Does there exist a class S of constraint contexts
such that PLLF ¢ iff VO € S.IPL - ¢ ?

To see that this question is non-trivial we first observe that neither one
of the simple constraints K D - or - V L is sufficient as a semantics for PLL.
We already saw that Curry’s implicational contexts K DO - validate the scheme
(Op D OY) D O(p D @), which is not a theorem of PLL. The disjunctive
contexts - V L on the other hand give rise to the theorem O(¢ V ¢/) D O¢p V O,
which is not part of PLL either (see [9]). Similarly, it is not enough to take
for S the collection of implicational and disjunctive constraints, since then the
disjunction

Olp V1Y) DOV Oy V (Op D OY) DO(p DY)

would be validated. For whatever context we choose, O[] = K D - or O[] =-VL,
one of the two disjuncts would be provable, and thus the disjunction itself. Yet
the disjunction is not a theorem of PLL since neither disjunct is and PLL satisfies
the disjunction property (see [9]).

3 An Algebra of Constraint Contexts

The solution lies in considering combi-
nations of implicational and disjunctive
contexts. For instance, we can combine
both in the contexts

[KaL)SOde K> (QDVL)a

called basic constraints, which also pro-
vide a sound interpretation of O. The
interval notation [K, L) is suggested by
the fact that the constraint weakening
K D (¢ V L) switches ¢ on in the “in-
terval” of worlds between K (inclusive)
and L (exclusive) as illustrated in Fig. 1.
The shaded area, indicating this interval,
measures the extent to which ¢ needs to
be true in the model to validate [K, L) .
It is not difficult to see that basic constraints by themselves are still not quite
enough to characterise PLL. They are a model of O(O(¢ V ¥) D (Op V O)),
which is not a theorem of PLL. However, so it turns out, finite conjunctions of
basic constraints do the job. Specifically, if C; and C> are constraints, then

Fig. 1. Interval Constraint [K, L)

(Ol M CQ)[ZE] =df Cl [ZE] A CQ [ZE]

is a constraint, too. A finite conjunction of basic constraints ﬂ?;ol [K;,L;) is
called a standard constraint. We refer to n as the depth of the constraint. It
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will be expedient to include the degenerate case n = 0, and put ﬂ?;ol Ci =qf
[false, false). Tt will turn out that the collection of standard constraints of arbi-
trary depth, henceforth called S, is a suitable class of contexts to characterise
PLL. But before we go into the details of the proof it is worthwhile to study
some of the algebraic properties of S.

We take constraints up to equivalence, i.e. consider two constraints identical if
they have the same action on all propositions. Formally, Cy = Cy iff Va. Cy[z] =
Cs[x]. We shall now show that S forms an infinite Boolean algebra. To stress
the algebraic standpoint let us write z < y to indicate that z D y is a theorem
of IPL, while for constraints we take C' < D to abbreviate the statement that
Clz] < DIz] for all propositions z. Since S is a Boolean algebra one could equally
well adopt a dual view swapping < with > and M with L.

We begin by mentioning a few obvious facts about the algebra S. The bottom
element is the constraint L =g [true, false), i.e. the identity modality acting as
L[z] = true D (x V false) = x. The top element is T =4 [false, false), i.e. the
modality T[z] = false D (zV false) = true that forces everything true. As defined
above T is the (unique) standard constraint of depth 0. Note that T = [K, K) for
arbitrary propositions K. Top and bottom elements satisfy COT =C =TndC
and CMNL =1 =1nMnC. Since N is essentially conjunction A it is commutative,
associative, idempotent, and satisfies C < D iff C 1 D = C. Thus it is the real
meet of the algebra.

Generally, a formula L may be identified with the disjunctive constraint
L =gy [true, L) so that L[z] = true D (zV L) = zV L. Its complement is the dual
implicational constraint L =4 [L, false), so that L[z] = L D (zV false) = L D x.
We call these (positive and negative) atomic constraints. With this lifting of
formulas to constraints being understood, we have L = false and T = true. One
also easily verifies that 1 = #rue, T = false, and LM L = L. Indeed as we will
see, constraints L and their complements L are the generators of S.

The join Cy U C5 in S is given by the following definition.

Definition 1. Let O = ﬂ;’;gl[Kli,Lu) and Cy = ﬂ?;ol[ng,ng) be standard
constraints of depths m and n, respectively. Then, Cy U Cs is the standard con-

straint |_|i<m7j<n[K1i A ng, Lli \% L2j).

Definition 1 gives an explicit representation of C; LI Cs. For basic constraints
we get [K1, L1)U[Ka, Ly) = [Ki AKs, L1V Ly), in particular K UL = [K, false) U
[true, L) = [K,L). In other words, basic constraints are conjunctions of atomic
constraints. If atomic constraints are the literals of our algebra then basic con-
straints are the minterms. Generally, we have

KU UK, UL U---UL,=[KiA--ANKy,,L1 V---V Ly,).

Next, let us consider the algebraic properties of LI. From the definition of LI we
easily get CUL =C = LUC and CUT =T = TUC as well as the associativity
and commutativity of L. Idempotency C' U C' = C and the inequations C; <
Cy Uy and Cs < C} Uy require a little more work but are straightforward.
We show C; < Cp U Cs. Suppose as before that C; = ﬂ?;ol[Kli,Lu) and

M. Fairtlough, M. Mendler: On the Logical Content of Computational Type Theory: A Solution to Curry's Problem.
In P. Callaghan, Z. Luo, J. McKinna (eds.), Types for Proofs and Programs, Springer 2002 (LNCS 2277), pp. 63-78.



PRELIMINARY VERSION of a paper under copyright with Springer Verlag

Cy = /= [K2j, L2;). Note that if K’ > K and L D L' then [K, L) < [K', L').
It follows that for a given 1< m, [KliaLli) S [Klz A KQj,Lh' \Y LQ]') for every
j <n and thus [K1;, Li;) < [T [K1i A Kzj, Ly; V Lyj). Hence

m—1 m—1 [n-1
Cr=[]1Ki, L) < [ ] | [ KA Ky, Lis V Lyy) | = CLuCh
i=0 =0 \j=0

Also Definition 1 immediately implies the dual distributivity law C U (DN E) =
(CUD)N(CUE). From this the distributivity law CM1(DUE) = (CND)U(CNE)
and the characterisation of inequality C' < D iff CUD = D follow. All this shows
that S is a distributive lattice.

What remains is to define complements. For atoms I we obtained comple-
mentation as L = [L, false). In view of Definition 1 this suffices to define com-
plements for arbitrary standard constraints “by duality.” More precisely, given

a standard constraint C' = [],.;[Kj, L;) we define its complement as

C=y [ 1IN Las \ Eb).

ACIacA  bel\A

This definition is simply an application of DeMorgan’s rule: C' = [Nicr[Ki, Li) =

LI; [, L) = L, Ki UL = [],(K 11 L) = HAQI[/\aeA La, VbeI\A Ky), where
the last equation is by virtue of the dual distributivity law and Definition 1. We
use the convention that empty disjunctions are false and empty conjunctions
true. Using this convention one verifies [K, false) = [true, K) and [true,L) =
[L, false), which confirms that the constraints K D - and K'V- are indeed Boolean
complements. It is a routine matter to check that C' and C' are complements for
arbitrary C.

We can finally state the main theorem of this section, whose proof is obvious
from the discussions above.

Theorem 2. The collection S of standard constraints is a Boolean algebra gen-
erated by formulas as atomic constraints.

In the remainder of this paper we show that S provides an adequate interpre-
tation of PLL, while at the same time no finite subset of S is sufficient. The proof
depends on a model-theoretic characterisation of PLL to be discussed next.

4 Kripke Model-Theory for PLL

Our model-theory is built on Kripke constraint models introduced in [9]. The
main definitions and the completeness results are as follows:

Definition 3 (Kripke Constraint Models). A (Kripke) constraint model for
PLL is an intuitionistic modal model (W,C;,C,,,V, F), in which C; and C,, are
partial orderings, Ty, is a subrelation of C;, V is a valuation, i.e. a mapping
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assigning a set of propositional variables to each w € W, and F C W. V and
F' are hereditary in the sense that V' is monotone in C; and F is upper closed
under C;, in other words, w € F and w C; v imply v € F'.

The interpretation of w C,, v put forward in [9] is that v is a constraining
of w, or v is reachable from w up to a constraint. Elements of F are fallible
worlds and if w C,, v and v € F, then intuitively the constraint leading to v
is inconsistent with world w. Using the “creative mathematician” interpretation
of w C; v as a construction step, the difference between C; and C,, should
be thought of as relating to some intensional feature of the world, such as the
resources (time spent, energy dissipated, waste produced, etc.) used up in the
constructions made. A modal step w C,;, v then amounts to the stronger state-
ment that v may be constructed from w up to bounded resources, whereas in a
step w C; v no such bound can be guaranteed.

Definition 4 (Validity). Let M = (W,C,,,C;,V, F) be a constraint model.
Given a proposition ¢ and w € W, ¢ is valid at w in M, written M,w = ¢ iff

—  is a propositional constant o and o € V(w);

— s o1 Ay and both M,w = p1 and M,w = @2;

- is ®1 V<P2 and M,U} ': @1 or M)w ': ®25

—  is true; or @ is false and w € F;

— p is w1 D w2 and for all v € W such that w C; v, M,v = ¢1 implies
M,U ': P25

— @ is of form O and for all v € W such that w C; v, there exists u € W
such that v C,,, u and M,u = .

A proposition ¢ is valid in M, written M |= @, if for all w € W, ¢ is valid
at w in M; ¢ is valid, written |= ¢, if ¢ is valid in any constraint model M.

Constraint models are not the only possible adequate Kripke semantics for
PLL. A quite different kind of semantics was given by Goldblatt [11], in which
only the intuitionistic part D is represented by a frame, while the modality
is realized by some extra topological information on the intuitionistic frame.
Another kind of topological model has been introduced in [13]. To obtain the
results of this paper, however, essential use of the structure of Kripke constraint
models will be made, and of the following completeness theorem.

Theorem 5 ([9]). Let a constraint model M = (W, C;,C,,,, V, F) be called finite
if W is finite, and V(w) is finite for all w € W. Then, PLL & ¢ iff for all finite
constraint models M, M |= .

5 Adequacy of Standard Constraints

We can now state and prove our version of Curry’s conjecture. We show that a
proposition is provable in PLL iff all its instantiations by standard constraints
are provable in IPL. This gives a precise sense in which, proof-theoretically, a lax
proposition is properly stronger than its O-stripped version.
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Theorem 6. Let ¢ be a lax proposition. Then, PLL = o iff for all standard
constraints C € S, IPL F ¢©.

The soundness direction of the theorem is straightforward. For every standard
constraint context C[z] the axioms and rules of PLL are derivable in IPL, as
shown by the A-terms given in the introduction. Hence, PLL F ¢ implies IPL
. The challenge lies in the completeness direction. In view of Theorem 5 it
suffices to find for every finite model M a standard constraint C' such that for all
0, M |= @ iff M |= ¢©. In other words, we are done if we can expand the meaning
of O relative to a fixed finite model in terms of a single standard constraint. This
is indeed possible, as stated in Lemma 7 below. The proof makes essential use
of the particular structure of constraint models.

To state the lemma we need three constructions for finite constraint models
M = (W,C;,C,, V, F): First, we call a world w € W stable if it has no proper
modal successors, i.e. for allv € W, w C,,, v implies v = w. We denote by Stab C
W the set of stable worlds of M. As one shows without difficulty, the semantics
of p and Oy coincides on stable worlds w € Stab, i.e. M,w |= ¢ iff M, w | O¢p.
Second, for any w € W let iSucc(w) € W be the (finite) set of immediate
successors of w, in other words, iSucc(w) =g {v € W | (w T; v) & (Vu.w C;
w C; v = u = v)}. Third, for any finite set of propositional variables U, let
M = (W, 5, G, V*, F) be a semantic completion of M avoiding U, where V*
is determined by a choice of new propositional variables { a,, | w € W} such
that M*,v |= ay, iff w C; v. We construct M}, to ensure that each new variable
o, does not occur in the range of V' or in U and we drop the subscript U from M¢;
when it is clear from the context. The model M* generates the same theory as
M with respect to propositions whose variables are disjoint from {a,, | w € W}
except that it also has every one of its worlds w explicitly represented by a
propositional variable ay,.

Lemma 7. Let M be a finite constraint model and the sets Stab and iSucc
defined as above. Then, if ¢ is any formula whatsoever, we have M* | Op =
Awe stap [ Kws Lw) @, where Ky =45 oy and Ly, =gf \/w,eisucc(w) - If iSuce(w)

B then \ e isuce(w) Cw = false.
Proof. Let M be a finite constraint model and w € W an arbitrary world. We
show that

M*,w = Op & Yu € Stab. M*,w = ay D (pV \/ Q).
u' €iSucc(u)

We prove direction (=) first, and assume M™*,w |= Ogp. Let u € Stab and v € W
such that w C; v and M*,v E «, be given. The latter, M*,v | a,, means
u C; v. There are two possibilities for this: either (i) u = v, or (i) there exists
an immediate successor u' € iSucc(u) of u such that u' C; v. In case (i) we
have M*,v &= a,s, which implies M*, v = ¢ V \/U,EZ.SMC(U) vy as desired. In
the first case, (i), we get v = u € Stab and also, by hereditariness of truth,
M*,v = Op. But since v € Stab, this implies M*,v = ¢, which in turn entails
M*,v = oV Veisuce(u) @w- This completes direction (=).
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Next, we show the other direction (<), where we assume that for all v € Stab,

M*wl=oa, D(pV \/ Q).
u €iSuce(u)

We must demonstrate M*, w = O, i.e. that for all u, w C; u, there exists some
v, u C,, v, such that M* v = ¢. To this end, let such u be given. Because of
the finiteness of the model there must exists a world v, u C,,, v and v € Stab.
Otherwise, by definition of Stab and the properties of C,, we could construct an
infinite sequence u = ug, U1, us,... of worlds with u; # u;41 and u; Sy Uipr-
Since w C; v, M*,v |E ay, and v € Stab, our assumption gives us M*,v |= p V
Vv’eiSucc(v) a,,. However, since v’ [Z; v for every proper (immediate) successor v’
of v, M*,v £ Vv’eiSucc(v) a, which implies M*,v |= ¢ as desired. This, finally,
proves M* w = Op. m|

We are now ready to prove the completeness direction of Theorem 6.

Proof. (Theorem 6) Let ¢ be given such that PLL I/ ¢. Then, by Theorem 5
there exists a finite constraint model M such that M [~ . But then we must
have M* [~ ¢ for any semantic completion M* of M that avoids the variables
of ¢, since M* will coincide with M on all propositional variables contained
in . From Lemma 7 we get M* = Oy = A cg0p[Kw, Lw) ¢ for arbitrary v,
where K, = o, and L, = \/inSucc(w) ay. Thus, because of the extensionality of
PLL,—namely that whenever M' = ¢ = ¢ then M’ |= C[¢)] = C[yp] for arbitrary
contexts C[-]—we have M* £ ¢' where ¢’ is obtained from ¢ by replacing each
occurrence of a subproposition O of ¢ by A, csiap[Hw, Lw) 1. Thus, we have
found a single standard context C' =g [,,c stap[Kw, Lw) such that & . |

To illustrate the constructions involved in the proof let us look at an example.
Consider the propositional scheme

6 =4y O((O8 > B)V (OB D (B V Ofalse))).

If 0 is stripped of all O it turns into a trivial theorem of IPL. However, because of
the way the modalities are placed it is not a theorem of PLL. To explain this in
the light of Theorem 6 we expect to find a context C[-] such that the constraint
expansion of 6,

6 = CI((CI] > B) V (C[B] > (B V Clfalse))))]

is not provable in IPL. Observe that none of the simple contexts C[z] = K D z,
Clz] =2V L,or Clz] = K Dz V L will work, since for all of them #° in fact is
a theorem of IPL. This means we need a proper meet of contexts to falsify 6.
As the proof of Theorem 6 shows such a context can be obtained systematically
from a counter model for 8. The simplest constraint model that refutes 6 is
the three-world model M = ({0,1,2},C;,C,,, V,0) in which the accessibilities
are such that n C; m iff n < m and C,,= {(0,0),(1,1),(2,2),(1,2)}, and the
valuation is V/(0) = V(1) = 0, V(2) = {8}. The following picture illustrates the
situation and indicates the validity of subpropositions of 8 showing that indeed
0 }~ @ in this model:
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0 C; 1 Co 2
M - T-____ - .
¥~ (OBDp)V = OB =B
OB D (BV Ofalse) £
= O((OBDB)V = Ofalse

OB D (B V Ofalse)) = OB D B
= OB D (B V Ofalse)

Now we consider the semantical completion M* of M, which is just M but with
additional propositional variables aq, a1, s that are validated at worlds 0, 1,2
respectively. So, V*(0) = {ao}, V*(1) = {aa }, V*(2) = {2, 5}. In pictures,

0 C, 1 o 2
M* - ——-__Tt____ - .
= ap E ao = oo
Ear =ar
E a2
=

We will use the new propositional variables ay, a1, a2, which represent the worlds
0,1, 2, respectively, to expand the meaning of O entirely in terms of propositions,
following Lemma 7. Note that in M™*, ayg = true since ay is valid in every world
of the model. The stable worlds in M* are Stab = {0,2} since these have no
proper modal successors. Their immediate successor sets are iSucc(0) = {1} and
iSucc(2) = (). Therefore, by Lemma 7 the following equivalence must hold in
M, for arbitrary ¢:

Op = /\ [, \/ )

w€ Stab w' €iSuce(w)

=lao, \  aw)e Ao, \/  aw)e

w' €iSuce(0) w' EwSuce(2)
o) A faz, \/ aw)e
w' el
[true,a1) @ A [az, false) ¢
= ([true, a1) N [as, false)) .

Because of this equivalence and the fact that M* = @ it must be the case that
M* £ ¢ where C is the constraint context C' =g [true,a;) N [as, false). The
proposition # is an example of a propositional scheme that requires a proper
composition of two constraints, viz. an implicational ay D - and a disjunctive
one -V aq, in order to be outed as a non-theorem of PLL. In general, so it
turns out, the discriminative power of all standard contexts is needed in order
to characterise PLL fully. We show this in the following section.

6 Finite Constraint Collections are Inadequate

Neither the implicational nor the disjunctive contexts alone are sufficient to char-
acterise PLL. The implicational constraints O = [«, false) validate the scheme
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(Op D OY) D O(e D ¥) and O(Op D ), while the disjunctive ones O =
[true, §) validate O(p V 1)) D (Op V OY) and Op D (p V Ofalse). Tt is easy to
see that basic constraints O = [«, ) satisfy the scheme O(Op D ¢ V Ofalse).
The general pattern that emerges is as follows. Let p1, pa, . .. be a list of distinct
propositional variables. We define a sequence of propositional schemes y,, such
that ., has exactly the p;, i <m as its (free) variables:

Xo =d4f Ofalse
Xm+1 =df O(OPma1 D (Pmt1 V Xm))-

Then x,, is a valid scheme for all standard constraints of depth at most m.

Lemma 8. Let C be a standard constraint of depth n. Then, IPL - x$ for all
m2>n.

Proof. We prove this by induction on the depth n of the constraint. For n = 0
the constraint is C' = [false, false). Since for all m > 0, x, is of the form Of we
find x&, = false D 0V false which is equivalent to true. Now let C' = [7, i, %s)
be a constraint of depth n + 1. Then, m >n + 1> 1 and

X = /\ ¢ 2 (OPm D (Pm V Xim—1)) V 05).
=0

So, we have to show that for all i = 0,...,n, IPL derives p; - (Opp, D (pm V
Xm—1))¢ V 1;. We will actually show that we can derive ; F (Opy D (pm V
Xm—1))¢, or, which amounts to the same thing, that the sequents

n
Vi, /\ P D (pm V’(ﬁj) F pm VXgmfl
=0

are derivable in IPL. Since the assumption includes y; and the implication ¢; D
(pm V1;) it is enough to show that ¢;, pm Vb F pm VXS _;, i-e. the two sequents

GisPm F Pm VXS4
isthi Fpm VXS,

The first obviously is derivable immediately. For the second we proceed as
follows: Let C; = [1,4[wj.¢;) be the reduced constraint of depth n where
we have dropped the interval [p;,1);). Then it is not difficult to see that we
have @i, F xS_; = X%’_l. This follows essentially from the equivalence
@i, i F @i D (0 V1h;) = true. Thus, to obtain the sequent ¢;,v; F pm V X5 _;
it suffices to prove X%’_l. But this follows from the induction hypothesis since
C is a strictly smaller constraint of depth n and m —1 > n. O

Lemma 8 says that standard constraints of depth up to and including m
satisfy the axiom x,,. However, these “characteristic” schemes are not theorems
of PLL as we shall now see.
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Lemma 9. For every m > 0 there is a constraint model M such that M W xp,.

Proof. For m > 0 consider the linear constraint model M, =q (W, C;,Cp,, V, 0),
where W ={0,1,...,2m}, C; = <,

Cm={(2k+1,2k+2) | k=0,...m—1}U{(i,i) | i=0,...,2m},

and for all k¥ < m, V(2k) = V(2k + 1) = {pm—t+1,Pm—k+2,--+,Pm}- S0,

e.g. V(0) =V(1)={}and V(2) =V (3) = {pm}, V(4) = V(5) = {pm-1,Pm},
ete. In pictures the model looks like this:

0 1 2 3 4 2m—42m—-32m—22m—12m
- >0 —>0-->0—>0 ... - - >0 —>0--->0—>0
)
b1

p2 P2 P2
D3 ps3 ps3 D3 D3

Pm-1 - Pm—-1 Pm—-1 Pm—-1 Pm—-1 Pm-1
Pm Pm Pm t Pm Pm Pm Pm Pm

We claim that M, ¥ X.m. We show this by induction on n. For m = 0 the model
My is the trivial non-fallible one-world model which obviously refutes xo =
Ofalse. Now consider M,,+1. Recall that X1 = O(Opmt1 DO (Pmt1 V Xm))-
We first observe that the suffix model M,,(2) of M,, that starts with world 2 is
precisely the same as M,,_1, if propositional variable p,,41 is ignored, whence
by induction hypothesis 2 ¥ x,,, so in particular 1 [~ x,,. Also, 1 & pmi1,
whence 1 £ pmt1 V Xm. On the other hand, 2 = p,,,4+1 and since 1 C,,, 2 we
find 1 = Oppt1. This shows 0 & Opmt1 D (Pm+t1 V Xm). Finally, since 0 C,,, k
implies 0 = k, this implies 0 £ O(Opm41 D (Pm+1 V Xm)) as desired. |

The desired theorem is a direct consequence of Lemmas 8 and 9:
Corollary 10. No finite subset of S is complete for PLL.

Proof. Let D C S be a finite subset of standard constraints. Then, there exists a
number m > 0 such that all D € ) are of depth at most m. By Lemma 8 x2 is a
theorem of IPL for each D € . On the other hand by Lemma 9 the proposition
Xm 18 not a theorem of PLL. O

This brings to a satisfactory conclusion the programme of this paper in that
we not, only showed that the infinite Boolean algebra S of standard constraints
provides a sound and complete interpretation of PLL, but also that no finite
subset of S would suffice.

7 Final remarks

This paper offers one solution to Curry’s programme of internally characterising
the modality O by provability in IPL. A parallel can be found in [15, 14] which
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give an abstract representation of nuclei—the algebraic counterparts of O—on a
complete Heyting algebra in terms of implicational and disjunctive nuclei. Let us
expand on this a bit. Let M* = (W,C;,C,,, V*, F) be a semantically complete
constraint model. We form the Alexandroff topology T M* = (W*,C,N,J) of
subsets of W upward closed under C; and containing F. That is, U € W iff
F C U and whenever u € U and u C; v then v € U. T M* is a complete Heyting
algebra (cHA). Each formula ¢ of IPL corresponds to an element M*(¢) =g {w |
M*,w = ¢} of W so that true corresponds to W, false corresponds to F, A
corresponds to Nand V to U. Also M*(p D ¢) = M*(p) = M*(y) whereU =V
is the interior of U UV, i.e. the largest upper closed subset of (W \ U)UV. The
algebraic counterpart to O is a nucleus on T M*, that is, a monotone operation
j on W+ satisfying U C j(U), j(j(U)) C j(U) and j(UNV) = j(U) N j(V).
Then C,, determines a specific nucleus jar+ given by jar«(U) =g {u € W |
Yo.u C;v = 3Ir.v C,, r&r € UUF}. Remarkably, it turns out that the nuclei
on an arbitrary cHA H themselves form a cHA N(H) = (N(H),<,A,—, V),
where N(H) is the set of nuclei on H and <, A are given pointwise and —,
\/ hardly ever pointwise. In [15] and [14] it is shown that every nucleus on a
cHA H can be expressed in the form \/,_;; o(K;) Ac(L;) where o( K) is the open
nucleus sending x to K — = and ¢(L) is the closed nucleus sending x to x V L.
If M* is finite, then two facts emerge. Firstly we may represent every element
U € W syntactically by ¢y =4 \/{a, | v minimal in U w.r.t. C;}. Secondly,
since T M* is also finite, N'(Y M*) is a finite Boolean algebra [15]. In this case,
we may also represent its join \/ syntactically as follows. By DeMorgan’s rules,

we have
A (\/ieA O(Ki)) v (vieI\A C(Li)> (1)
ACI

Aelhoee(Vonr)

where step (2) follows from the equivalences (K1 D ¢)V (K2 D @) = (K1 AK>) D
pand (¢ VL)V (pV L) = ¢V (L1 V Ly). It remains to find a syntactic
representation for joins of the form o(K) V ¢(L). But [15, Lem. 2.1] tells us that
o(K) V j = o(K) oj for any nucleus j and so we may define (o(K) V ¢(L)) ¢ to
be K D (¢ V L) =[K,L) . Since we can define o(K) as [K, false) and ¢(L) as
[true, L) it makes sense to take as basic constraints those of the form [K, L) as
we have done in this paper.

The constraint algebra S is not the only collection of constraints that might
be considered for PLL. In type theory other computational interpretations of O
have been proposed. For instance a generalisation of double negation Op = (p D
a) D a, used for typing continuations, yields a sound semantics, too. It can be
shown that the context a(a)(¢) = (¢ D @) D « in general cannot be represented
by a fixed standard constraint that does not depend on x. However, given a finite
constraint model M*, results of [15] show that any nucleus j in (7 M*) may
be represented as a meet of nuclei of the form A{a(z) | = stable} where x is
stable if j(z) = x. Letting Stab™ denote the set of elements U of W+ satisfying

\/ o(Ki) A (L)

i€l
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ju=(U) = U, this means that for finite M*, M* |= Op = A, g0+ (0 D V) D
¢y and so the class of constraints of the form A;_; a(K;) provides another sound
and complete interpretation of PLL. More work needs to be done to study the
inherent structure of the class of all constraint contexts C[z] expressible in IPL.
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