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4 CONTENTS

1. Terminology and notation
1.1. Lie group actions.
DEFINITION 1.1. An action of a Lie group G on a manifold M is a group homomorphism
G — Diff (M), g — A,
into the group of diffeomorphisms on M, such that the action map
GxM— M, (g,m)— Ag(m)
is smooth.

We will usually write g.m rather than Agz(m). With this notation, gi.(g2.m) = (g192).m
and e.m = m.

REMARKS 1.2. (a) One has similar definitions of group actions in other categories.
For instance, an action of a topological group G on a topological space X to be a
homomorphism G — Homeo(X) such that the action map G x X — X is continuous.
An action of a (discrete) group G on a set S is simply a homomorphism into the
permutation group of S.

(b) Some people call what we’ve just introduced a left-action, and define a right-action to
be an anti-homomorphism G — Diff(M). For such a right action g — B, one would
then write m.g := By(m); with this notation

(m.g1).92 = m.(9192)

Any right action can be turned into a left action by setting Ay, = By-1. In this course,
we will avoid working with right actions.

EXAMPLES 1.3. 1) An action of the (additive) Lie group G = R is the same thing as a
global flow, while an action of the Lie algebra G' = S! is sometimes called a periodic flow.

2) Let V be a finite-dimensional vector space. Then V (viewed as an Abelian group)
acts on itself by translation. Also the general linear group GL(V') acts on V' by its defining
representation. The actions fit together to an action of the affine linear group, the semi-direct
product

GL(V) x V, (g1,v1)(92,v2) = (9192, 1 + g1.v2).
(In fact, the formula for the semi-direct product is most easily remembered from this action.)
A group homomorphism G — GL(V) (i.e. representation) defines a linear action of G on V,
and more generally a group homomorphism G — GL(V) x V is called an affine action.

3) Any Lie group G acts on itself by multiplication from the left, Ly(a) = ga, multiplication
from the right Ry(a) = ag™!, and also by the adjoint (=conjugation) action

Ady(a) := LyRy(a) = gag™.

4) Given a G-action on M, and a submanifold N C M that is G-invariant, one obtains an
action on N by restriction. For example the rotation action on R" restricts to an action on
the unit sphere. Similarly, given a group homomorphism H — G one obtains an action of H
by composition with G Diff (M).

5) Suppose H C G is a closed subgroup, hence (by a theorem of Cartan) a Lie subgroup.
Let G/H by the space of right cosets {aH} with the quotient topology. By a well-known
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result from the theory of Lie groups, there is a unique smooth structure on G/H such that the
quotient map G — G/H is smooth. Moreover, the left G-action on G descends to an action
on G/H:

g.(aH) = (ga)H.
For a detailed proof, see e.g. Onishchik-Vinberg, [26, Theorem 3.1].

6) Lie group often arise as transformation groups preserving a certain structure. For in-
stance, the Myers-Steenrod theorem asserts that the group Diff (M, g) of isometries of a Rie-
mannian manifold is a Lie group, compact if M is compact. Similarly, if M is a complex
(or even an almost complex) manifold, the group of diffeomorphisms preserving the (almost)
complex structure is a Lie group, provided M is compact. (By contrast, the group of sym-
plectomorphisms of a symplectic manifold Diff(M,w) is of course infinite-dimensional!) The
general setting for this type of problem is explained in detail in Kobayashi’s book on trans-
formation groups. Let M be a manifold with a reduction of the structure group of T'M to
some subgroups H C GL(n,R), and let G C Diff (M) be the group of automorphisms for this
reduction. Call H elliptic if its Lie algebra does not contain a rank 1 matrix, and finite type if
the kth prolongation

bhe = {t: SMHR® - R?| for all x1,..., 25, t(-,21,...,21) € h C gl(n,R)}

vanishes for k sufficiently large. For elliptic H, G is always a Lie group, and for finite type H,
G is a Lie group provided M is compact.

7) The group of automorphisms Aut(G) of a Lie group G is itself a Lie group. It contains
the subgroup Int(G) of inner automorphism, i.e. automorphism of the form a — Ady(a). The
left-action of G on itself first together with the action of Aut(G) to an action of the semi-direct
product, Aut(G) x G, where the product is as follows:

(01,91)(02, 92) = (0102, g101(g2))-

1.2. Lie algebra actions. Let X(M) denote the Lie algebra of vector fields on M, with
bracket [X,Y] = X oY — Y o X where we view vector fields as derivations on the algebra
C°(M) of smooth functions.

DEFINITION 1.4. An action of a finite-dimensional Lie algebra g on M is a Lie algebra
homomorphism g — X(M), & — &y such that the action map

gx M —TM, (§m)— Eu(m)
is smooth.

On the right hand side of this definition, vector fields are viewed as sections of the tangent
bundle TM — M.

ExAMPLES 1.5. Any Lie algebra representation g — gl(V') may be viewed as a Lie algebra
action. If (M,g) is a Riemannian manifold, the Lie algebra X(M,g) = {X|Lx(g9) = 0} of
Killing vector fields is finite-dimensional (by Myers-Steenrod), and by definition acts on M.

If v: R — M is a smooth curve on M, we denote its tangent vector at v(0) by %|t:0'y(t).
THEOREM 1.6. Given an action of a Lie group G on a manifold M, one obtains an action

of the corresponding Lie algebra g, by setting

d
Em(m) = i =0 exp(—t§).m
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where exp : g — G is the exponential map for G. The vector field &y is called the generating
vector field corresponding to €.

PROOF. Let us first note that if G acts on manifolds My, M5, and if F' : My — M is a

G-equivariant map, i.e.
F(g.m)=g.F(m) Ym € M,

then the vector fields &y, , &, are F-related. since F' takes integral curves for ), to integral
curves for £ys,. Since Lie brackets of pairs of F-related vector fields are again F-related, it
follows that if F' is onto, and & — &y, is a Lie algebra homomorphism, then so is £ — &y, .

Consider the map

F:GxM—M, (a,m)—atm
This map is onto and has the equivariance property,
F(ag™',m) = F(a,g.m)

This reduces the problem to the special case of G acting on itself by the action g — R,4. This
action commutes with left-translations, i.e. each I : G — G is a G-equivariant map. Thus, it
generating vector fields &g are left-invariant. Since

E6(e) = T lnesp(~16).e = T logexp(—t6) ™ = T, explte) = &

we conclude &g = &F, the left-invariant vector field defined by ¢. But [¢F,nf] = [¢,7]* by
definition of the Lie bracket. O

EXAMPLE 1.7. The generating vector field for the left action of G on itself is —¢, and the
generating vector field for the adjoint action is £¢& — ¢%. The generating vector fields for the
action of an isometry group Iso(M, g) are the Killing vector fields X(M, g).

REMARK 1.8. Many people omit the minus sign in the definition of the generating vector
field &pr. But then £ — &y is not a Lie algebra homomorphism but an anti-homomorphism.
The minus sign is quite natural if we think of vector fields as derivations: If G acts on M,
we get an action on the algebra C*°(M) by (g.f)(x) = f(¢~'.z), i.e. a group homomorphism
G — Aut(C*°(M)). The generating vector fields is formally (ignoring that Aut(C*°(M)) is
infinite-dimensional) the induced map on Lie algebras.

Let us now consider the inverse problem: Try to integrate a given Lie algebra action to an
action of the corresponding group! We will need the following Lemma:

LEMMA 1.9. Let G be a connected Lie group, and U C G an open neighborhood of the group
unit e € G. Then every g € G can be written as a finite product g = g1 ---gn of elements
g € U.

PROOF. We may assume that g~! € U whenever g € U. For each N, let UN = {g1 - - - gn]| g; €
U}. We have to show Ux_, UN = G. Each UY is open, hence their union is open as well. If
g € G\UX—oUY, then gU € G\Un_o, U (for if gh € UX_o UYN with h € U we would have
g = (gh)h™! € UF_,UY.) This shows that G\ JY_, U is also open. Since G is connected,
it follows that the open and closed set J3_o U N is all of G. U

COROLLARY 1.10. An action of connected Lie group G on a manifold M is uniquely deter-
mined by its generating vector fields.
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THEOREM 1.11. Suppose & — Enr is a Lie algebra action of g on a manifold M. Then this
Lie algebra action integrates to an action of the simply connected Lie group G corresponding
to g, if and only if each &y is complete.

PRrROOF. Every G-action on M decomposes G x M into submanifolds £,, = {(g,9.m)|g €
G}. Note that each L£,, projects diffeomorphically onto G. The action may be recovered from
this foliation: Given (g, m) the leaf £, contains a unique point having g as its first component,
and then the second component is g.m.

The idea of proof, given a g-action, is to construct this foliation from an integrable distri-
bution. Consider the Lie algebra action on G' x M, taking & to (—&R, &) € X(G x M). The
subbundle of the tangent bundle spanned by the generating vector fields is a distribution of
rank dim GG, which is integrable by Frobenius’ theorem. Hence we obtain a foliation of G x M,
with leaves of dimension dim G.

Let L,, — G x M be the unique leaf containing the point (e, m). Projection to the first
factor induces a smooth map

T @ Lm — G,

with tangent map taking (—¢%,&yr) to —€%. Since the tangent map is an isomorphism, the
map L, — G is a local diffeomorphism (that is, every point in £,, has an open neighborhood
over which the map is a diffeomorphism onto its image). We claim that 7, is a diffeomorphism.
Since G is simply connected, it suffices to show that m,, is a covering map. Let Uy C g be a
star-shaped open neighborhood of 0 over which the exponential map is a diffeomorphism, and
U = exp(Uyp). Given (g,m’) € L, and & € Uy, the curve t — exp(—t{)g is an integral curve of
—¢€pR. Letting Ff be the flow of &)y, it follows that ¢ — (exp(—t&)g, Ff(m)) is an integral curve
of (=%, €&x), so it lies in the leaf £,,. This shows that there exists an open neighborhood
of (g,m’) mapping diffeomorphically onto the right translate Ug. This proves that m, is a
covering map, ans also that 7, is onto.
Using that m,, is a diffeomorphism, we can now define the action by

g.m := pra(m,}(9))

where pry denotes projection to the second factor. Concretely, the above argument shows that
if we write ¢ = [[¢; with g; = exp(&) then g.m = g1.(g92.---gn.m)---) where each g; acts
by its time one flow. This description also shows directly that A,(m) = g.m defines a group
action. O

1.3. Terminology.

DEFINITION 1.12. Let G — Diff(M) be a group action.

(a) For any m € M, the set G.m := {(g,m) g € G} is called the orbit of m. The subgroup
G = {g € G|g.m = m} is called the stabilizer of m.

(b) The action is free if all stabilizer groups G, are trivial.

(c¢) The action is locally free if all stabilizer groups G, are discrete.

(d) The action is effective if the kernel of the homomorphism G — Diff (M) defining the
action is trivial.

(e) The action is transitive if G.m = M for some (hence all) m € M.

The space M /G = {G.m|m € M} is called the orbit space for the given action.
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From the definition, it is clear that stabilizer subgroups are closed subgroups of GG, hence
Lie subgroups. For any g € GG, the stabilizers of a point m and of its translate g.m are related
by the adjoint action:

Ggm = Ady(Gr,).

Hence, each to each orbit @ = G.m there corresponds a conjugacy class of stabilizers. For
subgroups H, H' we will write H ~ H' if H is G-conjugate to H'. Clearly, this is an equivalence
relation. We denote by (H) the equivalence class of H. We define a partial ordering on
equivalence classes, by writing (H) < (K) if H is G-conjugate to a subgroup of K.

DEFINITION 1.13. For any subgroup H C G we define,
M" = {mecM|HcCG,}
My = {meM|H=G,}
M) = {m e M|(H) < (Gn)}
Muy = {me M|(H)=(Gn)}

The set M is the fized point set of H, and M gy set of points of orbit type (H).

Notice that the sets M(H),M(H) are both G-invariant. In fact they are the flow outs of
H )
MY, My:
My =G.My, MW =G.Mm*",

ExAMPLES 1.14. (a) The rotation action of S* C SO(3) on S2 has fixed point set M5’
consisting of the north and south poles. There are two orbit types: The trivial orbit
type H = e) and the orbit type of the fixed points, H = G.

(b) For the G-action on a homogeneous space G/H, there is only one orbit type equal to
H (since there is only one orbit). The action of Ng(H)/H, however, has a much more
interesting orbit type decomposition.

(c) Consider the action of SO(3) on itself by conjugation. Let g : SO(3) — [0, 7] be the
map that associates to each A € SO(3) the corresponding angle of rotation. Since each
rotation is determined up to conjugacy by its angle, we may view [0, 7| as the orbit
space for the conjugation action, with ¢ as the quotient map. There are three different
orbit type strata: The fixed point set MSO®) = ¢=1(0), the set M) = ¢=1((0, 7))
(where ST = SO(2) is the subgroup of rotations about the z-axis) and M(©?) = ¢=1(7)
consisting of rotations by 7. Notice that M(©?) is a submanifold diffeomorphic to
RP(2).

(d) Exercise: Study the orbit space decomposition for the conjugation action of the groups
0(2), SU(3), PU(3).

DEFINITION 1.15. Let g — X(M) be a Lie algebra action.

(a) For m € M, the subalgebra g,, = {£| & (m) = 0} is called the stabilizer algebra of m.

(b) The Lie algebra action is called free if all stabilizer algebras are trivial.

(c) The Lie algebra action is called effective if the kernel of the map g — X(M) is trivial.

(d) The Lie algebra action is called transitive if the map g — T,,M, £ — &y(m) is onto
for all m € M.
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PROPOSITION 1.16. Let G — Diff (M) be a Lie group action, with corresponding Lie algebra
action given by the generating vector fields £nr. Then the Lie algebra of G, is the stabilizer
algebra g, .

PROOF. Let € be an element of the Lie algebra of G,,. Thus exp(—t&).m = m for all t € R.
Taking the derivative at ¢ = 0, we see that {y/(m) = 0. Thus £ € g,,,, showing that the Lie
algebra of Gy, is contained in g,,. For the converse, one has to show that if £ € g,, then
exp(t€) € Gy, (where exp is the exponential map for G). But this follows since the action of
exp(—t§) is the flow of &ys, which fixes m since &yr(m) = 0. O

Note that the stabilizer algebras are slightly special: For a general subalgebra  C g, the
corresponding connected subgroup H C G need not be a closed subgroup.

PROPOSITION 1.17. The G-action is locally free if and only if the g-action is free. If the
G-action is transitive then so is the g-action. The converse holds if M is connected. If the
G-action is effective then so is the g-action.

PROOF. If the g-action is transitive, it easily follows that the G-orbits must be open. Since
M is connected, it must be a single G-orbit. All other statements are obvious. O

1.4. Proper actions.
DEFINITION 1.18. A G-action on a manifold M is called proper if the map
GxM—MxM, (gm)— (m,g.m)
is proper (pre-images of compact sets are compact).

For instance, the action of a group on itself by left or right multiplication is proper (because
the map G x M — M x M, (g.m) — (m, g.m) is a diffeomorphism in that case). Actions of
compact groups are always proper. Given a proper G-action, the induced action of a closed
subgroup is also proper.

The “irrational flow” on a 2-torus is a non-proper R-action.

LEMMA 1.19. The stabilizer groups G, for a proper group action are all compact.
PROOF. The pre-image of the point {m} x {m} € M x M is G,,, x {m}. O
Thus for example the conjugation action of G on itself is not proper unless G is compact.

ProposITION 1.20. The orbits O for a proper G-action on M are embedded, closed sub-
manifolds, with

T (0) = {&m(m)| € € g}

PROOF. We need to check the proposition near any given m € (. Consider the map
¢ : G — M taking g to g.m. This map is G-equivariant for the left-action of G on itself,
hence it has constant rank. Hence by the constant rank theorem its image is an immersed
submanifold: for each g € G there exists an open neighborhood U C G such that ¢(U) is an
embedded submanifold of M, with tangent space the image of the tangent map. In particular
this applies to g = e, where the image of the tangent map g — 71;, M is clearly spanned by the
generating vector fields. We claim that W N ¢(G) = WN¢(U) for W C M a sufficiently small
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open neighborhood of m. Since ¢(U) = ¢(Uh) for h € G,,, it is no loss of generality to assume
that U is invariant under right-translation by G,:

vG, =U.

Now if the claim was false, we could find a sequence of points gp.m € O, converging to m,
but with g ¢ U. The sequence (m,gr.m) € M x M is contained in a compact set, hence
by properness the sequence (g, m) € G x M must be contained in a compact set. Hence, by
passing to a subsequence we may assume that the sequence gi converges: g — goo. Passing
to the limit in gx.m — m, we see goo € Gp,. Since U is open, this means g, € U for large k, a
contradiction. O

In immediate consequence of the fact that the orbits for a proper action are closed, is that
the orbit space M /G is Hausdorff. Our main goal in this Section is the cross-section theorem,
giving a local normal form for the action near any G-orbit. A slightly weaker version of the
theorem may be stated as follows. Let O = G.m be an orbit, TO C T'M|e its tangent bundle,
and

vo =TM|o/TO

the normal bundle. Both T'M and T'O carry actions of G by vector bundle automorphisms,
hence vp carries an induced G-action. The tubular neighborhood theorem says that there
exists a diffeomorphism ¢ : vo — U C M onto an open neighborhood of O, such that
restricts to the identity map on (0. The main point of the cross-section theorem is that one
may choose the map v to be G-equivariant. Since G acts transitively on O, this then reduces
the problem of studying the G-action near O to the study of the linear action of H = G,, on
the fiber V = (vo)|m, called the slice representation.

We will begin our discussion of the slice theorem by considering two extreme cases: (i) the
action being free, and (ii) m being a fixed point for the G-action.

THEOREM 1.21. If G — Diff (M) is a proper, free action, the orbit space M/G admits a
unique smooth structure such that the quotient map m: M — M/G is a submersion. It makes
M into a principal G-bundle over M/G.

We recall that a principal H-bundle is a H-manifold P together with a smooth map 7 :
P — B onto another manifold, having the following local triviality property: For each x € B,
there exists an open neighborhood U of x and a H-equivariant diffeomorphism

Y U)—-UxH

where the H-action on the right hand side is h.(z,h1) = (x,h1h™!). One calls P the total
space and B the base of the principal bundle. The maps 7' (U) — U x H are called local
trivializations.

PROOF. Since the action is free, the infinitesimal action map gives an isomorphism 7}, (G.m)
g for all m € M. Choose a submanifold S C M with m € S and g ® T;,S = T,,, M. The action
map restricts to a smooth map G x S — M, with tangent map at (e,m) equal to the given
splitting. By continuity, the tangent map stays invertible at (e,m’) for m’ € S sufficiently
close to m. Thus, choosing S sufficiently small we may assume this is true for all points in
S. By equivariance, it then follows that G x S — M has invertible tangent map everywhere,



1. TERMINOLOGY AND NOTATION 11

thus it is a local diffeomorphism onto its image. In fact, choosing S smaller if necessary it be-
comes a diffeomorphism onto its image: Otherwise, we could choose a non-convergent sequence
(9k, mi) € G x S with my — m and gx.myr = m. Thus g,;l.m = my — m. The sequence of
points (m, my) = (gx.m, m) is contained in a compact set, hence by properness the sequence gy,
is contained in a compact set. The equation g, L m = my, — m shows that for any convergent
subsequence of g, the limit stabilizes m, hence is e. Thus g — e, contradicting the choice of
sequence. The diffeomorphism G x S — V' C M identifies V/G with S, hence gives a manifold
structure on V/G. This defines a smooth structure on M /G such that the quotient map is a
submersion. ! O

It is important to note that the Theorem becomes false if we consider principal bundles in
the category of topological spaces. In the definition of a topological principal H-bundle, one
replaces manifolds by topological spaces, smooth maps by continuous maps, and Lie groups by
topological groups.

EXERCISE 1.22. Give an example of a compact topological space with a free action of Zy
that does not define a principal bundle. (There is an easy such example, using the indiscrete
topology on a set. Give an example where the space has a more reasonable topology, e.g. with
P a subspace of R3.)

Let M be a manifold with a proper free G-action. Given an action of a second group
GG on M, such that the actions of G and (7 commute, the quotient space inherits a natural
Gi-action. (Smoothness is automatic by properties of quotient maps). For instance, let H
be a closed subgroup of G. The restriction of the right action to H is proper, and commutes
with the G-action from the left. Hence the induced action on G/H makes G — G/H into a
G-equivariant principal H-bundle.

At another extreme, we now consider the case that a point m € M is fixed under the group
action. For proper actions, this can only happen if the group is compact.

THEOREM 1.23. Let M be a G-manifold, with G compact, and m € M a fized point for
the action. Then there exists a G-invariant open neighborhood U of m and a G-equivariant
diffeomorphism T, M = U taking 0 to m.

PROOF. Choose a G-invariant Riemannian metric on M. The exponential map exp :
TnM — M for this metric is G-equivariant, and its differential at the identity is invertible.
Hence it defines a G-equivariant diffeomorphism B.(0) — U C M for e > 0 sufficiently small.
But B((0) is diffeomorphic to all of V', choosing a diffeomorphism preserving radial directions.

O

PROPOSITION 1.24. Let G x M — M be a proper G-action, and H C G a subgroup.
Then the each component of the set M of H-fized points is a (topologically) closed embedded
submanifold of M.

PRrROOF. We first observe that the fixed point set of H coincides with the fixed point set of
its closure H. Indeed, if m € M is H-fixed, and h; € H a sequence converging to h € H, then

1Compa‘cibility of the local manifold structures is automatic: For a given map F': M — N, from a manifold
M onto a set N, there is at most one manifold structure on N such that F is a submersion: A function on N is
smooth if and only if its pull-back to M is smooth.
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h.m = lim; h;.m = m, showing H C G,,. Since G,, is compact, H is compact also. Thus we
may assume H is a compact embedded Lie subgroup of G. The Lemma (with G = H) shows
that a neighborhood of m in M is H-equivariantly modeled by a neighborhood of 0 in 75, M.
In particular M corresponds to (T}, M)H , which is a linear subspace of T}, M. U

To formulate the slice theorem, we need some more notation. Suppose P — B is a principal
H-bundle. For any linear representation of H on a vector space V', the quotient (P x V)/H is
naturally a vector bundle over P/H = B: Indeed, any local trivialization 7=1(U) = U x H of
P gives rise to a fiberwise linear local trivialization

(r Y U)X V)/H=(UxHxV)/H=UxV
of (P x V)/H. One calls this the associated vector bundle with fiber V', and writes
PxyV:=({PxV)/H— B

If another group G acts on P by principal bundle automorphisms (i.e. the action of G commutes
with the action of H), the associated bundle becomes a G-equivariant vector bundle.

A special case of this construction is the case P = G, with H a closed subgroup of G acting
by the right action. In this case G x gV is a G-equivariant vector bundle over the homogeneous
space G/H. It is easy to see that any G-equivariant vector bundle over a homogeneous space
is of this form. The following result is due to Koszul and Palais.

THEOREM 1.25 (Slice theorem for proper actions). Let M be a manifold with proper action
of G. Let m € M, with stabilizer H = Gy, and denote by V. = T, M/T,,,(G.m) the slice
representation. Then there ezists a G-equivariant diffeomorphism G xg V. — M taking [(e,0)]
to m.

PRrROOF. As above, we can choose an H-equivariant diffeomorphism 7,,M — U C M,
taking 0 to m. Identifying V' with a complement of T},,(G.m) in T,,M (e.g. the orthogonal
complement for an invariant inner product), we obtain an H-equivariant embedding V' — M, as
a submanifold transversal to the orbit G.m. It extends to a G-equivariant map G xgV — M.
As before, we see that the map G xg V' — M is in fact a diffeomorphism over G x i B(0) for
e sufficiently small. Choosing an H-equivariant diffeomorphism V' 2 B.(0) the Slice Theorem
is proved. O

COROLLARY 1.26 (Partitions of unity). If G x M — M s a proper group action, and
M =, Ua a locally finite cover by invariant open sets, there exists an invariant partition of
unity: Ie functions xo supported in Uy, with 0 < xo <1, and )Xo = 1.

PROOF. Exercise. O

COROLLARY 1.27 (Invariant Riemannian metrics). If Gx M — M is a proper group action,
there exists a G-invariant Riemannian metric on M.

PROOF. Given an H-invariant inner product on V' and an H-invariant inner product on
g, one naturally constructs an invariant Riemannian metric on G x g V. This constructs the
desired metric near any orbit, and globally by a partition of unity. O

COROLLARY 1.28 (Equivariant tubular neighborhood theorem). If G x M — M is a proper
group action, and N C M o G-invariant embedded submanifold with normal bundle vy, there
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exists a G-equivariant diffeomorphism from vy to a neighborhood of N in M, restricting to the
identity map from the zero section N C vy to N C M.

ProoF. This follows from the standard proof of the tubular neighborhood theorem, by
using a G-invariant Riemannian metric on M. O

1.5. The orbit type decomposition. We will now describe the orbit type stratification
of a manifold with a proper action. 2 We begin with some general definitions. A decomposition
X = |, X of a topological space is called locally finite if each compact set in X meets only
finitely many X;. It satisfies the frontier condition if

In this case define a partial ordering of the pieces X;, and in fact of the indexing set, by setting
i < j << X; C Xj. The depth of a piece X; is defined to be the largest £ for which there exist
pieces X;; with ix > i1 > 11 > i. The depth of a (finitely) decomposed space is the largest

depth of any of its pieces.
If X is a decomposed space, then also the open cone over X,

cone(X) :=[0,00) x X/({0} x X)
is a decomposed space, with pieces the tip of the cone together with all cone(X); = (0,1) x X;.
Clearly,

depth(cone(X)) = 1 + depth(X)

Following Sjamaar-Lerman we define the notion of a stratified singular space® as follows:

DEFINITION 1.29. A depth k stratification of a topological space X is a locally finite de-
composition X = |J, X; satisfying the frontier condition, with each X; a smooth manifold
(called the stratum), with the following property: For each m € X; C X there exists an open
neighborhood U C X; around m, and a stratified space L of depth at most k — 1, together with
a homeomorphism

U xcone(L) -V CX

preserving the decompositions, and restricting to diffeomorphisms between strata.
Now let M be a manifold with a proper G-action, and X = M /G the orbit space. (Recall

that this is a singular space, in general). The decomposition M = U( H) Mgy into orbit types
induces a decomposition X = U( ) X(m) where X gy = M) /G. Decompose X further as

X:U&
i
where each X; is a component of some X g,), and

M= M,

2A good reference for this material is the paper by Sjamaar-Lerman [28]. For stratified spaces in general,
see e.g. the book [15] by Goresky-MacPherson.

3There are other notions of a stratified space, the most common definition being due to Whitney. See
Goresky-MacPherson [15] for this definition and Duistermaat-Kolk [13] for its application in the context of
group actions.
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be the corresponding decomposition of M, where M; is the pre-image of X;. (Of course, if G
is connected then the M; will be connected.) We will call this the orbit type decomposition of
M and of the orbit space X, respectively.

THEOREM 1.30 (Orbit type stratification). The decompositions M =|JM; and X =J X;
are locally finite and satisfy the frontier condition. FEach M; is a smooth embedded submanifold
of M, and X; = M;/G inherits a unique manifold structure for which the quotient map is a
submersion. With these manifold structures, the above decompositions are in fact stratifications.

PROOF. Near any orbit G.m C M), with G,, = H, M is modeled by the associated

bundle G x g V', with action

91:[(g,v)] = [(919,v)]
By definition of the associated bundle, we have [(g1g,v)] = [g,v] if and only there exists h € H
with (g1g,v) = (gh~', h.v). This means h € H, and g; = gh~'g~!. That is, the stabilizer
group of [(g,v)] is

Gl(gv)) = Adg(Ho),
where H,, C H is the stabilizer of v. In particular, all stabilizer groups of points in the model
are subconjugate to H. The stabilizer group is conjugate to H if and only if H, = H. This
shows
(G X H V)(H) =G X H VH:VH X G/H

which is a vector subbundle, in particular a submanifold. This shows that all M; are embedded
submanifolds. Furthermore,

(G XHg V)(H)/G = VH
showing that the X; are smooth manifolds also.

We next analyze how the strata fit together. Note that G| ) = Ggw) for all ¢ # 0. It
follows that each orbit type stratum (G' xpg V) (g, for (Hy) < (H) is invariant under scaling
(g9,v) — (g,tv). In particular, the zero section G/H is in the closure of each orbit type stratum.
It follows that a component M; of Mgy can meet the closure of some Mgy only if (H') < (H),
and in that case it is in fact contained in the closure.

Choose an H-invariant inner product on V and let W be the orthogonal complement of
VH in V. We have,

GxpgV=VEx(GxygW)=VH x (G xy cone S(W))

where S(W) C W is the unit sphere bundle. Notice that all stabilizer groups for the action
of H on S(W) are proper subgroups of H. Thus, by induction, we may assume that the orbit
type decomposition for the H-action on S(W) gives a stratification: S(W) = UJ; S(W);. By
the above discussion, the orbit type decomposition for G x g V' is given by

(GxgV)j=VH x(0,00) x (G xg S(W);),

together with the stratum V# x G/H. This shows that the orbit type decomposition is a
stratification. The orbit space X = M/G is locally modeled by

(GxpV)/G=V/H=VTxW/H =V x cone(S(W)/H)
and induction shows that this is a stratified singular space. O

Each Mg is naturally a fiber bundle over X ), with fiber G/H. One can be more precise:
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THEOREM 1.31. For any H C G there is a natural principal K -bundle over Py — X(m),
with K = Ng(H)/H, such that

PrOOF. Recall that My = {m € M|Gp, = H}. Clearly G.My = M. In the local model
G X H V,

(G xyV)y=Ng(H)/H x VE.

Thus My is a submanifold. If m € My, then g.m € My if and only if ¢ € Ng(H). The
stabilizer for the action of Ng(H) on My is exactly H everywhere. Thus K = Ng(H)/H acts
freely, with quotient X(z). Let K = Ng(H)/H act on G/H by the action induced from the
right multiplication, and let G act by left multiplication. Then

My xx G/H — My, [(m,gH)]— g.m

is well-defined, and is a diffeomorphism. O

1.6. Principal orbit type theorem.

THEOREM 1.32 (Principal orbit type theorem). Let G x M — M be a proper group action,
with connected orbit space M/G. Among the conjugacy classes of stabilizer groups, there is a
unique conjugacy class (Hpin) with the property that (Hpwn) < (H) for any other stabilizer
group H = Gy,. The corresponding orbit type stratum Mpyin := Mg, ) is open and dense in

prin
M, and its quotient Xprin = My, )/G C X is open, dense and connected.

prin

On calls Hp,in (or any subgroup conjugate to it) a principal stabilizer, and Mpyin, Xprin the
principal stratum of M, X. Note that if G is connected, then M, itself is connected.

PROOF. Note first that by definition of “depth”,
depth(M;) >0 & 3Jj#i: M; CM;
&S dj#£i M E # )
& FJjAi: MinM;NM; #0
& M; is not closed.

Thus the orbit type strata of depth 0 are all open, and all other orbit type strata M; are
embedded submanifolds of positive codimension. It follows that the union of depth 0 orbit
type strata is open and dense. We have to show that there exists a unique orbit type stratum
of depth 0 (recall that X; = M, /G are all connected by definition).
We use induction on the depth of the stratification. For any point m € M; with depth(M;) >
0, consider the local model GxygV = VI xGxgW. where H = G, and V = T}, M /T,,,(G.m).
By induction on the dimension of the depth of the stratification, the theorem applies for the
H-action on S(W). In particular, there exists a principal stabilizer Hyyin C H for this action,
with S (W)( Houin) /H connected. Then Hi, is also a principal stabilizer for the G-action on
G xgV, and
(GxaV)H

prin)/G = ‘/(H )/H = VH X (O’ OO) X S(W)(Hprin)/H

prin
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is connected, open and dense. This shows that if M;, M/ have depth 0, and their closures
intersect in m € Mj, then the two must be equal. 4 O

In general, Mp,in need not be connected even if M is connected: A counterexample is the
action of Zo on R generated by t — —t.

Besides the orbit type decomposition, one can also consider the decomposition into infini-
tesimal orbit types, by partitioning M into

M(b):{mEM| gmNh}

(where ~ denotes G-conjugacy of subalgebras of g). and then decomposing each My further
into connected components. Thus M) is the union of all M) where H ranges over subgroups
having b as its Lie algebra. Again, the local model shows that each My is a submanifold, in
fact

(G XH V)(b) =G Xy (Vh)

where VY is the subspace fixed by b. If we decompose M into the My)’s and then decompose
further into connected components M;, we again obtain a stratification. We call these the
infinitesimal orbit type strata. The same inductive argument as before shows that if M is
connected, then there exists a unique open stratum, which we denote M,e; and call regular
elements, following Duistermaat-Kolk [13]°

THEOREM 1.33. For any proper G-action on a connected manifold M, the set Mg of
reqular elements is open, dense and connected.

PRrOOF. The complement is the union of all My with h a non-minimal infinitesimal sta-
bilizer. In the local model, (G xuy V)@ = G xu VY. But VY has codimension at least two
in V', since § is the Lie algebra of a compact group, and non-trivial representations of com-
pact groups are at least 2-dimensional. Hence M) has codimension at least 2, so removing it
doesn’t disconnect M. O

1.7. Example: The adjoint action of G on its Lie algebra. Let G be a compact,
connected Lie group acting on its Lie algebra g by the adjoint action. We would like to describe
the orbit type decomposition for this action, as well as the orbit space. Let T be a maximal
torus (i.e. a maximal connected abelian subgroup) in G, and t its Lie algebra. We will need
the following two facts from the theory of Lie groups:

a) Any two maximal tori are conjugate in G. (The standard proof of this is to show that
at all regular points, the map G/T x T — G, (¢T,t) — gtg~" is orientation-preserving. Hence
it has positive mapping degree, which implies that it must by onto.)

b) If H is any torus in G, and g commutes with all elements of H, there exists a torus
containing HU{g}. (To prove this, consider the closed subgroup B generated by H and g. It is
easy to see that B is the direct product of a torus and a cyclic group. Hence there exists x € B
such that the subgroup generated by x is dense in B. Choose a maximal torus T containing x,
then also B C T' and we are done.)

4Strict1y speaking, the inductive argument only worked for finite depth stratifications. However, if
depth(M) = oo the same proof shows how to go from finite to infinite depth: Note that the H-actions on
S(W) always have finite depth, by compactness.

5The terminology “regular” is not entirely standard, in contrast to “principal”.
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Part b) shows in particular that maximal tori are maximal abelian. (The converse does not
hold in general.) It also shows that all stabilizers G¢ for the adjoint action are connected, and
in fact that G¢ is the union of all maximal tori for which the Lie algebra contains &. Indeed, if
g € Gg, then the torus H given as the closure of the 1-parameter subgroup exp(t¢) fixes g, so
there is a maximal torus containing H U {g}. (Conversely, any such torus lies in G¢.) Since all
G¢ are connected, orbit types and infinitesimal orbit types coincide.

For any maximal torus 7', one can choose { such that the closure of exp(t§) equals T'. Then
G¢ = T, since any other element stabilizing § would commute with 7". Thus, the principal
stabilizer for the adjoint action is (7"). To determine the corresponding principal orbit type
stratum, choose an invariant inner product on g, and let

g=g ' &m=tdm

denote the orthogonal decomposition. ¢ The subspace m decomposes into a direct sum of irre-
ducible representations of T'. By representation theory of tori, any irreducible representation of
T is equivalent to a representation of the form exp(§) — Rar(a,¢) Wwhere Ry is the 2-dimensional
rotation defined by ¢. The element o € t* is a root and the corresponding 2-dimensional sub-
space m, is called a root space.” We thus find that given elements ¢ € t, ¢ € g, commute if
and only if ¢ has no component in any root space m, with (o, &) = 0. We therefore find:

THEOREM 1.34. For any & € t, the infinitesimal stabilizer g¢ is the direct sum of t together
with all root space my such that («,&) = 0. The stabilizer group G¢ is the connected subgroup
of G with Lie algebra ge.

The equations («, &) = 0 subdivide t into chambers, and each wall corresponds to a given
orbit type. We know that the interior of each chamber corresponds to the principal orbit type,
i.e their union is My C Mr). Since the principal orbit type stratum is connected this easily
implies that the Weyl group Ng(T')/T acts transitively on the set of chambers.

Of course, there is much more to be said about this example, see e.g. Broecker-tom Dieck
[7] or Duistermaat-Kolk [13].

2. Classifying bundles

2.1. Principal bundles. We recall the definition of principal bundles in the topological
category.

DEFINITION 2.1. Let G be a topological group. A principal G-bundles is a topological
space P, together with a continuous action of G satisfying the following local triviality condi-
tion: For any z € B = P/G there exists an open neighborhood U os z and a G-equivariant
homeomorphism

Y U) - U x G.

Here m : P — B is the quotient map and the action of G on U x G is given by g.(y,h) =
(y,hg™!). One calls P the total space and B the base of the principal bundle.

61n fact, m is the unique such complement, but this need not concern us here.
"The sign of a changes if one changes the orientation of R2.
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Thus, a principal G-bundle is the special case of a fiber bundle, where all fibers are principal
homogeneous G-spaces (spaces with free transitive G-actions), and the local trivializations take
the fibers to the “standard” principal homogeneous G-spaces, G itself.

A morphism of principal bundles 7 : P — B and n’ : P’ — B’. is a commutative diagram

P— P

| |

B—— DB
where the upper horizontal map is G-equivariant.

EXAMPLES 2.2. (a) The trivial bundle P = B x G, with action g.(y,h) = (y,hg™1).
(It is standard to write principal bundle actions as multiplications from the right.)

In general, a principal bundle is isomorphic to the trivial bundle if and only if it
admits a section 0 : B — P, mo o = idp; in this case the isomorphism is given by

BxG — P, (x,9) — g ‘.o(z).

(b) We had seen that if G is a Lie group acting freely and properly on a manifold M, then
P = M is a principal G-bundle over B = M/G. Important cases include: S™ as a
principal Zo-bundle over RP", and S?**! as a principal U(1)-bundle over CP".

(c) More generally, for k& < n one has the Stiefel manifold Stg(k,n) of orthonormal k-
frames in R"™,

StR(k,n) = {(Ul, ... ,’l)k) € Rkn‘ v - V5 = ij}

as a principal O(k)-bundle over the Grassmann manifold Grg(k,n) of k-planes in R™.
Indeed, the Stiefel manifold is a homogeneous space Stg(k,n) = O(n)/O(n—k), where
we think of O(n— k) as the subgroup of O(n) fixing R¥ ¢ R". (Alternatively, Stg(k,n)
may be thought of as the space of linear injections R¥ — R™ preserving inner products.)
The Grassmann manifold is a homogeneous space Grg(k,n) = O(n)/(O(n—k)x O(k)).
The quotient map takes v1,..., v, to the k-plane they span.

(d) Similarly we have a complex Stiefel manifold of unitary k-frames in C™, which is a
principal U(k)-bundle over the complex Grassmannian Gre(k,n).

(e) If V is a real vector space of dimension k, the space of isomorphisms V — RF is a
principal homogeneous space for GL(k,R). Thus is p: E — B is a real vector bundle
of rank k, we obtain a principal GL(k,R)-bundle Fr(E) — B (called the frame bundle)
with fibers 771 (x) the space of isomorphisms p~'(z) — R¥. (One can think of this
isomorphism as introducing a basis (frame) in p~!(x), hence the name.) Similarly, if E
carries a fiberwise inner product, one has a bundle of orthonormal frames Fro(F) — B
which is a principal O(k) bundle.

(f) If E — Bis a complex vector bundle of dimension k, one similarly defines the (complex)
frame bundle Fr(E) — B with structure group GL(k, C), and given fiberwise Hermitian
inner products, one defines a unitary frame bundle Fry(F) — B.

We will need two basic constructions with principal bundles 7 : P — B.
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2.2. Pull-backs. Let 7 : P — B be a principal G-bundle. If f : X — B is a continuous
map, one defines a new principal bundle f*B — X with fibers

(f*"P)e = Pyz).
(A local trivialization of P over U gives a local trivialization of f*P over f~1(U).) One has a

commutative diagram,
ffP——P

|

which in fact defines f*P up to isomorphism.

LEMMA 2.3. Let X be a paracompact Hausdorff space (e.g. CW complex or a manifold).
If fo, f1 : X — B are homotopic maps, the pull-back bundles f5P and f{P are isomorphic.

The Lemma is essentially equivalent to the statement that for any principal bundle P over
X x I, the two pull-backs to X x {0} and X x {1} are isomorphic. We will omit the proof,
which can be found e.g. in Husemoller’s book.

COROLLARY 2.4. If f: X — Y is a homotopy equivalence between paracompact Hausdorff
spaces, the pull-back map sets up a bijections between Pring(X) and Pring(Y). In particu-
lar, if X is a contractible paracompact Hausdorff space, then Pring(X) has only one element
consisting of the trivial bundle.

EXERCISE 2.5. Show that if # : P — B is any principal bundle, 7*P = P x G.

2.3. Associated bundles. Let F' be a topological space with a continuous G-action.

Then the associated bundle
PxgF :=(PxF)/G

is a fiber bundle over B = P/G with fiber F. Indeed, local trivializations 7#=1(U) — U x G
of P give rise to local trivializations p~'(U) — U x F of the bundle p: P xg F — B. If F
is a vector space on which G acts linearly, the associated bundle is a vector bundle. If F' is a
principal homogeneous H-space on which G acts by morphisms of such spaces, the associated
bundle is a principal H-bundle.

EXAMPLES 2.6.
Given a vector bundle 2 — B, the associated bundle Fr(E) X gk r) R* for the defining action
of GL(k,R) recovers E.
Similarly, if P — B is any principal G-bundle, P xg G = P for the left-action of G on itself.
If P, — X, are two principal G-bundles, one may view P; Xg P» as a fiber bundle over By with
fiber P, or as a fiber bundle over By with fiber P;.

If p: PxgF — B is an associated bundle, then p*P = P x F since the following diagram
commutes:
PxF——P

|

PXGF*)/) B
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2.4. Classifying G-bundles. We recall the following notions from topology: Given a
sequence of spaces and inclusions X° € X! € X2 C ---, the colimit X = colim,_., X" is
the union of the spaces X", with the weak topology where a set is open in X if its intersection
with all X™ is open. This implies that a function on X is continuous if and only if its restriction
to all X™ is continuous. A particular case of this construction is a CW-complex: Here X0 is
a discrete set, while X" is obtained from X"~! by attaching n-cells, by a family of attaching
maps ¢y : 0D — X1,

From now on, we will mostly deal with CW-complexes, or paracompact Hausdorff spaces
that are homotopy equivalent to a CW-complex. For example, smooth manifolds have CW-
complex structures. For compact topological manifolds, the existence of CW-complex struc-
tures is known, except in dimension 4 where this question is open. On the other hand, compact
topological manifolds are homotopy equivalent to CW-complexes. See Hatcher [18, p. 529].

DEFINITION 2.7. A classifying principal G-bundle is a principal G-bundle EG — BG, where
the total space EG is contractible, and where BG is a paracompact Hausdorff space homotopy
equivalent to a CW-complex.

EXAMPLES 2.8. (a) Let S = colimy,, .o S™ be the “infinite dimensional sphere”. S
is an example of an infinite-dimensional CW-complex, with two cells in each dimension
(the upper and lower hemispheres). Each S™ is a principal Zg-bundle over RP™, and
this makes S°° into a principal Zs-bundle over RP* = colim,,_,oc RP™. RP inherits
a CW-structure from S°°, with one cell in each dimension.

LEMMA 2.9. The infinite sphere S is contractible.

PROOF. (cf. Stocker-Zieschang, “Algebraische Topologie, p.58) View S°° as the
“unit sphere” ||z|| = (3. 22)"/2 = 1 inside R® = colim, .., R". We denote by f :
R* — R the shift operator

f(l'l,l'g, .. ) = (0, T1,T2,y .. )
and by x, = (1,0, ...) our base point. Define a homotopy h; : S>° — S as follows:
1-thr+tf(x
i) - L= De @)

(X = t)z 4t f(z)]]

This is well-defined: the enumerator is never 0 since x, f(z) are always linearly inde-
pendent. (To see that this is a homotopy, it suffices to note that the restriction of
h: 8% x I — S to each S* x I is continuous.) The map h; takes S onto the sub-

space A C S5 given by the vanishing of the first coordinate. Next, rotate everything
back onto the basis vector e; = (1,0,0,...):

1_
h;:A_)Soo’y’_) ( t)y+t€1
11 = t)y + tea]|
By concatenating these two homotopies, we obtain the desired retraction from S5
onto the base point. O

Thus S°° — RP° is an EZy — BZs.
(b) We can also view S as the colimit of odd-dimensional spheres S?"*! C C"*l. Let
CP> = colim,, oo CP™. The principal U(1)-bundles S?**! — CP" define a principal
U(1)-bundle S*° — CP* which gives a EU(1) — BU(1).
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(¢) The sequence of O(n)-bundles Stg(k,n) — Grgr(k,n) defines a principal O(n)-bundle
Str(k, 00) = colimy, . Str(k,n) — Grr(k, 00) = colim, .. Grr(k, n)
LEMMA 2.10. The infinite-dimensional Stiefel manifold Stg(k,00) is contractible.

PROOF. A point in Stg(k,00) is a k-tuple v = (v1,...,vy), where each v; € R®
and v; - v; = ;5. Let f(k) : R — R be the kth iteration of the shift operator
introduced above. We define a homotopy by

he(v1,. .., o) = Gram (((1 o+t (), (1 — o + tf<k>(vk)))

where Gram denotes Gram’s orthogonalization procedure. To see this is well-defined
we need to check that the vectors (1 — t)v; + tf*)(v;) are linearly independent for
all t. A linear dependence }_; A;((1 — t)v; + tf®)(v;)) = 0 would mean, however,
that the vectors Zj Ajv; and f(k)(zj Ajvj) are proportional, which only happens if
Zj Ajv; = 0, a contradiction. At the end of the homotopy h¢, the Str(k, 00) has been
moved into the subspace Stg(k, 00) Nspan(ey, ..., ex)". We define a homotopy A} from
this subspace onto the frame (e, ..., e) by letting

hy(wy, ..., wg) = Gram (tel + (1 —t)wy, ... tep + (1 — t)wk>.

Concatenation of these two homotopies gives the desired retraction from Gr(k, co) onto
the frame (eq,...,ex). O

Thus Str(k, 00) — Grr(k,0) is a classifying O(n)-bundle.
(d) Similarly, we have a classifying U(n)-bundle,

Stc(k, 00) = colimy, o Stc(k, n) — Gre(k, 00) = colimy, o Gre(k, n)

(e) Using Stiefel manifolds of not necessarily orthonormal frames, we similarly get classi-
fying bundles for GL(n,R), GL(n, C).

(f) Let EG — BG be a classifying G-bundle, where G is a Lie group. Let H C G be a
closed subgroup. Restricting the action to H, we can take FH = EG with

BH = EG/H = EG x¢ (G/H).

(Our assumptions on G, H imply that this is a CW-complex. Of course, this holds
under much more general assumptions.) In particular, we have constructed classifying
bundles for all compact groups G, since any such group may be presented as a subgroup
of U(n), and for all Lie groups admitting a faithful finite-dimensional representation.

(g) Let X be a compact connected 2-manifold (other than the 2-sphere or RP?) with base
xg, and let G = m1(3, x0) be its fundamental group. Then the universal covering
> — ¥ defines a classifying bundle, EG — ¥ = B@ since the universal cover of such
a surface is diffeomorphic to R2.

(h) The easiest examples of classifying bundles are: EZ = R as a bundle over BZ = S,
and ER = R as a bundle over BR = pt.

It is not immediately clear that classifying bundles exist in general. Let us however establish
some properties of such bundles. One important property will be that for any “reasonable”
topological space X, the space Pring(X) of isomorphism classes of principal G-bundles ober
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X is in 1-1 correspondence with the space [X, BG| of homotopy classes of continuous maps
f: X — BG, by the pull-back construction. A sufficient condition will be that X is a CW-
complex. In particular, manifolds are certainly allowed.

THEOREM 2.11. Let EG — BG be a universal principal G-bundle, and P — X any prin-
cipal G-bundle where the base X is a paracompact Hausdorff space homotopy equivalent to a
CW-complex. Then the map assigning to each continuous map f : X — BG the pull-back
bundle P = f*EG — X sets up a bijection,

Pring(X) = [X, BG].

PROOF. We may assume that X is a CW-complex. Given any principal G-bundle P — X,
consider the associated bundle P x ¢ EG. This is a fiber bundle with fibers EG. Since the fibers
are contractible, and X is a CW-complex, one can one can construct a sectiono : X — PXxgEG
of this fiber bundle, by induction. The induction starts by choosing pre-images in each point
over the O-skeleton X° C X. Having constructed the section over the k — 1-skeleton, one wants
to extends the section over the k-skeleton. For any characteristic map ® : D¥ — X* c X, the
pull-back ®* P — Dj, admits a trivialization D* x G, giving a trivialization of fiber bundles,

d*(P xg EG) = D* x EG

The given section of P xg EG over X;_1 amounts to a continuous map Sk=1 . 9Dk - EG,
which we would like to extend to a map D¥ — EG. Equivalently, we need a map S*~'xI — EG
equal to the given map on S*~! x {0} and equal to a constant map on S¥~! x {1}. Such a
map is obtained by composing the map S*~! x I — EG x I (equal to our given map on the
first factor) with a contraction, EG x I — EG. This gives the desired section over X*. Since
a map from a CW-complex is continuous if and only if its restriction to all X* is continuous,
this gives the desired section. By a similar argument, one shows that any two sections og, 01
are homotopic.

The section o : X — P xg EG lifts uniquely to a G-equivariant section 6 : P — P x EG.
(Indeed, for any p € P with base point € X, the fiber over o(x) € P xg EG contains a
unique point of the form (p,y), and this will be 6(p).) Thus we get a commutative diagram,

B——+ P xq EG—— EG xg P—— BG

in which the upper horizontal maps are G-equivariant. The composition of the lower horizontal
maps gives a map f : X — BG, and the diagram shows P = f*EG. Homotopic sections o
give rise to homotopic f’s, and therefore isomorphic G-bundles. U

For any principal G-bundle P — X, a map f : X — BG with f*EG = P is called a
classifying map for P. We have shown that the choice of a classifying map is equivalent to the
choice of a section of the bundle P xg EG — X.

THEOREM 2.12. If EG — BG and E'G — B'G are two classifying bundles, where BG, B'G
are paracompact Hausdorff spaces having the homotopy type of CW complezes, there exists a
homotopy equivalence B'G — BG that is covered by a G-equivariant homotopy equivalence
E'G — EG. In this sense classifying bundles are unique up to homotopy equivalence.
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PROOF. We have a classifying map f : B'G — BG for E'G — B'G (viewing EG — BG
as the classifying bundle) and also a classifying map g : BG — B'G (viewing E'G — B'G as
the classifying bundle). The composition fog: BG — BG is a classifying map for EG itself,
so it must be homotopic to the identity. Similarly g o f is homotopic to the identity. U

ExaMPLES 2.13. It is known that for any path connected space X with base point xg, the
fundamental group 7 (X, xg) is related to the set of homotopy classes of (not necessarily base
point preserving) maps [S*, X] by

[Sl,X] = 7T1(X,1‘0)/Ad(7T1<X,$0)),

quotient by the conjugation action.® It follows that the space of principal G-bundles over S! is
in 1-1 correspondence with the set of conjugacy classes in 71 (BG). For G = Zg, we know that

71 (RP®) = 71 (RP?) = Zy

which tells us that there are exactly two principal Zs-bundles over S, up to isomorphism: The
trivial bundle and the non-trivial double covering. For G = U(1), we find m (CP*°) = {1},
which means that any principal U(1)-bundle over S is trivial. Of course, these facts are easy
to check directly, and in general the result Pring(X) = [X, BG] is hardly useful to actually
determine the set Pring(X).

Consider X = S™, (n > 1), with its standard cover by open sets U,V given as the com-
plement of north pole and south pole. Since U,V =2 D", and principal G-bundle over U,V
is trivial. If G is path connected, these trivializations are moreover unique up to homotopy.
On the intersection, the trivializations differ by a transition map U NV — G. Homotopic
transition maps give rise to isomorphic bundles, and conversely, any transition map defines a
bundle. Since U NV ~ S™~ 1 it follows that

[S"7!, G] = Pring(S™) = [S™, BG).

In particular, G-bundles over S? are classified by [S!, G] = m1(G) (using that the fundamental
group of a topological group is abelian).

EXERCISE 2.14. Let ¥ be a 2-dimensional CW-complex. Show (directly) that if G is simply
connected, Pring(X) consist of only one element, given by the class of the trivial bundle. If
G is furthermore a semi-simple, show that a similar statement holds true for 3-dimensional
CW-complexes. (Use that the fact that mo(G) is trivial for such groups.) What does all this
imply for the topology of BG? (Remark: Elements in H,(X) are represented by maps from
n-dimensional simplicial complexes into X. See Hatcher [18, p.109].)

EXERCISE 2.15. Show that if X is a CW-complex, with X? its 2-skeleton, Priny)(X) =
PrinU(l)(X2). (Hint: For n > 2, any map S™ — U(1) is homotopic to the constant map, since
any such map can be lifted to the universal cover R — U(1) and R is contractible.)

For G = GL(n,R) (and similarly for GL(n,C)), there is a more geometric way to see the
classifying map, at least if X is compact Hausdorff. Let P — X be a principal GL(n,R)-
bundle and E — X the associated vector bundle. Since X is compact, E is isomorphic to a

8A similar statement holds for higher homotopy groups: [S™, X] = m,(X,z0)/m1 (X, o). See e.g. Davis-
Kirk, [10, Theorem 6.57].
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direct summand of a trivial vector bundle X x R", for n sufficiently large.” Thus, for each
x € X the fiber E, defines a k-plane in R", i.e. a point in Grg(k,n). This gives a map
X — Grr(k,n) C Grg(k,o0), with the property that E is the pull-back of the tautological
k-plane bundle over X. In the particular case where X = M is a k-dimensional embedded
submanifold of R", with tangent bundle TM C M x R"™, the resulting map M — Grg(k,n) is
known as the Gauss map.

2.5. Characteristic classes. Fix a commutative coefficient ring R (usually R = Z, R, Q, Z>).
Given P € Pring(X) with classifying map f: X — BG one obtains a pull-back map (charac-
teristic homomorphism)

¢(P)=f*: H(BG,R) — H*(X,R),

(depending only on the isomorphism P, since any two classifying maps are homotopic). The
image of this map is the ring of characteristic classes of P. The construction is functorial: If
F: P — P’ is a morphism of principal bundles covering a map F : X — X’ on the base, the
diagram

H*(BG, R)

c(P’
(P) C(P)J
H*(X',R) —— H*(X,R)

commutes. For instance, if G = S! so that BG = CP>, one knows that the cohomology ring
H*(CP®,7) is a polynomial ring freely over one degree 2 generator o € H?(CP>,Z):

H*(CP®,7) =< o> .

(That is, H4(CP,Z) vanishes for ¢ odd, and for ¢ = 2r equals Z with generator o”.) Hence,
the ring of characteristic classes of a principal U(1)-bundle P = f*EG over X is a polynomial
ring in the Chern class,
c1(P) == ¢(P)(a) € H*(X, 7).
It turns out that, in fact, the Chern class determines the U(1)-bundle up to isomorphism.
The characteristic rings H*(BG, R) are known for many groups G (particularly Lie groups)
and coefficient rings R. We quote some results without proof, see e.g. Milnor-Stasheff [?], or
Bott-Tu [6].
(a) The cohomology ring of the infinite complex Grassmannian is
H*(BU(n),Z) = Zlci, . .., ¢,

a free polynomial ring in generators c¢; € H% (B U(n)), where ¢; is called the ith Chern
class.
(b) The cohomology ring for SU(n) looks very similar:

H*(BSU(n),Z) = Z[ca, ..., cy]
i.e. it starts with a class c; € H*(SU(n),Z) in degree four.
IProof: Using a partition of unity, one constructs sections o1,...,0, of E for which the images span the

fiber E, at any point x. These sections determine a surjective bundle map X x R" — E. We may identify F
with the orthogonal complement of the fiberwise kernel of this map.
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(¢) For G = O(n) one has, with Zs-coefficients,
H*(B O(n)7Z2) = Z2[w17 v ,'U)n]

where w; € H (B O(n),Z) is called the ith Stiefel-Whitney class.
(d) With Q coefficients

H*(BO(n),Q) = Qlp1, - - - P2

where p; € H*(B O(n), Q) is called the ith Pontrjagin class, and [n/2] is the greatest
integer < n/2.

(e) For G = SO(n), with n odd, the cohomology ring is generated by Pontrjagin classes
as before.!%. If n is even, it is generated by the Pontrjagin classes together with the
Euler class e € H"(BSO(n)) subject to one relation, € = p,, /o.

(f) For G a compact Lie group, and R = R, the cohomology ring H*(BG) is isomorphic
to the ring (Sg*)G of invariant polynomials on g, with degrees doubled. It is a classical
fact that (Sg*)¢ itself is a polynomial ring with a finite set of generators. For instance,
if G = U(n) one can take A — tr(A¥) (1 < k < n) as generators.

2.6. Equivariant cohomology. Classifying bundles may be used to define the equi-
variant cohomology of a G-space X, using the Borel construction. Fix a classifying bundle
EG — BG.

DEFINITION 2.16. For any G-space X, the equivariant cohomology ring H (X, R) of X
with coefficients in a commutative ring R is the cohomology ring H*(X¢, R) of the associated
fiber bundle

XG = FEG Xaq X.

The space X is often called the Borel construction. Note that a different model for
the classifying bundle gives a homotopy equivalent Borel construction, and hence the same
equivariant cohomology ring. Let us describe a few basic properties of this construction:

2.6.1. G-maps. The Borel constructions is functorial with respect to G-maps. That is,
if f: X — Y is a G-equivariant map of G-spaces, one gets a map of Borel constructions
Xag — Yg, hence a ring homomorphism

[T Hg(Y) — He(X).

If fo ~ fi : X — Y are homotopic through G-maps then the induced maps in equivariant
cohomology coincide.
Taking Y = pt to be the trivial G-space, it follows that there is a natural homomorphism

He(pt) — He(X).

It turns H(X) into a module over the ring Hf(pt). This is often a better point of view to
think about H(X), e.g. HE(X) is rarely finitely generated as an abelian group, but it often
is as a H}(pt)-module.

10More precisely, we pull-back the Pontrjagin classes for BO(n) back under the classifying map for
ESO(n) XSO(n) O(n)
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2.6.2. Change of groups. Suppose G is a Lie group and H a closed subgroup. Recall that
EG — BG defines a classifying bundle FH — BH with FH = EG (viewed as an H-space)
and BH = EG/H = EG x¢ (G/H). If X is a G-space, viewed as an H-space by restricting
the action, we get a natural map of orbit spaces,

FHxpg X - EG xg X

taking H-orbits to G-orbits. This map Xy — X¢ induces a map in cohomology, H*(Xg) —
H*(Xpg), i.e. aring (and also a H(pt)-module) homomorphism

He(X) — Hy(X).

In particular, there is a homomorphism H(X) — H*(X) to ordinary cohomology.

2.6.3. Products. In ordinary singular cohomology, the ring structure gives rise to a cross
product

H*(X1) @ H*(X3) — H' (X1 x X3), [on] @ [ae] — prifon] U pryas].
The Kuenneth theorem says that under favorable circumstances, e.g. if R = R, this map is
an isomorphism. More generally, if R is a principal ideal domain (e.g. R = Z), the map is
injective with cokernel given by torsion groups. (See e.g. Davis-Kirk [10, p. 56].) Similarly,
in equivariant cohomology we have a cross product Hj(X1) ® Hj5(X2) — HE (X1 x X3). This
map, however, is rarely an isomorphism, even if the coefficient ring is R. However, viewing
H{.(X) as a module over Hf(pt) (as we should), we can also tensor over Hf(pt) and get a
cross product
He(X1) @uy, o) Ho(X2) — Ho(X1 x Xa).

This has a much better chance of being an isomorphism (for coefficients R = R), and often (but
not always) it is. In general, the relationship between the two is given by a certain spectral
sequence (see e.g. Hsiang, [19]).

2.6.4. Equivariant cohomology of principal bundles. In our construction of classifying maps,
we essentially proved the following

PROPOSITION 2.17. The equivariant cohomology ring of a principal G-bundle P — X (with
X a paracompact Hausdorff space homotopy equivalent to a CW-complex) is the cohomology
ring of the base X.

PROOF. The associated bundle Py = EG xg P — BG can also be viewed as a bundle
Pxqg EG — X. Since the fibers EG of this bundle are contractible, an argument similar to the
proof of Theorem 2.11 shows that Pg retracts onto X. It follows that H(P) = H*(X). O

2.6.5. Equivariant cohomology of homogeneous spaces.
ProproSITION 2.18. Let G be a Lie groups and H a closed subgroup. Then
HG(G/H) = Hy(pt) = H*(BH).

The isomorphism is induced by the inclusion eH — G/H. (Note that H*(BH) may be viewed
as a H*(BG)-module.)

PROOF. We observed above that EG, viewed a an H-space, is a model for FH with BH =
EG/H = EG x¢g (G/H). Thus

HL(G/H) = HY(EG x¢ (G/H)) = H*(BH).
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The inclusion of pt = eH into G/H gives a map
BH = EG xpg (eH) — EG xg (G/H) — EG xg (G/H)
inducing maps in cohomology
HG(G/H) — Hp(G/H) — H*(BH).
O
2.6.6. Mayer-Vietoris. Suppose X = U UV is an open cover of the G-space X by G-
invariant open sets. Then we get an open cover Xg = Ug UV of the Borel construction. By the

usual Mayer-Vietoris-sequence for this cover, we get a Mayer-Vietoris-sequence in equivariant
cohomology,

= HL(X) — HL(U) ® HL(V) — HLUNV) — HEH(X) — -

More generally, for any open cover by G-equivariant open sets one has a spectral sequence for
H}(X). In the manifold case, if G' acts properly, we can always choose a cover by tubular
neighborhoods of orbits. For example, if M /G is compact, one can use this to prove that
H}.(M) is a finitely generated Hf (pt)-module.

EXAMPLE 2.19. Let U(1) act on S? by rotation about the z-axis. We want to calculate
Hﬁ(l)(SQ) with coefficients R = Z. Consider the open cover of S? given by the complement U

of the fixed point set, and the complement V' of the equator. Then H[kj(l)(U ) = 0 in degree
k > 0, since U(1) acts freely on U and the quotient retracts onto a point. On the other hand

Hﬁ(l)(V) = Hlkj(l)(pt) @ H{}(l)(pt). The Mayer-Vietoris sequence tells us therefore
HlkJ(l)(SZ) = HS(U(P‘J) ® H{CJ(1)(P'5)
for k> 0.

2.6.7. Equivariant characteristic classes. The classifying bundle appears in two important
constructions: Characteristic classes and equivariant cohomology. This can be combined, yield-
ing equivariant characteristic classes. Namely, if P — X is a K-equivariant principal G-bundle,
one obtains a principal G-bundle Px — X over the Borel construction; the characteristic
classes of this bundle live in H*(Xg) = Hj;(X) and are called the equivariant characteristic
classes.

3. Comnstruction of EG by simplicial techniques

We will now explain a general construction of classifying bundles, using so-called (semi-
)simplicial techniques. We begin with the case of discrete groups.

3.1. Construction of EG for discrete groups. Let A” C R"*! be the standard n-

simplex,
n
A" = {Ztmﬂ Zti = 1}.
i=0 i

Let G be a discrete group.!'. Let |[EG|| be the infinite-dimensional simplicial complex, with
one standard n-simplex A" for each ordered n + 1-tuple (go, ..., gn) C G"*! (repetitions of g;

HEor this case, the construction is nicely explained in Hatcher [18, p. 89]
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are allowed). This simplex is denoted [go, . .., gn], with elements g; as its vertices. Boundaries
of simplices are identified in the obvious way. A free G-action is given on simplices by

9-[905 - - gn] = [909717 cee ’gng—l]'

This action turns ||E'G|| into a principal G-bundle, as is easy to verify.
LEMMA 3.1. The space ||EG]|| is contractible.

PROOF. View the n-simplex [go, . .., gn] as the 0-face of the n + 1-simplex [e, go, . .., gn]). It
is the closed face opposite to the vertex [e]. Given = € [go,...,gnl, let hy(x) = (1 — t)z + te,
using the linear structure in [e, go, ..., gn]. This defines a homotopy h; from ||EG|| onto [e].
(It is not a strong deformation retraction, since [e] is not fixed under the homotopy h;.) O

Thus ||EG|| — ||BG|| = ||EG||/G is a model for the classifying bundle EG — BG.

REMARK 3.2. Note that this argument did not involve the group structure of G, thus
it works for any set X, and the corresponding “free” simplicial complex with n-simplices
parametrized by X"+

There is a closely related model, defined as follows. Call an n-simplex [go,. .., gn| degen-
erate if g; = gj41 for some j. There is a natural map from such a simplex onto the simplex
(90 - - -+ Gis Git2, - - -, Gn], collapsing the edge [g;g;+1] onto a vertex [g;]. Let ~ denote the equiv-
alence relation generated by such maps. Notice that

x o~z = hy(x) ~ h(z)

Thus the homotopy h; for ||[EG|| induces a retraction of |EG| onto the simplex [e]. (Notice
that this time, it is actually a strong deformation retract.) Furthermore, for g € G we have

r~1 & gx~ga

hence the G-action on |EG]| is free. One may verify the local triviality condition, hence |EG]|
is again a classifying bundle. The space |EG| is a CW-complex, with one cell for each non-
degenerate simplex.

EXAMPLE 3.3. Let G = Zs = {e,c}. Then there are 2""! n-simplices [go, ..., gn] for each
n, but only 2 non-degenerate ones: [e,c,e,c,...] and [c,e,c,e,...]. To construct |[EG|, one
starts with two O-simplices [e], [¢]. Next one attaches two 1-simplices [e, ¢] and [c, €], obtaining
St. One then attaches two 2-simplices [e, ¢, €] and [c, e, c]. (Notice that one of the three edges
of [e,c,e] is the degenerate edge [e, €], which gets mapped to [e].) The resulting space is S?
with its standard CW-complex structure. Iterating, one finds that |[EG| is just S°° with the
usual CW-complex structure. The space ||EG|| is much ’fatter’ and does not have such a nice
geometric interpretation.

3.2. Simplicial spaces. We may re-formulate the construction more systematically, as
follows. For m > 0 denote [n] := {0,...,n}. A map f : [n] — [m] is called increasing if
f(i+1) > f(4) for all 7, and strictly increasing if f(i+1) > f(i) for all i. One may think of [n]
as the vertices of an n-simplex. Any increasing map determines a map of simplices,

A(f) A" — Am, Zn:t,;ei — itief(i).
=0 1=0
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Under composition of increasing maps we have A(f; o fo) = A(f1) o A(f2). The inclusions of
the codimension one faces A”~! — A" correspond to the face maps

i . . £ <
0" : [n—1] — [n], 8(]):{]';17_1 1f§22

The maps A"T! — A" collapsing the edge from e; to e;1 correspond to the degeneracy maps
i, Qira J ifj<i
6[n+1]_>[n]a 6(])_{3_1 1fj>Z

The face and degeneracy maps generate the set of all increasing maps. More precisely we have:

LEMMA 3.4. Any increasing map f : [n] — [m] can be uniquely written as a composition
f=0%-- -0l & with iy < --- < and j1 < --- < Jj.

PROOF. Suppose first that f is 1-1. Then f is uniquely described by its image, and clearly
f = 0% ---9" where iy < --- < i}, is the ordered list of indices that are not in the image. If
f:[n] — [m] is not 1-1, let j < n — 1 be the largest index with f(j) = f(j + 1). Then f may
be uniquely written f = f’e/, where f'(j) < f'(j +1). Using induction, we eventually find
f =get - €l where j; < --- < j; and g is 1-1. O

Consider now a sequence of spaces X,, := G"*1. Any increasing map f : [n] — [m] induces
a continuous map

X(f): Xon — Xn, (905---,9m) = (950)s- -+ I (n))-

Under composition of increasing maps, X (f1 o fo) = X(f2) o X(f1). Our model ||EG|| was
defined as a quotient,

oo
1X[] = T Xn x A"/ ~,
n=0

under the equivalence relations,

(=, AS) () ~ (X()(2),y)

for every strictly increasing map f : [n] — [m]. These are exactly the “natural” identifications
made above. The model |EG]| is defined similarly,

oo
X| =] Xnx A"/ ~,
n=0

dividing out the relations for all increasing maps. In both cases, the topology is that of a
colimit over the quotients ngo Xp X A"/ ~.

In this reformulation, the construction of a classifying bundle works for any topological
group G. ||EG]| is Milnor’s model [23], while |EG| is introduced in Segal’s paper [27]. As
pointed out by Segal, |[EG| — |EG|/G may fail to be locally trivial, in general, but it is locally
trivial if G is somewhat reasonable (e.g., a Lie group). If G is a Lie group, exactly the same
argument as before gives a homotopy from ||EG||,|EG| onto [e]. There are many advantages
to having such a universal construction. For instance, it is immediately clear that any group
homomorphism H — G induces a map of classifying spaces.
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The universal construction of the classifying bundle goes back to Milnor, [23]. The sim-
plicial version of Milnor’s construction was developed by Dold-Lashof, Segal, Stasheff, and
Milgram.

Both the fat model ||[EG|| and the lean model |EG| have their advantages and disadvan-
tages. One advantage of the lean model is that the map

[E(G x K)| = [EG| x |EK],

induced by the two projections G x K — G and G x K — K, is a homeomorphism provided
one takes the “correct” product topology. ' The analogue for the fat model is not true, even
as sets. We’ll return to this issue later.

EXERCISE 3.5. Convince yourself that the map |E(G x K)| — |EG| x |EK]| is a bijection
of sets.

The construction of the classifying bundle generalizes as follows:

DEFINITION 3.6. A simplicial space X, is a collection of topological spaces X,,, n =0,1,.. .,
together with continuous maps X (f) : X,, — X,, for any increasing map f : [n] — [m], such
that X (f og) = X(g) o X(f) under composition of such maps, and X (id) = id. A simplicial
map F, : Xo — X between simplicial spaces is a collection of continuous maps F,, : X,, — X/,
intertwining the maps X (f), X'(f).

If we let ORD denote the category with objects the sets [n] and morphisms the increas-
ing maps f : [n] — [m], we may rephrase the definition as follows: A simplicial space is a
contravariant functor from that category ORD into the category TOP of topological spaces.
A simplicial map is a natural transformation between two such functors. Replacing TOP by
other categories, one similarly defines simplicial sets, manifolds, groups, rings etc.

DEFINITION 3.7. The geometric realization of a simplicial space X, is the quotient space
oo
X =] A" x Xp/ ~,
n=0

under the equivalence relations,

(AN (Y), x) ~ (y, X(f)(2))

for all y € A", x € X,,,, and any increasing map f : [n] — [m]. One similarly defines the fat
geometric realization || X|| by only dividing out the strictly increasing maps.

The maps 0; := X(0") : X, — X,,_1 and ¢; := X(€%) : X,, — X, 41 are called the face and
degeneracy maps of the simplicial space.

Clearly, a simplicial map F, : X, — X, induces a continuous map |F| : |X| — |X’|
between the geometric realizations, and similarly between the fat geometric realizations. That
is, geometric realization is a functor from the category of simplicial spaces into the category of
topological spaces.

12The product should be taken in the category of compactly generated spaces. This is similar the problem
that while the direct product of two CW-complexes is again a CW-complex, the topology (given as a colimit) is
slightly different from the product topology.
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Examples of simplicial spaces.

Any topological space X may be viewed as a simplicial space, by taking all X, = X
and all maps X (f) the identity map. The geometric realization of this simplicial space
is just X itself.

Given a topological space X, one may define a simplicial space E, X = X"t with

(EX)(f): (@0, 2m) = (Tf0)s- -+ Tp(n))

for any increasing map f : [n] — [m]. The same argument as for EG shows that the
geometric realizations of this simplicial space is contractible. The diagonal embedding
X — X" gives a continuous map from X into the geometric realization, X — |EX]|.
Note that if X = G is a group, then FE,G is a simplicial group, and the structure as
a principal G-bundle is given by the action of G as a (simplicial) subgroup from the
right.

Let X be a finite simplicial complex with IV vertices. Choose an ordering on the set V
of vertices, to identify V = [N]. Let S,, be the set of all increasing maps ¢ : [n] — [V]
such that ¢(0),...,¢(n) are the vertices of a (possibly degenerate) n-simplex in X,
with

SU)+ Sm— Sur S(N(6) = 60 A(S).

(Note that Se is a simplicial subset of Fo).) The non-degenerate simplices in S,, are
those given by strictly increasing maps ¢ : [n] — [N], thus are in 1-1 correspondence
with the (geometric) simplices in X. Using this fact, it is easy to see that

|5 = X.
In the important special case that X = AF is the standard k-simplex, we write S,, :=

Ay [k]. Thus Ay[k] is simply the set of morphisms f : [n] — [£].
Let G be a topological group. Then B,,G := G" is a simplicial space, with face maps

(hay ... hn) it =0
8¢(h1,...,hn): (hl,...,hihi+1,...,hn) if 0<i<n
(hl,...,hnfl) if 1=n

and degeneracy maps
€(h1, ... hp) = (h1,...,hiye,hig1, ... hy).
It is easy to check that the map w, : E,G — B,G given by
(905> 9n) = (9091 -+ Gn—19")

is a simplicial map. This identifies B,G as the base of the simplicial principal bundle
makes FoG — E,G/G = B,.G.
Generalizing this example, suppose X is a G-space. One may define a simplicial space
(X@)e by letting

(XG)n =G" x X,
with face and degeneracy maps

(hay. ., b, @) if  i=0
8i(h1,...,hn,x): (hl,...,hihi+1,...,hn,$) if 0<i<n
(hl,...,hn_l,hn.x) if 1=n
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Ei(hl, ey hn, JJ) = (hl, ey hi, e, hi+1, ey hn,{L‘)
This is naturally identified with E,G x¢g X, with quotient map

(905 -+ > Gn> ) = (g1 s+ - Gn19n 5 Gn-)
Hence the geometric realization of this simplicial space is the Borel construction Xg.
Let X be a topological space, and U = {U,,a € A} an open cover of X indexed by an
ordered set A. Given ag < --- < ay, let

Uaow-,an = Uao ARRN Uan

A, ={(ag,...,a,) € A"+1| ap < - < ap, U, a, # 0}
Then A, is a simplicial set, with face maps and degeneracy maps inherited from E,A.
Its geometric realization is a simplicial complex, sometimes known as the nerve of the
open cover. Define
Z/{nX = H Uao,...,an
(ag,...,an)EAR

(disjoint union), with face maps induced by inclusions, and degeneracy maps the natu-
ral bijections Uyy,....a;,ai,....an — Uao,...,an- There is a natural simplicial map U, X — X
induced by the inclusions of open sets.

THEOREM 3.8. [24, Section 7] If X is a paracompact Hausdorff space, the geometric
realization
UX| — | X|=X
of the map U, X — X is a homotopy equivalence.

PROOF. We have to construct a homotopy inverse f : X — |[U/X]| to the given
map ¢ : [UX]| — X. Choose a locally finite partition of unity y, subordinate to the
cover U,. Given x € X, let ag < ... < a, be an ordered set of indices such that

Zxai(x) =1, andz € Uy, a,-
i=0
Define f(z) € |[UX| to be the image of
(ZXai(CU)eia $) E ATL X Uao,...,an-
=0

It is easily checked that f is well-defined (i.e. independent of the choice of ay < ... < a,
(note that we do allow xq,(z) = 0). Since the same collection of indices also works
on a neighborhood of z, it is clear that f is continuous. We have g(f(x)) = x by
construction. The composition fog: [UX]| — [UX| is homotopic to the identity: The
required homotopy is induced by the homotopies I x (A" x Uy, .. a,) — (A" X Uqg.....an)s
n n
(t, (Z $i€i,T)) (Z((l —t)si + txa, (2))es, 2))
=0 1=0
O

REMARKS 3.9. (i) By essentially the same proof, the map |[UX]|| — X is a
homotopy equivalence as well.
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(ii) It may be useful to visualize the result for an open cover by just two open sets
Up, Ur. The geometric realization is obtained from a disjoint union Uy [[ Uy by
gluing in a “cylinder” I x (UyNU;). One obtains an inclusion X — [UX|, where
the partition of unity shows how to embed X over the intersections UyNU;. The
linear retraction of the cylinder onto the image of X give the desired homotopy
equivalence.

(iii) The result shows that all homotopy invariant topological invariants of X (in
particular its homology/cohomology) may be studied (at least in principle) in
terms of Us X. This is particularly interesting if U is a good cover, i.e. if all
Uay,...,a,, are contractible. In this case the topology of U, X is trivial, and all
information on the topology of |/ X]| lies in the face and degeneracy maps. Below
this will lead us to a simplicial interpretation of Cech cohomology.

Classifying maps can be interpreted in the simplicial construction, as follows. Sup-
pose G is a Lie group, m: P — X is a principal G-bundle over a paracompact Haus-
dorff space, and U, is a trivializing open cover of X. That is, over each U, there is
a G-equivariant map ¢, : 7~ 1(U,) — G. Suppose as before that we have chosen an
ordering of the index set, and define a map

([ W_I(Uaow-,an) — E,G = Gn+17 €T (¢ao($)v s 7¢an(x))'
1) is compatible with the face and degeneracy maps, hence it gives a simplicial map
(77 U)e P — E.G
where 71U is the cover of P by set 7=1(U,). Since 9 is G-equivariant, it descends to
a simplicial map
Ue X — BoG.

The geometric realization of this map is the classifying map for P, composed with the
map X ~ |[UX]| for some partition of unity, is a classifying map for P.

Below we will mostly work with the fat geometric realization, which has simpler properties
in a number of respects. There is, however, one important property of the (lean) geometric
realization: It is well-behaved under products.

PRrROPOSITION 3.10 (Milnor,Segal). Let Xo, X, be simplicial spaces, and let (X x X')o be
their direct product, i.e. (X x X"), = X,, x X],. The natural map

(X x X')a] = [Xo| x |X{]

induced by the two projections is a bijection of sets. It is a homeomorphism provided the
product on the right hand side is taken in the category of “compactly generated spaces”.

We indicate the main idea in an example (cf. Benson, p.25): Consider the simplicial space
A,[1]. Its non-degenerate simplices are (0), (1), (01). Elements of (A[1] x A[l]), are pairs of
increasing sequences (to .. .tn,t...t,) where each t;,t; is 0 or 1. Thus (A[1] x A[1])s has

four O-simplices (0,0),(0,1),(1,0),(1,1),
five non-degenerate 1-simplices (00,01), (01,00), (01,01),(01,11),(11,01)
two non-degenerate 2-simplices ~ (001,011), (011, 001).
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We hence see that the geometric realization is a square, could into two triangles along the
diagonal from (0,0) to (1,1). Similarly, in the general case:

EXERCISE 3.11. Show that the geometric realization of A4[k] x A4[l] is the product AF x Al
subdivided into k + [-simplices in a certain canonical way. (The fact that A* x Al admits a
canonical subdivision enters the definition of the cross product in singular homology. See e.g.
Hatcher [18, p. 277].)

REMARK 3.12. One can use this to give a very clean proof of the contractibility of the space
|Ee X | onto a base point 2, € X C |E,X|. Thinking of I as the geometric realization of A[1],
we would like to obtain the retraction as the geometric realization of a simplicial map

Adl] X B X — E.X.
Recalling that A,[1] consists of increasing maps ¢ : [n] — [1], the map is defined as follows:

(&, (z0y -y 20)) = (20 ..., 20)
where z = z; if ¢(i) = 0, z} = =z, if ¢(i) = 1. It is straightforward to check that this is a
simplicial map. An inclusion {1} < I is obtained by geometric realization of the simplicial
maps

{1}e = AL[1], 1 —(1,...,1)
and similarly for {0}. The geometric realizations of the restricted maps

{1}e X EeX — Eo X, ((1,...,1),(x0y...,xn)) — (Tuy ..., Ty),
{0}e X EeX — EoX, ((0,...,0),(x0,...,2n)) — (To,...,Tn)
are the constant map and the identity map, respectively.

3.4. The homology and cohomology of simplicial spaces. Our goal is to develop
techniques for calculating the equivariant cohomology of a G-manifold M, particularly the
cohomology of BG. Any simplicial space X, defines a double complex

(Co(Xe),d,0),

where d : Cy(X,) — Cy—1(X,) is the usual boundary map and ¢ : Cy(Xp) — Cq(Xp—1) is
defined in terms of the face maps as

Clearly, the two differentials d,é commute. Define the associated total complex (Co(X), D),
where

p+q=k

and D = d+ (—1)96 on Cy(X,). (The sign guarantees that D squares to 0.) We define a
homomorphism ¢ : Cy(X,) — Cpiq(||X]])

Co(Xp) = Cpiqg(AP X Xp) — Cpiq(|[X1]),
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where the first map is (—1)P¢ times cross-product with the identity map idar (viewed as a
singular chain ida» € Cp(AP)), and the second map is push-forward under the quotient map
AP x X, — || X||. Summing over all p + g = k, this gives a group homomorphism

(4) P Crp(X) — Cr([[X]])
1) is natural with respect to morphisms of simplicial spaces Xo — Y.

THEOREM 3.13. [24, Theorem 4.2] The map (4) is a chain homotopy equivalence, and
hence induces an isomorphism in homology. That is, the singular homology of || X|| may be
computed as the homology of the total complex associated to the double complex (Cy(X)), d,d).

SKETCH OF PROOF. A detailed proof can be found in the Bott-Mostow-Perchik article.
Here are some of the ideas involved. Let m: [ A" x X,, — || X|| be the quotient map. For
any a € Cy(X,), we have

Y(Da) = P(da)+ (=1)7P(0a)
= (=D)P r, (idar xda) + (—1)%(5c)
(=1)Pdm, (idar Xa) — (—1)Pm,(didar xa) + (—1)%(6a)

= d(a) — (~1P7 (1) (@ x a) — T idar 1 % (8)).0))
=0

J

The sum is zero due to the identifications given by 7. This shows that ¥(Da) = dy ().

The proof that (4) is an isomorphism in homology is similar to the proof that the simplicial
homology of a simplicial complex equals is singular homology. Recall that the topology on || X|]
was defined by taking a colimit of spaces ||X||n) = W(HﬁZO(A” X Xp). It may be shown (cf.
Bott-Mostow-Perchik) that any compact set in || X||, and in particular the image of any singular
chain, is contained in some [|.X||(y) with NV sufficiently large. This defines natural filtrations of
the chain complexes C, (|| X||) and Ce(X). One obtains a map between the spectral sequences
(cf. infra) associated to these filtrations, and the main point of the proof is now to show that
these spectral sequences coincide, already at the F, stage. O

If R is any abelian coefficient group (typically R = R, Z, Z2), we can consider homology with
coefficients in R, and the theorem shows that the homology groups of || X|| with coefficients in
R can be computed from a double complex Cp,(Xgy; R).

Dually there is a double complex of singular cochains,

(C*(Xe; R),d,9),
where d is the usual coboundary map (dual to the boundary map, which also denote by d) and

g+1 .
5= (-1

i=0
(dual to the map 6 for the chain complex). Let C*(X; R) be the total complex,

C*(X;R) = @ CUXR).
ptq=k
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By dualizing the maps from homology, we see that there is a natural homotopy equivalence
(X1 R) — CH(X; R).

Hence there is a canonical isomorphism between the cohomology of the total complex and the
cohomology of the fat geometric realization, || X,||.

EXAMPLE 3.14. The group homology H, (G) of a discrete group G is defined as the homology
of a chain complex C,G, where Ck(G) is the free Abelian group generated by elements of G¥,
and the differential is given as

k-1
O(ha, .. hie) = (hayo b)) + Y (=1 (B hitig, o i) 4 (=1 (ha, - ).
i=1

Note that if we view elements of G as O-simplices in G, this is just the complex (Co(BrG),9)
inside the double complex C,(B,G). Dually, we have the cochain complex C*(G) = Hom(Cy, Z)
and the corresponding group cohomology H*(G). Elements of C*(G) are functions ¢ : GF — Z,
and the dual differential (once again denoted ) is

(5¢)(h1,...,hk+1):¢(h2,.. hk-i—l —I—Z hl, . ,hihi+1,...,hk+1) ( )k+1¢(h1,...,hk).

THEOREM 3.15. The inclusion CH(@) — CY(ByQ) induces an isomorphism from the group
cohomology H*(G) of G to the cohomology H*(BG) of the classifying space BG.

Proor. This will be “immediate” once we have the spectral sequence set-up, but we can
easily give a direct proof. Indeed, since G is discrete the d-cohomology is trivial.

We first show that the map H*(G) — H*(BG) is surjective. Let o € Z¥(BG) represent a
class in H*(BG). Write a = a®* +ab*~14.... Since Da = 0, we have in particular da®* = 0.
Since the d-cohomology is trivial, we can write a®* = d3%*~1. Replacing a with a — DF%F~1,
and denoting the new form by a again, we achieve a®* = 0. The new form has da"*~1 = 0,
so again we may subtract a D-coboundary to achieve o'~ = 0. Tterating, we find that «
is D-cohomologous to a form in C*(G) = C°(BxG), closed under both d and §. By a similar
argument, one shows that the map H*(G) — H¥(BQ) is injective. O

EXAMPLE 3.16. Let X be a paracompact Hausdorff space, with cover U = {U|a € A}
where A is an ordered set. Given a coefficient ring R consider the subcomplex

C*(X,U,R) c C°(U X, R),

consisting of locally constant functions, in other words the kernel of d : CO(UX,R) —
CYUpX,R). If U is “good”, that is, each non-empty intersection Uag...a), 1s contractible, ele-
ments of C° (U, X, R) are in fact constant functions, thus are collections of elements fag,....ar, € R,
one for each non-empty intersection Uy, . 4, With ag < --- < a, and the differential reads,

-----

k+1

(5f>a0"'ak+1 = Z(_l)ifao-"di“-ak'

i=0
The cohomology of this complex is called the Cech cohomology of X with respect to the cover
U.
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THEOREM 3.17 (Isomorphism between Cech and singular cohomology). Suppose the cover
is “good”, that is, each non-empty intersection Uy.. q, 15 contractible. Then ﬁk(X,L{, R) is
canonically isomorphic to the singular cohomology H*(X,R). More precisely, the inclusion
map C*(X,U,R) — C*(UX, R) gives an isomorphism

o*(X,u,R) — H*(UX||,R) = H*(X, R).

Proo¥r. This follows since the d-cohomology of the double complex C9(U,X) is trivial in
positive degree, as for the previous theorem. O

ExaMPLE 3.18. Let X be a simplicial complex, with a given ordering on its set of vertices,
and S, the corresponding simplicial set. Then |Se| = X, while ||Se|| is homotopy equivalent
to X. In this case, (Cy(S.),d) may be identified with the simplicial chain complex. Let
Ck (X) := C°(S},) denote the simplicial cochain complex. Again, we easily see that the inclusion
into the double complex gives an isomorphism HX (X) = H*(||S||) = H*(X).

4. Spectral sequences

Suppose (C**,d,J) is a bi-complex: That is, C'** is a bi-graded R-module for some coeffi-
cient ring R, and d, é are two commuting differentials with

d: cpe_, CPHH, §: CP9 — optla,
One can then introduce the total complex
cF = @ P4
p+q=k

with differential D = d + (—=1)95. Our goal is to compute the cohomology of the complex
(C*,D). Cocycles for the differential D are elements of the form

o= %k 4 qlk=1 4 k0

satisfying a system of equations,

(5) da®* = 0
daVF 1 = £5a0F
0 = dak0.

It is convenient to picture this system of equations in an array of boxes, labeled by (p, ¢), with
p increasing in horizontal direction and ¢ increasing in vertical direction.

4.1. The idea of a spectral sequence. It seems natural to find solutions by induction.
(In a sense, a spectral sequence will be similar to a “power series” ansatz for solving an ordinary
differential equation. ) Let us consider a solutions having their first non-trivial term in the p, ¢
position, and extending downwards. That is, consider the system

(6) da?? = 0
daPtba=l = 4P

0 = d&ak0.
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The first equation says that aP? is a d-cocycle. This leads us to consider the d-cohomology
Ey := H(C,d), with bigrading

kerd N CP1

imdNCpra’

The second equation has a solution if and only if daP? is exact. Put differently, the class of

aP? in EP should be closed under the differential d : EP? — EPT"? which is induced by 4.
This leads us to consider

Pq .__
EPY =

kerd; N Ef 4

md, 0 EPT

Classes in E'? are represented o4 admitting an extension to an element a7 +aP™14~1 solving
the first two equations. Iterating this idea will lead to the concept of spectral sequence, (E;, d,)
with F, 1 the cohomology of E,.. Before we explain how to continue the sequence, let us explain
the abstract notion of a spectral sequence and what it actually computes.

Pq .__
ED? =

4.2. What does the spectral sequence compute?

DEFINITION 4.1. A spectral sequence is a sequence of bigraded differential complexes
(BP9 d,), r=0,1,2,...,
where d, raises the total degree by 1 and the p-degree by r, with
P _ kerd, N Ef’q'
1 imd, N ERY
We will only consider first quadrant bigraded spectral sequences, i.e. EF? = 0 unless

p,q > 0. In this case

d,: BP9 — ppma—rtl
is zero for r sufficiently large (namely, » > ¢ 4+ 1). Hence the spectral sequence stabilizes:
EP! = EPY for r suffiently large. The limiting groups are denoted E&.

Consider now a (first quadrant) double complex CP? as above. Define the horizontal
filtration of C** by direct sums F*'(C) := @;>, D >0 C"? Note that D : F'(C) — F*(C),
hence we obtain a filtration of the D-cohomology H* = H*(C, D):

FO(H® > FY(H*) > F2(H") > - -+,
where FP(HPT) is the subspace represented by D-closed zig-zags starting in the (p, ¢)-position
and extending downwards.

THEOREM 4.2. There is a bigraded spectral sequence EX'? with Es-term EY? = Hs(Hy(CP9)),
such that
Egéq — FPHq+p/Fp+1 HatP,
One writes (abusing notation)
ENY = HPTI(O).
REMARK 4.3. One could also switch the role of d and § and gets another spectral sequence

computing the same cohomology.

The result may seem a little disappointing at first sight: Of course, in reality we would

rather get H* = HP9 itself, rather than the associated graded group of some filtration of
HPta.
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REMARKS 4.4. (cf. Davis-Kirk [10, p.240]) Suppose V is an R-module with a decreasing
filtration FO(V) > F}(V) D ---, and let Gr®(V) be the associated graded module,

Gr/ (V) = FI(V)/FITY(V).
Suppose the filtration is finite, i.e. F/(V) = 0 for j sufficiently large.

(a) If Gr*(V) = 0 then V = 0. More generally, suppose we are given a morphism A :
V' — V" of filtered R-modules, and consider the induced map Gr(A) : Gr*(V’') —
Gr*(V"). If Gr(A) is an isomorphism then so is A. (This follows from the first part,
by considering induced filtration on the kernel and cokernel of A.)

(b) If R is a field, and dimV < oo then dimV = Y, dim Gr*(V)). Thus Gr*(V) carries
almost the same information as V' in this case.

(c) In general, one cannot recover V' from Gr®(V'). For example, let R = Z. Consider the
following two filtered Z-modules,

72527250, ZP7ZsDZDNO.

In both cases the associated graded module is Zs & Z, but the groups are non-
isomorphic. Similarly

Zy Do D0, Zo®Zo D ZoDO.

Thus, if our coefficient ring is a field, the spectral sequence really is going to compute
the cohomology. In general, we can still say that for any morphism of double complexes
C** — (C")**, and the induced map in cohomology is an isomorphism if one has E, = (E’),
for r sufficiently large.

REMARK 4.5. More generally, there are spectral sequences for the cohomology of chain
complexes (C®,d) with a given filtration FO(C®) > F!(C®) D --- by subcomplexes. In our
case, the filtration came from a bigrading.

4.3. How does one construct the spectral sequence? The spectral sequence of a
double complex C**, with filtration F?(C) as defined as above, may be defined as follows. Let

Zf’q = {a c FPC'P+€1‘ Da € Fp+rcp+q+1}
Elements of ZP'? are represented by zig-zags of length r, starting in the (p,q) position and
solving the first r of our system of equations. Define a submodule
4 . ptlg-1 —r41,g+r—2
Bt i Z7t e 4 p(zrTy e,
Here foll’qfl C ZP? may be viewed as those zig-zags for which the first term o is zero.
Note that D(Zf:{+1’q+T_2) C CP4 since D of any element in Z, is just +§ of the tail of the

Zf:lr+1’q+r_2 sits in the (p — 1, q) position. Let

zig-zag, and the tail of an element in
Ef:q — Zf’q/B£7q'

— 1 .
ZPTharH Gince

If a € ZP?, its differential Da is obviously contained in
DBPY = DzPT 47! ¢ ppimarl
the class of Da in P4+ depends only on the class of a in EF*?. This defines

. P9 p+r,q—r+1
d,: EPT — EF .
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Since d,. is induced from D, it is immediate that d, squares to 0, so d, is a differential. Its
kernel d,. is represented by zig-zag’s a € ZP'? of length r that can be extended to a zig-zag fol
of lengthe r + 1. It is straightforward (but slightly tedious) to check that indeed, E,;1 is the
cohomology for E,. By construction, EZ! is represented by elements in the p, g-position that
may be extended down to a D-cocycle.

As a first example, let us re-examine the isomorphism between Cech cohomology and
singular cohomology. Given a good cover U, view the Cech complex C? (X,U; R) as the zeroth
row of a double complex C?4. Let CP4 = CY(UPX; R). The inclusion map CP4 — CP4 induces
maps between the spectral sequences. Already at the E; stage the two spectral sequences
coincide. It follows that the map in cohomology H(C, D) — H(C, D) is an isomorphism. But
H(C,D) = H(C*(X,U;R),d) while H(C,D) = H(||UX||;R) = H(X; R).

4.4. The simplicial de Rham theorem. As an example of spectral sequence techniques,
we will now proof the simplicial analogue of de Rham’s isomorphism between singular coho-
mology (with coefficients in R) and de Rham cohomology. Let us recall briefly that the proof of
this isomorphism uses an intermediate complex of smooth singular chains C;™(X) C Ci(X).
One proves that the inclusion map is a chain homotopy equivalence, hence dually the map
C*(X,R) — Hom(C;™(X),R) is a cochain homotopy equivalence. Integration over smooth
chains defines a map Q%(X) — Hom(C;™(X),R), and the essence of de Rham’s theorem is
that this is a cochain homotopy equivalence as well.

Suppose now X, is a simplicial manifold, and define a double complex of differential forms,

(Q°*(X.),d,0),
where again § is an alternating sum of pull-backs. Let QF(X) be the associated total complex.

THEOREM 4.6 (Simplicial de Rham theorem). The cohomology of the complex QF(X) is
canonically isomorphic to the singular cohomology of || X || with coefficients in R.

PROOF. Define a map
QP (Xq) — Hom(C';m(Xq),R)

by integration over chains. This is a homomorphism of double complexes, and by the usual de
Rham theorem the induced map in d-cohomology is an isomorphism. Hence, the associated
spectral sequences coincide already at the Ei-term. It follows that the above map induces an
isomorphism of cohomology groups for the total complex. Similarly, the maps

CP(Xy, R) = Hom(Cp(X,), R) — Hom(Cp™(X,), R)

give an isomorphism for the total cohomology. O

4.5. The cohomology H!(BG) for i < 4. We will now give a systematic computation
of HY(BG) (0 < i < 4) for a compact connected simple Lie group G. We will quickly need
some basic facts about the cohomology of Lie groups, so let us briefly review those facts. We
introduce the following notation. For & € g let £& denote the left-invariant vector field on
G equal to & at e, and &7 the right-invariant vector field. Let Q(G)*, Q(G)® be the spaces
of left-/right- invariant differential forms and Q(G)**f the space of bi-invariant differential
forms. The space (G)" is generated by the components of the left Maurer-Cartan form
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6 € Q1 (G)* ® g which is defined by +(¢¥)0F = £. Similarly let 8% be the right-Maurer-Cartan
form. These satisfy structure equations,
do* + 30%,6"1 =0, 46" — 1[6",0") =o0.
Note also that [6%,[0F,0%]] = 0 by the Jacobi identity (plug in left-invariant vector fields to
see this.) Both inclusions
QG)E - (G — QG)

induce isomorphisms in cohomology: Indeed, if [a] € H(G), then [l[7a] = [7[a] = [a] by
homotopy invariance, since G is connected. Thus, the average of o under the left action is
cohomologous to «. Similarly, if we also average under the right-action we get a bi-invariant
form cohomologous to «.

LEMMA 4.7 (Koszul). The de Rham differential on Q(G)" is given by the formula
d|Q(G)L = % Z<ea’ 9L> Leg'

PROOF. Since both sides are graded derivations, it suffices to check on 6%. We have
DGR A N (N Vs
a a

1
= — > (e, 0" )in (67,0
= —% (ea,0L>[ea,9L]

= —10%, 0" =do".
O

Since the left-invariant vector fields generate right-translations, this formula shows that d
is in fact 0 on Q(G)E*F! Using Q(G)X*F = (Ag*)© this proves,

PropoSITION 4.8. The de Rham cohomology of a compact connected Lie group is isomor-
phic to (Ag*)®. Bvery cohomology class has a unique bi-invariant representative.

The structure of the algebra (Ag*)“ is completely known, by the Hopf-Koszul-Samelson
theorem (see e.g. Greub-Halperin-Vanstone [16]). Some basic facts are easy to figure out
by hand, however. For instance, if p € (S™g*)“ is an invariant polynomial on g, one has a
corresponding bi-invariant form on G:

o = 0" - p'([0%,6])
here p’ € S™1(g*) ® g* is the gradient of p, defined by ¢ - p/'(¢) = %]tzop(c +t£). (We leave
it as an exercise that this form is indeed bi-invariant). In particular, if B is an invariant inner
product on g, the polynomial p(§) = B(&,§) defines a form of degree 3, which we prefer to
normalize as follows:

1
n= EB(9L7 [0L7 QL])
It is easy to check that if G is simple, HZ(G) =0 for i = 1,2 while H3(G) = R with generator
this form 7.
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Now consider the double complex for BG, i.e. CP4 = QI(GP). The Ej-term is H1(GP).
Note this is 0 for p4¢q < 4 and ¢ > 0, except for the term H3(G) = R which we just computed.
(Draw a picture of the FEj-term!) To compute the Fs-term, we have calculate the image of [n]
under § : H3(G) — H3(G?) = R @ R. By the explicit formulas for the face maps,

§: QI(G) — QUG?), da=rpria+pria—puta

where p @ G x G — G is group multiplication and pr; are the two projections. For 7, one may
verify that

on = d(%B(pr]k oL pr; OR)>.

Thus dy[n] = [0n] = 0, and Ey® = EP? = R. Also, the d; = d-cohomology of the row p = 0 is
trivial. Thus for p+q < 4, E21’3 = Eg’o =R, and EY? = 0 otherwise. Note that the differentials

do from the remaining entries FY? with p + ¢ < 4 are all zero, and similarly for ds, d4,.... We
conclude that FY? = ER for p+ ¢ < 4. We have thus shown (real coefficients)

HY(BG) = H*(BG) = H*(BG) =0, H*(BG)=R.
We can be more precise: Let 3 = 1B(pr} 0%, pr; 67) € Q*(G?). Then 63 = 0 (as one verifies

by direct calculation) and therefore n + § € @p g4 Q9(GP) is a D-cocycle representing a
generator of H*(BG).

REMARK 4.9. If G is simple and simply connected, it is known that H*(G, Z) has no torsion
in degree ¢ < 4. Therefore, the above argument also works with Z coefficients, using singular
cochains, and one finds that H*(BG,Z) = Z while H*(BG,Z) =0 for 1 < i < 3.

4.6. Product structures. Recall that the front p-face of an n-simplex p > n, is the
simplex spanned by the first p 4 1 vertices ey, ..., e,, while the back p-face is spanned by the
last p + 1 vertices e,,—p, ..., e,. We recall that these enter the definition of the cup product on
singular cochains: Given cochains o € C%(X), 3 € C7(X), one defines the value of a U 8 €
€9t (X) on a singular ¢+¢-simplex o : A9T? — X to be the value of o on the front g-simplex,
A7 — A7 —, X times the value of 8 on the back ¢/-simplex A7 — AItTd — X

The front-face and back-face correspond to the following two morphisms in the category
Ord:

¢p i [l = In], i—i, Yy [pl—[n], i it n—p.
If X, is a simplicial space, we obtain corresponding maps
X(¢p), X () : Xn — Xp.

We can use these to define a product structure on the double complex of singular cochains
C*(X.), by composition,

CY(Xp) ® Cq/(Xp’) — C1(Xp1p) ® qu(Xp—i-p’) — Tt (Xptp')-

Here the first map is (—1)7? times pull-back under the map X (¢h"? /) x X ((Z)Z,J“p /), while the

second map is the usual cup product. The sign (—1)q,p is necessary in order that D becomes
a derivation for the product structure. More precisely we have:
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PROPOSITION 4.10. Both differentials d,é on the double complex are (graded) derivations
with respect to the product structure. That is, if o € C1(X)p) and 8 € c? (Xy), we have

daf) = (da)p+ (~1)"Pa(ds)
5(af) = (=1)7(6a)B+ (—1)a(6)
D(af) = (Da)B+ (~1)7Pa(DP).

Since D is a derivation, the product structure descends to the cohomology H®(C*(X,), D)).
By a similar formula, we have a ring structure on the simplicial de Rham complex.

THEOREM 4.11. The isomorphism H®(C*(X,.),D) — H*(||X||) is an isomorphism of
graded rings.

See e.g. Dupont, [14].
In general, if a double complex (CP?,d, ) has a product structure relative to which d,
satisfy

d(af) = (da)B+ (~1)"Pa(dB)
5(@B) = (—1)7(6a)B+ (—1)Pa(3B)

for « € CP4, 3 € CP'7, the differential D becomes a derivation for the total complex. Further-
more, each d, : E,. — E, in the spectral sequence becomes a graded derivation, for the product
structure induced from FE,._;. Passing to the limit, we obtain a product structure on E,.. On
the other hand, the product structure on the cohomology of the total complex is compatible
with the filtration, hence it descends to a product structure on the associated graded group,
which we saw is F,. The two product structures on E,, coincide.

The upshot is: The total cohomology of the double complex QP (X,), with the ring structure
just introduced, is isomorphic to the cohomology algebra of || X|| as a ring.

5. The Chern-Weil construction

5.1. Connections and curvature on principal bundles. Let G be a Lie group and
7 : P — B be a (smooth) principal G-bundle. A differential form « on P is called horizontal
if te,0 = 0 for all £ € g, and basic if it is both invariant and horizontal. It is well-known (and
easy to see, using local trivializations) that the pull-back map 7* : Q(B) — Q(P) with image
the basic forms. That is, any basic form descends to a unique form on B. More generally, if V'
is a G-represenations, a V-valued form o € Q(P) ® V is called basic if it is in (Q(P)por @ V)©.
Basic V-valued forms descend to forms with values in the associated vector bundle P xg V.

Let VP C TP be the vertical subbundle, i.e. V,P = ker(d,n) for p € P. There is an exact
sequence of vector bundles,

0—-VP—-TP—7"TB — 0.

A connection on P is a G-equivariant splitting of this sequence, i.e. a G-equivariant surjective
bundle homomorphism TP — V P, restricting to the identity on V' P. This can be reformulated
as follows: The bundle V P is trivialized by the generating vector fields for the G-action on P:

Pxg—VP, (p,&) + &p(p).
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Thus, a connection on P is a G-equivariant bundle map TP — P X g taking &£p to £. It is thus
given by a connection 1-form § € Q'(P) ® g with defining properties,

g0 =Ad,0, 1,0=C¢

Any two connections differ by a form in Q'(P) ® g that is invariant (i.e. lies in (Q1(P) ® g)¢
and horizontal (i.e. annihilated by all t¢,.) That is, the space of connections is an affine
space, with underlying vector space the horizontal and invariant g-valued 1-forms. Given a
connection, one may define the corresponding horizontal bundle H P = ker §, and the splitting
identifies HP = 7*TB.

The curvature of a connection 6 is defined as

F’=d0+109,0].

It is an invariant and horizontal g-valued 2-form. To remove any possible ambiguities, let us
write out the curvature in terms of a basis e, of g: Introduce structure constants f;. of g by
lep, el =", fleaq, and write = >, 0%,. Then FY =" (F%)%, where (F?)* are 2-forms,

(FO)* =d0"+ 3> fn6® Ao,
be

One of its basic properties is the Bianchi identity
d°F .= (d+1[0,))F? = 0.

(The proof relies on the fact that [0, [0, 0]] = 0, which in turn follows from the Jacobi identity.)
There are many geometric interpretations of the curvature — for example, it measures the failure
of the horizontal lift Lift : X(B) — X(P) to be a Lie algebra homomorphism.

We are interested in the role of F? in the Chern-Weil construction of characteristic classes
on B. If p € S™g* is a polynomial on g, we may form &(p) := p(F%) € Q*™(P). More
accurately, we may view the curvature as a map g* — Q2(P), as such it extends to an algebra
homomorphism & : Sg* — Q°°*(P). Note that the image of ¢/ lies in the space of forms on P
that are horizontal and invariant, i.e. basic. The space Q(P)pasic of basic forms is isomorphic
to Q(B), by pull-back. Hence, & descends to an algebra homomorphism

66’ . Sg* N Qeven(B)'

THEOREM 5.1 (Chern-Weil construction). If p € (Sg*)¢ is an invariant polynomial, the
form (p) is closed. Its cohomology class does not depend on the choice of 6.

We will postpone the (not very difficult) proof, since we will prove a more general result
further down. The cohomology classes [c?(p)] are called the characteristic classes of the prin-
cipal bundle P. Indeed, we will see that they are exactly the characteristic classes (for real
coefficients) obtained from the classifying map for P.

5.2. g-differential algebras. Cartan’s idea [8, 9] was to introduce an algebraic model
for the space of differential forms on the classifying bundle EG — BG, and to re-phrase the
Chern-Weil construction in those terms. (We will show how his model is related to the simplicial
model discussed earlier.)
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DEFINITION 5.2. A differential graded algebra is an graded algebra A = ;2 A’ with a
differential d of degree +1, such that d is a derivation. It is called a g-differential algebra if, in
addition, there are derivations L¢ of degree 0 and t¢ of degree —1, for all £ € g, satisfying the
relations of contractions, Lie derivative and differential on a manifold with a g-action:

[Lg, Lg/] = 0, [Lg, Lg/} = L[{,E’]g
[d, L] = 0, [Le, Ler] = Lig g7}
[d,d] =0, [d;ee] = Le
(using graded commutators).

There is an obvious notion of homomorphism of g-differential algebras. Sometimes one also
considers g-differential spaces (i.e. one doesn’t require algebra structures.) A first example of
a g-differential algebra is the algebra of differential forms on a manifold with a g-action.

DEFINITION 5.3. A connection on a g-differential algebra is an element § € A! ® g satisfying
e = & and L = —[€,0]y. The curvature of the connection 6 is the element F¥ € A% ® g
defined as

F’=d0+109,0].

Note that the condition L¢f = —[, 0], is the infinitesimal version of the G-invariance
condition for a principal connection. It is equivalent to the global condition if G is connected.
An example is therefore the connection on the space of differential forms on a principal G-
bundle, if G is connected. More generally, if P is a manifold with a Lie algebra action of g, the
existence of a connection on (P) implies that the action is locally free (and e.g. for g compact
the converse holds true). As in the case of principal bundles, if a connection exists, the space
of connections is an affine space with underlying vector space the space (.A%lor ® @)iny-

We will often take the equivalent point of view that a connection is an equivariant map
0: g* — A! with 1e0(u) = (u, &), and the curvature is an equivariant map FO: g* — A2

DEFINITION 5.4. Let A be a g-dga. One defines subalgebras of horizontal, invariant and
basic elements by

Ahor - ﬂker(%); »Ainv - ﬂker(Lg), Abasic = -Ahor N -Ainv-
13 13

As in the case of principal bundles, F? takes values in horizontal elements. If we extend
F? to an algebra homomorphism Sg* — A", p — p(F?) then p(F?) is basic provided p €
(Sg*)inv‘

For any principal bundle 7 : P — B, with G connected, a form on P is basic if and only if
it is the pull-back of a form on the base: 7* : Q(B) — Q(P)pasic is an isomorphism.

LEMMA 5.5. The basic subalgebra Ap.sic s invariant under d. Its cohomology is called the
basic cohomology of A.

ProOOF. Follows from [i¢,d] = L¢ and [Lg¢,d] = 0. O

Note that by contrast, the subalgebra of horizontal elements is not d-invariant.
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5.3. The Weil algebra. The Weil algebra Wg is most quickly defined in terms of gener-
ators and relations:

DEFINITION 5.6. The Weil algebra Wg is the commutative graded algebra, freely generated
by elements p € g* of degree 1 and elements 7z € g* of degree 2 (linear over the two copies of
g*), with contractions, Lie derivatives and differential given on degree 1 generators by

tep = (1, §), Lep=—adgp, dp=7.
The canonical connection on Wy is given by o . g" — Wag, s p.

This is well-defined: The relations among contractions, Lie derivatives and differential force
us to put

vefl = tgdp = Lep = — adg p
as well as Lept = —adZ u and dg = 0. It is easily checked that these definitions are consistent,
essentially because Wy is free over the given set of generators.

REMARK 5.7. Note that the construction of an algebra and a differential makes sense for
g* replaced with any vector space V, and defines a commutative graded differential algebra.
This is usually called the Koszul algebra.

As an algebra, Wy is simply the tensor product of Sg* (corresponding to the degree 2
generators) and Ag* (corresponding to the degree 1 generators). We may also view Wy as a
symmetric algebra (in the graded sense) over the graded vector space g* @ g*, where the first
copy corresponds to degree 1 generators and the second copy to degree 2 generators.

PROPOSITION 5.8 (Acyclicity). There exists a canonical homotopy operator h : Wg — Wy
with [h, d] = id —1I1, where I1 : Wg — W is projection onto W°g = R.

PROOF. Let o be the degree -1 derivation given on generators by ou = 0 and o = p.
The commutator [0, d] is a derivation of degree 0, equal to the identity on generators. It hence
extends to the Fuler operator on W, given on a product of generators simply by multiplication
by the number of generators in that product. In particular, it is invertible on W+g = kerII.
It is easy to check that [o,d] commutes with ¢ and d. The homotopy operator is defined by
h=0on W and ho[o,d] = o on Wg. O

PROPOSITION 5.9 (Universal property). If A is any g-dga with connection 0, there is a
unique homomorphism of g-dga’s ¢ : Wg — A such that the following diagram commutes,

WgT>A.

7

*

g

PROOF. The homomorphism takes u to 6(p) and f to df(u). It is straightforward to check
that this has the correct properties. O

These two properties show clearly that we should think of Wg as the algebraic analogue of
Q(EG), with ¢ the analogue to pull-back under a classifying map Q(EG) — Q(P), and h the
algebraic analogue of the homotopy operator for a contraction of EG to a base point.
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PROPOSITION 5.10. Let A be a locally free g-dga, and 0y and 61 two connections on g. Let
co,c1 2 Wg — A be the two characteristic homomorphisms defined by 0y,01. There exists an
operator h : Wg — A of degree —1 with the following properties,

[h, d] = Cy) — (1, [h, Lg] = 0, [h, Lg] =0.

PRrROOF. Consider the connection § on A® Q([0,1]) given by 6 = (1 —t)6p + t0;, where ¢ is
the coordinate on [0, 1]. It defines a characteristic homomorphism

c: Wg— A®Q([0,1])
that pulls back to cg,c; at t =0,t = 1. Let h be &+ the composition of ¢ with fiber integration

over [0,1]. For the appropriate choice of sign, Stokes’ theorem gives [h,d] = ¢y — ¢;. The
identities [h,t] = 0, [h,L¢] = 0 hold because the g-action has no component in the M-
direction. O

In general, given two homomorphisms of g-differential spaces, cg,c; : A — A’, we define
a g-chain homotopy to be an operator h : A — A’ of degree -1 having the properties in this
Proposition.

5.4. The algebraic Chern-Weil construction. To determine the basic subcomplex, it
is convenient to replace the degree 2 generators fi by the curvatures i = FY(fi). If e denotes
a basis of g* dual to the basis e, of g introduced above, we have

o= uae“ Z e/\e

so these are again generators, and we get another isomorphism Wg = Sg* ® Ag* where now
Sg* is generated by the curvatures g = F?" (), rather than @. It is immediate from this
description that (Wg)per is the subalgebra Sg* generated by the curvatures, and therefore

(Wg)basic = (Sg*)inv-

PROPOSITION 5.11. In terms of the isomorphism Wg = Sg* ® Ag*, where Sg* is generated
by the curvatures fi, we have L?/ =1® L?g and the Weil differential is

W a(7Sg* 17Ag* ca ,Ng*
dV = e (L% + 5L ) +eve,?

PROOF. We use that if A4 is a commutative graded algebra, then the space Der(A) :=
@, Der’(A) of graded derivations of A is a left-A-module. In particular the right hand side of
the formula for d" defines a derivation, since (Lgag ,Lé\f ,Lé\ag are all derivations of Wg. Two
derivations agree if and only if they agree on generators. On generators e?, the right hand side

gives
(eb(Lfbg* + %Lé\bg*> + ebéeAbg*)ea — l bLAg* e+ eb(y ng*)ea
= f e + et

= e°,

Similarly, one verifies (eb(Lfbg* + %Lé\bg*) + ebLng* )e® by direct computation. O
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From this formula for the Weil differential, we see that the restricted differential on (Wg)pasic
is in fact 0. Thus Hpasic(Wg) = H(W@)basic) = (S8 )iny-
To summarize, we see that if A is a g-dga with connection, the characteristic homomorphism
& : Wg — A restricts to a chain map
Ce : (Sg*)g - Abasic

(where (Sg*)® carries the 0 differential), and that the two chain maps defined by two connections
are related by a chain homotopy ¢? : (Sg*)® — Apasic of degree -1. Hence one obtains an algebra
homomorphism

(Sg")? — Hpasic(A)

independent of the choice of connection. This is Cartan’s algebraic analogue to the Chern Weil
construction.

PROPOSITION 5.12. Let A be a locally free commutative g-dga. Then the mapping

A—-AWg, a—a®1
s a g-chain homotopy equivalence. Given a connection 0, a homotopy inverse is given by the
map
AWg— A, (a®w)— ad(w).
ProOOF. We have to show that the composition

Wgo A—-A—-Wg A, wea— (Cw)a—1 (Pw)a

is g-homotopic to the identity. For this, it suffices to show that the two maps

Wg—-Wge A, w—1®dw
Wg— WgR A, w—w®l
are g-chain homotopic. But this follows, since the first map is the characteristic homomorphism

for the connection 1® 6 on Wg® A, while the second map is the characteristic homomorphism
for the connection 8" ® 1. O

5.5. The Weil model of equivariant cohomology. Recall that if M is a G-manifold,
we defined the equivariant cohomology ring of M to be the cohomology ring of the borel
construction Mg = EG xg M. If EG were a finite-dimensional principal bundle, and thus Mg
were a manifold, this would be the cohomology of the de Rham complex

QM) = (UEG x M))basic = (UEG) @ QM) )pasic-

Thinking of Wg as an algebraic model for Q(EG), and of a g-dga as the algebraic counterpart
of Q(M), this motivated the following definition:

DEFINITION 5.13. The equivariant cohomology of a g-dga A is the basic cohomology of
Wg® A:

Hy(A) = Hpasic(Wg ® A)
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This is known as the Weil model of equivariant cohomology, especially in the case A = Q(M)
for a G-manifold M. In this case we will write Hg(M) := Hyg(2(M)). We will show later
that (for G a compact connected Lie group) it is equivalent to the Borel model, i.e. that
Hy(M) = Hg(M) := H(Mg). Taking A =R = Q(pt) to be the trivial g-dga,

Hgy(pt) = Hpasic(Wg) = (Sg")inv-
Any homomorphism of g-dga’s A; — Az induces an algebra homomorphism Hg(A1) — Hg(A2);
in particular (taking A; = R and Ay = A), Hg(A) is a module over (Sg*)iny. For any g-dga,
the inclusion map A — Wg® A, a — 1 ® «a is a homomorphism of g-dga’s, hence it induces

an algebra homomorphism Hpasic(A) — Hg(A). Above we proved that if A is locally free and
commutative then the map A — Wg® A is a g-homotopy equivalence. That is,

PROPOSITION 5.14. If A is a locally free g-dga, the map A — Wg® A, a— 1 ® «a induces
an algebra isomorphism Hpasic(A) = Hg(A).

Thus, if P is a principal G-bundle, the pull-back map Q(B) — Q(P)pasic C (P) induces an
isomorphism Hy(2(P)) = H(Q(B)) = H(B). This provides further evidence for the conjecture
Hy(M) = Hg(M), since indeed

Hg(P) = H(EG x¢ P) = H(P x¢ EG) = H(B)
(using that P xg EG — B is a fiber bundle with contractible fibers EG.)

5.6. The Cartan model of equivariant cohomology. The Weil model of equivariant
cohomology has the advantage of a good conceptual explanation, Wg playing the role of differ-
ential forms on £G. For computational purposes, it is usually more convenient to work with
an equivalent model known as the Cartan model. Let A be a g-dga (we usually have in mind
the algebra of differential forms on a G-manifold A = Q(M)). The first step in calculating
Hgy(A) is to determine the basic subcomplex (Wg ® A)pasic- Identify Wg = Sg* @ Ag*, where
Sg* is the symmetric algebra generated by the curvature variables. To simplify notation, we
will denote the degree 2 generators by v* := e®. We have

Wg=(Sg"®A"g") @ Sg",
where ATg* = @, Alg*, hence a projection Wg — Sg* (“setting the connection variables
equal to 0”). Extend to a projection
Wgo A— Sg*® A

THEOREM b5.15 (Cartan). The projection Wg ® A — Sg* ® A restricts to an algebra iso-

morphism
(Wg ® -A)basic - (Sg* ® A)inv-
This isomorphism takes the differential dV + d* to the equivariant differential
dg = d— 0" @ i}

(where d = d*).

PROOF. We prove this result using an elegant trick due to Kalkman [20]. Consider the
following derivation on Wg ® A,

Y =e"® A
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Note that 1) has degree 0 and is g-equivariant. Hence exp(1)) is a g-equivariant algebra auto-
morphism. Let us compute

exp(¥) o (1 +13') 0 exp(=) = Ad(exp ) (g + 1) = explady)(ry + 7).
Write exp(ady) = > 272, % ad{b. We find,

ady ta = ady(tV + 2
A

= —La

adi ta = O.
Thus exp(¢)) takes (/¥ 4 1t to (V. Thus,
eXPW) : (Wg ® A)basic - ((Wg)hor & A)inv = (Sg* & A)inv-

On the other hand, observe that the automorphism exp(t)) does not change the projection of
an element onto Sg* ® A, hence on (Wg ® A)y,, it coincides with that projection. It remains
to work out the induced differential. Consider the formula for the Weil differential,

dV = e (L35 + JL0F) + 0" i)Y
To compute the induced differential, we must consider

dV +adt = e(LEY + SLLY) + i)Y 4 at

ea(Lff* + %Lé\f*) + v? (Lé\ag* + Lé) —v° Lé}l + d4.
on an element of (Wg ® A)pasic, followed by projection to Sg* ® A. The term involving
(LQ;J + L;t ) disappears on horizontal elements, while the terms involving e“(Lff and eaLQf
disappear after projection onto Sg* ® .A. Hence the differential on (Sg* ® A)iyy is induced from
the term —v? Lél + d4, which commutes with the projection. O

If we identify Sg* with polynomials on g, the algebra (Sg* ® A)in, becomes the algebra of
g-equivariant polynomial maps o : g — A. In terms of these identifications, the differential
reads

(dg)(§) = d(a(§)) — ter(§).
In the case A = Q(M), one often calls
Qq (M) = (Sg" @ Q(M))¢

the complex G-equivariant differential forms, and dg = d — ¢(&ys) the equivariant differential.
Recall that the generators of the symmetric algebra have degree 2, hence the grading on Q¢ (M)
is given by
QE(M) = P (S'g" @ V(M)
2i+j=k
Let us verify that after all these computations, the differential still squares to 0:
dga(§) = d(dga(§)) — edaa)(€)
dda(§) — dega(§) — teda(§) — tetea(§)
—Lea(§)
= —a([¢,¢]) =0.
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It is also interesting to re-examine the proof that Hy(A) = Hpasic(A) for any commutative
locally free g-dga. Suppose 0 = 0%, € A! ® g is a connection on A. In the following Lemma
and its proof we do not use the summation convention.

LEMMA 5.16. The operator Pl :=T], te,0* = [1,(1 — 0%,) is a projection operator onto
the space Aynor of horizontal elements.

PROOF. Note that the operators i, 0% (a = 1, ..., dim g) are a family of pairwise commuting
projection operators. Hence their product is again a projection operator. For any o € A we
have

I S H le, 0" =0,
a

since ¢, commutes with terms a # r and its product with the terms a = r is zero. If « is
horizontal, we have
P o= H(l — 0%, ) = a,

a

showing that P, is projection onto Aper. O
Note that the horizontal projection operator may also be written,

Phor = eXp(_yabea”ya:@“

where y* are degree 1 variable corresponding to e®, and the notation indicates that we first
apply the operator, and then set y® = 6% in the resulting expression. Let F? : g* — A2 be the
curvature of . Recall that for p € Sg*, we defined p(F?) as the image of p under the algebra
homomorphism Sg* — A defined by F?. (“Plugging in the curvature for the variable £”.)
Similarly, for « = Y, p; ® ay € Sg* @ A we define o(F?) = >, pr(F%)ay.

THEOREM 5.17 (Cartan). Let A be a locally free g-dga, and 6 a connection. Define a map
Car? : (Sg* ® A)iny — A, a— Puor(a(F?)).

Then Car? is an algebra homomorphism taking values in Apasic. Furthermore, Car? is a chain
map, and induces an isomorphism in cohomology. In fact, the projection o — 1 ® Carg(a) is
a projection, chain homotopic to the identity, by an explicit homotopy operator.

Note that the Cartan map extends the Chern-Weil homomorphism (Sg*)iny — Apasic: For
an invariant polynomial p € (Sg*)iny, p(F?) is already basic and so the horizontal projection
operator can be omitted.

PRrROOF. We will prove this result by comparing with the Weil model. Identify (Sg* ® A)iny
with (Wg®A)pasic. We had shown above that the map Wg® A — A taking w®@a to 1@ (w)a
is a g-chain homotopy inverse to the map A — Wg® A, a+— 1® a. Given a € (Sg* ® A)iny,
the corresponding element of (W g ® A)pasic is obtained by applying the exp(—e® ® t)a. The
element ¢/ (w)a is exactly

exp(—y® @ ()| ya—gac(F?) = Car?(a).
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This Theorem (at least the first part) is contained in Cartan’s paper “La transgression dans
un groupe de Lie”, Théoréme 4 (p.64). Since Cartan’s proof was a little cryptic, the result has
been re-proved several times. See e.g. Kumar-Vergne [21, p. 171-176], Duistermaat [11, p.
227-234], Guillemin-Sternberg, [17, p. 53-59], Nicolaescu, [25, p. 17-38]. (The argument in
Nicolaescu’s paper seems more or less identical to the one presented here.)

5.7. Examples of equivariant differential forms. Cartan’s model of equivariant co-
homology is very popular in differential geometry, particularly symplectic geometry.

Suppose M is a G-manifold. We will study equivariant forms in low degrees. Since
QL(M) = QY(M )iy, an equivariant 1-form on M is simply an invariant 1-form. Since

OF(M) = O (M)iny @ (8" © Q°(M) )iny
an equivariant 2-form is a sum w + V¥, where w is an invariant 2-form and ¥ : M — g*

an equivariant function, viewed as an element of (g* ® Q°(M))iny. The equivariant 2-form is
equivariantly closed if and only if

0=dg(w+U)(€) = dw — tg,,w + (¥, €),

which gives two equations dw = 0 and ¢¢,,w = d(¥,&). Thus w should be closed and invariant,
while the second condition is the familiar moment map condition from symplectic geometry,
with —W¥ as the moment map! (The minus sign is a matter of convention.) Indeed, if w is not
only closed but also non-degenerate, the map ¥ determines the generating vector fields by this
equation. The equivariant 2-form is exact if there exists an invariant 1-form v with w = dv
and U = —u(&y)v.

An equivariant 3-form is an element of

Q%‘(M) = Q3(*]\4)inv D (g* ® QI(M))inV

It therefore has the form 7+ (), where 7 is an invariant 3-form and g is an equivariant map
from g to Q'(M). The equivariant 3-form is closed if and only if

dn =0, «(&ar)n = dB(E), «(&m)B =0.
For example, if M = G where G acts by conjugation, and B is an invariant inner product on
g (possibly indefinite), one may check that
1
n= s BO"[05,0"), BE) = 1BE +07.0)
defines an equivariant 3-cocycle.

5.8. Equivariant formality. In general, the map Hg (M) — H(M) induced by the chain
map Qa(M) — QM)%, a(¢) — «(0) need not be surjective: Not every cohomology class
admits an equivariant extension. One defines,

DEFINITION 5.18. A compact G-manifold M is called equivariantly formal if the map
Hg(M) — H(M) is onto.

There are many equivalent conditions for a G-manifold to be equivariantly formal. For
example, M is equivariantly formal if and only if Hg(M) = (Sg*)¥ ® H(M) as graded vector
spaces, or equivalently if and only if Hg(M) is a free Sg*-module.
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EXAMPLES 5.19. (a) If (M,w) is a compact symplectic manifold, with a symplectic
G-action admitting a moment map, then M is equivariantly formal. (This result is
due (independently) to Ginzburg and Kirwan, and is proved using Morse theory.

(b) The conjugation action of a compact Lie group on itself is equivariantly formal. (There
are explicit generators of the cohomology, and explicit equivariant extensions. See e.g.
Jeffrey’s paper “group cohomology construction ...”)

(c) The left-action of a compact Lie group G on itself, and more generally free G-actions
are not equivariantly formal.

(d) Suppose G is compact and simply connected, and that M is connected. Then one may
show that the map HS(M) — H'(M) is an isomorphism in degree i < 2, while in
degree ¢ = 3 there is a short exact sequence,

0— HX(M) — H3(M) — H*(G.z) — 0

for any € M. (The cohomology groups H?(G.z) are all isomorphic.) Hence, if the
action is equivariantly formal one must have H3(G.z) = 0.

(No time for proofs..)

5.9. The Kiinneth formula. (No time ...See Kumar-Vergne [21].)

6. Equivalence between the simplicial and Weil model

6.1. A non-commutative version of the Weil algebra. As explained above, the Weil
algebra Wg is the universal commutative locally free g-dga. It seems natural to ask if there
exists a similar universal object if one drops commutativity. This is indeed the case: Simply
omit “commutative” from the definition of W.

Thus, we let Wg be the g-dga which is freely generated by degree 1 elements p € g* and
degree 2 elements fi. Thus, while Wg was the symmetric algebra over the graded vector space
Eg with Eé* = g*, Eg* = g*, Eé* = 0 otherwise, Wg is the tensor algebra:

Wg=S(Eg), Wg=T(Eg).

The contractions, Lie derivatives and differential are defined on degree 1 generators, by the
exact same formulas as for Wg:

tep = (1, §), Lep=—adep, du=p,

and again the formulas on degree 2 generators are determined by the relations. It is immediate
that these formulas extend to derivations of Wg, and that g* — Wg, u+— p is a connection.
Some essential properties of Wg carry over to Wg:

THEOREM 6.1 (Acyclicity of Wg) The inclusion R — Wy as multiples of the identity in-
duces an isomorphism in cohomology. In fact, there is a canonically defined homotopy operator
h: Weg — W* g with the property [h,d] = id —II where 11 is projection onto the degree 0
part.

THEOREM 6.2 (Locally free g-dga’s). Suppose A is a locally free g-dga.
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(a) For any connection 6 on A, there exists a unique homomorphism of g-dga’s AWy —
A (called the characteristic homomorphism) such that the diagram

e oA

P

*
g
commautes.

(b) If 0o, 61 are two connections on A, there is a canonically defined g-homotopy operator
h: Wig— A7 i.e. a linear map such that [h,i] =0, [h, L¢) = 0 and

[h, d] = Ao,

(¢) The inclusion map A — Wg® A, a— 1® « is a g-homotopy equivalence. For any
connection 0, a g-homotopy inverse is given by the map

0

Wgo A— A, wea— (dw)a

In particular the connection on Wg defines a characteristic map
Wg — Wg,

which is simply the quotient map from the tensor algebra to the symmetric algebra.
The proofs of the two theorems are similar to the commutative setting.

6.2. Uniqueness property of Weil algebras. There does not seem to be a simple
description of the horizontal or basic subalgebras of Wg. We will however prove the following;:

THEOREM 6.3. Suppose W = @izo W' is a g-dga with connection, such that there exists
a linear operator h : W — W of degree —1 with [h, d] = id —II where II is a projection onto
R C W). Assume [h, L¢] = 0. Then the characteristic map

Wg - W
induces an isomorphism in basic cohomology. More generally, for any g-dga B the map
WgoB—W®oB

induces an tsomorphism in basic cohomology. If W is commutative, similar statements hold
for Wg.

REMARKS 6.4. (a) The theorem is analogous to the result that if EG — BG is a
classifying bundle, and E’ — B’ is another principal G-bundle with contractible total
space, then ' — B’ is also a classifying bundle and the classifying map E' — EG
is a G-equivariant homotopy equivalence. Unfortunately, the analogy is not perfect:
We would prefer a stronger statement that Wg — W (resp. Wg — W if W is
commutative) is a g-homotopy equivalence.

(b) Animmediate consequence of this theorem is that Hyasic(Wg) = Hpasic(Wg) = (S 9" )inv-
It shows furthermore that in the definition of equivariant cohomology, the Weil algebra
Wg may be replaced by any other locally free g-dga with trivial cohomology.

Theorem 6.3 will easily follow from the following Lemma:
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LEMMA 6.5. Let W be as in Theorem 6.3, any A any locally free g-dga. Then the inclusion
A—->W®A, a—1&® «a induces an isomorphism in basic cohomology.

PROOF OF THEOREM 6.3. The characteristic map ¢ : Wg — W can be written as a

composition of two maps,
Wg — Wg QW — W,

where the first map is given by z — 2z ® 1 and the second map is z ® w +— ¢?(2)w. The second
map is a g-chain homotopy equivalence by part (b) of Theorem 6.2. Hence the map obtained by
tensoring with the identity map for any g-dga B is a g-chain homotopy equivalence as well, and
in particular induces an isomorphism in basic cohomology. Lemma 6.5 applied to A = Wg ®B
shows that the first induces an isomorphism in basic cohomology as well. O

We now turn to the proof of Lemma 6.5. Note that this is slightly weaker than the corre-
sponding statement for Wg.

PROOF. The proof is modeled after Guillemin-Sternberg, [17][page 46] The idea is to apply
h®1to W®A to show that the W factor does not change the basic cohomology. This does not
directly work, however, since h need not commute with the contraction operators LZV. To get
around this difficulty we use the Kalkman trick: Let 8 be a connection on A, and let ¢ be the
nilpotent degree 0 operator 1) = %}V, (Note that this need not be a derivation, since §¢ are
elements of a non-commutative algebra.) Then exp is g-equivariant and intertwines LZV + L?
with %4. Thus, after applying exp ¢ the operator h no longer interferes with contractions on W'.
Unfortunately, h is no longer a homotopy operator since 1 changes the differential! Fortunately,
the change of dV + d* can be controlled. Introduce a filtration

W_1CW0CW1C---

Wi:@Wj

J<i

on W by setting W_; = R and

for ¢ > 0. Then Lgv lowers the filtration degree by 1, Lgv preserves it, d"V raises it by 1, and h
lowers it by —1. Let W ® A be equipped with the filtration induced from the filtration on W
(the grading on A plays no role). It is easily checked that the twisted differential

D := Ad(exp ¢)(d"V + d4)

has the form D = d" +- .. where the dots indicate additional terms that preserve the filtration
degree. Suppose now that o € (W ® Apor)inv is D-closed and has filtration degree N > 0. Then
a — D(h ® 1)a is cohomologous to a, lies in (W ® Apo;)iny, and has filtration degree N — 1.
Indeed, the equation [d, h] = id —II implies

D,hl]=id-IIT®1+---,
where the dots lower the filtration degree by at least 1. Iterating, it follows that
(id=D(h ®@1))Na

is cohomologous to « and has filtration degree —1, thus lies in Ay sic. This shows that the map
Hpasic(W @ A) — Hypgasic(A) is onto. By a similar argument, given a € Apasic with a = Df
for some # € (W ® A)pasic, we may add a cocycle to 3 to obtain an element of (Wy ® A)pasic-
Hence the map is also injective. O
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6.3. Equivalence of simplicial and Weil model of equivariant cohomology. An-
other example comes from the simplicial model for the classifying bundle: Recall that we
defined a non-commutative product structure on the double complex

CcPa = Qq(Gerl).

The principal G-action on E,G = G**! is given by the diagonal action from the right, and this
defines Lie derivatives and contractions

e s OP9 — crat Le: CP1 — CP,

Letting W' = @p tq—i CP%, this defines a g-dga. A connection 1-form is given by the left-

invariant Maurer-Cartan form 0% € Q!'(G ® g, viewed as an element
ol e C*' @ g.

Finally, the D-cohomology is acyclic, since it is isomorphic to the cohomology of EG. (One may
also directly construct a homotopy operator.) The basic subcomplex of Q°(E,G) is isomorphic
to Q°(B.G). It follows that the characteristic maps

Wg — W — C*(G*™
induce isomorphisms in basic cohomology, and more generally, if M is a G-manifold,

HbasiC(Wg ® Q(M))

T

Hypasic(Wg @ Q(M)) H*(EG xg M)

This proves that the Weil/Cartan model does indeed compute the equivariant cohomology of
M, defined in terms of the Borel model.

We should point out that there is, in fact, a canonical homomorphism of g-differential
spaces (not of algebras) Wg — C*(G**!). Indeed, we have

THEOREM 6.6. The symmetrization map Wg = S(Eg) — Wg = T(Eg) is a homomor-
phism of g-differential spaces, i.e. it intertwines d, ¢, L¢. For any g-dga A, the induced map
i basic cohomology

Hbasic(Wg & A) - Hbasic(Wg ® A)

is inverse to the algebra isomorphism HbasiC(Wg®A) — Hpasic(Wg®A) induced by Wg — Wg.

PROOF. Since Wg — Wg — Wy (symmetrization followed by the quotient map) is the
identity, and we already know that HbasiC(Wg ® A) — Hpasic(Wg ® A) is an isomorphism,
it’s enough to show that Wg — Wg intertwines te, Lg,d. This in fact follows from a more
general statement: If E is any graded vector space, and AEnd(E) any endomorphism, then A
extends to derivations of both the symmetric algebra S(E) and the tensor algebra T(E), and
the symmetrization map intertwines the two derivations. This directly applies to d, L¢ since
these are both induced from endomorphisms of Eg«. For t¢, one may apply a small trick and
replace Eg with Eg © R, and consider the contraction operators defined by

te(p) = (1, &) ¢, le(p) = —adg
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where c is a generator of R. The statement above applies to A = 7¢, and taking the quotient by
the ideal generated by ¢ — 1 we find that Wg — Wg intertwines the contractions as well. [

Thus, in particular we have a canonical map
(Sg*)inv C (Wg)basic - (Wg)basic — Q.(CT“Jrl)baLsic = Q.(G.)

For example, if one is given an inner product on g, the corresponding quadratic polynomial
€ +— ||€]|? gives rise to an element of Q°(G®) of total degree 4. One may check (with some
effort) that this is the element of Q3(G) @ Q?(G?) described earlier.

7. Localization

Let M be a compact oriented G-manifold. The integration map [ : Q(M) — R extends to
a map from the Cartan complex,

/ - Qa(M) — Qa(pt) = (Sg°)°.

By Stokes’ theorem, the integral vanishes on equivariant coboundaries, since (dg/3)(£) equals
d(B(€)) up to terms of lower differential form degree. Hence it induces an integration map in
cohomology,

/ . Ho(M) — Hg(pt) = (Sg7)°.

The localization formula of Berline-Vergne [4, 3, 2] and Atiyah-Bott [1] gives an explicit
expression for the integral of any equivariant cocycle in terms of fixed point data, provided
G is a compact Lie group. The formula generalizes the Duistermaat-Heckman formula [12]
from symplectic geometry, and also Bott’s formulas for characteristic numbers [5]. Berline-
Vergne’s proof used differential-geometric ideas, while Atiyah-Bott’s proof was more topological
in nature. The proof given below is essentially Berline-Vergne’s proof, except that we use “real
blow-ups” to replace their limiting arguments.

7.1. Statement of the localization formula. As pointed out in Berline-Vergne’s paper
[4], the localization formula holds in a wider context than that of equivariant cohomology.
Indeed, for fized £ € g consider any differential form a € (M) such that « is annihilated by
the derivation de = d — ¢¢,, on Q(M). For example, if § € Qg(M) is an equivariant cocycle,
then o := (3(§) is annihilated by de.

EXAMPLE 7.1. Let w+ @ be a closed equivariant 2-form on M. Then o« := exp(w + (P, &))
is d¢-closed. It does not strictly speaking define an equivariant differential form, however, it is
not polynomial in . This is the setting for the Duistermaat-Heckman theorem.

The fixed point formula expresses the integral | @ as a sum over the zeroes of the vector
field £ps. Note that the zeroes of £y are also the fixed point sets for the action of the torus
generated by ¢ (i.e. of {exp(t§)|, t € R}), and in particular are smooth embedded submani-
folds. To simplify the discussion, we will first assume that the set of zeroes is isolated, i.e.
0-dimensional.

For any zero x € 51741(0), let Ap(§) : TxM — T,M denote the infinitesimal action of &.
That is,

Az(&)(v) = %h:o exp(t€).v.
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Choose a G-invariant Riemannian metric on M, then A, is skew-adjoint for such a Riemannian
metric. Using the orientation on M, we may therefore define the Pfaffian, 13

det/?(A4(€)).

THEOREM 7.2. Let G be a compact Lie group, and M a compact, oriented G-manifold.
Suppose that the vector field generated by & € g has isolated zeroes. Then for all forms o €
Q*(M) such that dea = 0, one has the integration formula

o) ()
Q[dim M] = 79
/M sM%:o det'/2(A,(€))

Here ajq) € C°°(M) is the form degree 0 part of a.

7.2. Proof of the Localization formula. In the proof we will use the notion of real
blow-ups. (We learned about this from lecture notes of Richard Melrose, see e.g. [22]. The
concept is also briefly discussed in Duistermaat-Kolk [13], page 125.) Consider first the case
of a real vector space V. Let

S(V) =V \{0}/Ro
be its sphere, thought of as the space of rays based at 0. Define V as the subset of V x § (V),
V :={(v,z) € V x S(V)|v lies on the ray parametrized by z}.

Then V is a manifold with boundary. (In fact, if one introduces an inner product on V' then
V = S(V) x Rp). There is a natural smooth map 7 : V — V which is a diffeomorphism
away from S(V). If M is a manifold and m € M, one can define its blow-up 7 : M — M by
using a coordinate chart based at m. Just as in the complex category, one shows that this is
independent of the choice of chart (although this is actually not important for our purposes).

Suppose now that M is a G-space as above. Let 7 : M — M be the manifold with boundary
obtained by real blow-up at all the zeroes of £y;. It follows from the construction that the vector

field €7 on M lifts to a vector field £,; on M with no zeroes. Choose a & yy-invariant Riemannian
metric g on M, and define

— 9 ) e QL(M).
951 Er)
Then 0 satisfies ¢({,;)0 = 1 and dg& = L¢,,0 = 0. Therefore

6 6 .
= — oA (doy
YT L8 -1 Azj:( )

L3Recall that for any vector space V with a given inner product (possibly indefinite), there is a canonical
isomorphism o(V) = A%(V), A — A(A) between skew-symmetric matrices and the second exterior power of V.

Suppose dimV is even. The Pfaffian det'/? : o(V) — R is a distinguished choice of square root, where for
A(A)’Vl
det1/2(A)
orientation on V. The Pfaffian changes sign with any change of orientation.

A invertible, the sign is characterized by the condition that is a volume form compatible with the
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is a well-defined form satisfying d¢y = 1. The key idea of Berline-Vergne is to use this form for

partial integration:
/ a = / ™
M M

= / T a A dgy
M

= / de(m"a Ay)

peMT
= Z 04[0](19)/
pGMT S(TPM)

Thus, to complete the proof we have to carry out the remaining integral over the sphere. We
will do this by a trick, defining a d¢-closed form o where we can actually compute the integral
by hand.

For any zero z € M, choose a decomposition T, M = € V;, where each V; is a 2-dimensional
subspace invariant under A,(¢). Choose orientations on V; such that the product orientation
is the given orientation on T, M. Then the Pfaffian of A,(§) is the product of the Pfaffians
for the restrictions to V;. On each V;, introduce polar coordinates r;, ¢; compatible with the
orientation. Given € > 0 let x € C*°(R>¢) be a cut-off function, with x(r) = 1 for » < e and
x(r) =0 for r > 2¢. Let

Hdg x(r;)dg;) = H X(rj)tedp; — x'(rj)dr; A dg;).

Note that this form is well-defined (even though the coordinates are not globally well-defined),
compactly supported and d¢-closed. Its integral is equal to

n
a=|](=x(rj)dr;) =1
fo=1I
On the other hand
) (0 H tedp;).

which (as one easily verifies) is just the Pfaffian of Aw(ﬁ ). Choosing e sufficiently small, we can
consider « as a form on M, vanishing at all the other fixed points. Applying the localization

formula we find
1= [a=detPae) [ o
M S(T, M)
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thus
/ 7 = det™'2(A4,(€)).
S(T, M)

Q.E.D.
The above discussion extends to non-isolated fixed points, in this case the Pfaffian det'/?(A,(€))
is replaced by the equivariant Euler class of the normal bundle of the fixed point manifold.

7.3. The Duistermaat-Heckman formula. One often applies the Duistermaat-Heckman
theorem in order to compute Liouville volumes of symplectic manifolds with Hamiltonian group
action. Consider for example a Hamiltonian S' = R/Z-action on a symplectic manifold (M, w),
with isolated fixed points. That is, the action is defined by a Hamiltonian H € C°°(M) with
periodic flow, of period 1. Then

w"
[ens 1y
M peMS? H] (P

where a;j(p) are the weights for the S1 actions at the fixed points. Notice by the way that
the individual terms on the right hand side are singular for ¢ = 0. This implies very subtle
relationships between the weight, for example one must have

> =0
pEMS1 H

for all £ < n. For the volume one reads off,

Vol(M Z H

peMS1
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