
CHROMATIC HOMOTOPY THEORY: JOURNEY

TO THE FRONTIER

GRADUATE WORKSHOP NOTES

David Mehrle
dmehrle@math.cornell.edu

University of Colorado at Boulder
16-17 May 2018

mailto:dmehrle@math.cornell.edu


Abstract

Collected here are notes from the nine graduate workshop lectures at the Chro-
matic Homotopy Theory: Journey to the Frontier conference at CU Boulder,
16-20 May 2018.

These notes were lightly edited for grammar, spelling, and some of the
more obvious mathematical errors, but I’m certain that errors and omissions
remain. If you spot any, I would be grateful if you could send me an email at
dmehrle@math.cornell.edu.

Thanks to Micah Darrell, Jack Hafer, and Marshall Smith for their proofread-
ing. Thanks also to the graduate workshop speakers and the organizers of the
conference!

https://sites.google.com/view/chtjourney
https://sites.google.com/view/chtjourney
mailto:dmehrle@math.cornell.edu


Contents

1 MU and formal group laws . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1 Complex Oriented Cohomology Theories . . . . . . . . . . . . . 2
1.2 Formal Group Laws . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 BP, Landweber exactness, and other examples . . . . . . . . . . . . . 7
2.1 Proof sketch of Landweber exactness . . . . . . . . . . . . . . . . 10

3 Bousfield localization and the Hasse square . . . . . . . . . . . . . . . 12
3.1 Bousfield Localization . . . . . . . . . . . . . . . . . . . . . . . . 13

4 Morava E-theory, Morava K-theory, and the stabilizer group . . . . . 16
4.1 Moduli stack of formal group laws . . . . . . . . . . . . . . . . . 17

5 Some K(1)-local computations . . . . . . . . . . . . . . . . . . . . . . . . 21

6 The great conjectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.1 Bousfield Localization . . . . . . . . . . . . . . . . . . . . . . . . 28
6.2 The Chromatic tower . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.3 Some Conjectures . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

7 Chromatic splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

8 Picard groups and duality . . . . . . . . . . . . . . . . . . . . . . . . . 39
8.1 Picard groups in stable homotopy . . . . . . . . . . . . . . . . . 39
8.2 The Picard group of spectra localized at En . . . . . . . . . . . . . 41

1



Complex Oriented Cohomology Theories Mike Hill

1 MU AND FORMAL GROUP LAWS

1.1 COMPLEX ORIENTED COHOMOLOGY THEORIES

Complex oriented cohomology theories form the heart of the chromatic ap-
proach to stable homotopy theory. We’ll start by saying what it means for a
cohomology theory to be complex orientable. We want to generalize orientabil-
ity of manifolds to other contexts.

Definition 1.1. A cohomology theory E is complex orientable if there is a class
x ∈ E2(CP∞) that restricts to a unit under E2(CP∞)→ E2(CP1) ∼= E0(S0).

The map E2(CP∞) → E2(CP1) is induced by the inclusion CP1 ↪→ CP2,
and E2(CP1) ∼= E0(S0) by the suspension isomorphism En(X) ∼= En+k(ΣkX).

Notice that the choice of complex orientation is not a property of the co-
homology theory – it is a choice. There is a difference between knowing that
there is a complex orientation and a choice of a complex orientation, roughly
analogous to the difference between an abstract vector space and choosing a
basis.

Definition 1.2.

(a) E is even if E2k+1(S0) = 0 for all k ∈ Z.

(b) E is even periodic if it is even and there is a class u ∈ E2(S0) that is a unit.

To say that u ∈ E2(S0) is a unit is to say that multiplication by u induces a
natural isomorphism En(−)→ En+2(−) for all n.

Example 1.3. The prototype for this is complex K-theory, or KU-theory. The
isomorphism KUn → KUn+2 is Bott periodicity.

It’s very easy to compute the E-cohomology of a space with even cells, in
the case that E is even.

Proposition 1.4. Let E be an even cohomology theory. Then:

(a) There is an isomorphism of rings (or E∗(S0)-algebras)

E∗(CPn) =
E∗(S0)[x]/

〈xn+1〉,
where |x| = 2,

(b) the following diagram commutes:

E∗(CPn) E∗(CPn−1)

E∗(S0)[x]/
〈xn+1〉

E∗(S0)[x]/
〈xn〉,

∼= ∼=
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Complex Oriented Cohomology Theories Mike Hill

(c) and there is a Künneth isomorphism:

E∗(CPn1)⊗E∗(S0) · · · ⊗E∗(S0) E∗(CPnr)
∼=
−→ E∗(CPn1 × · · · ×CPnr).

Notice that this Künneth isomorphism is not generally true for cohomology
theories – we don’t necessarily even have it for E.

Proof. Using the Atiyah–Hirzebruch spectral sequence, we have

E
p,q
2 = Hp(CPn;Eq(S0)) =⇒ Ep+q(CPn).

For any q,

H∗(CPn;Eq(S0)) ∼=
Eq(S0)[x]/

〈xn+1〉
where |x| = (2,q).

Claim that in this spectral sequence, there are no nontrivial differentials. We
can see this because, whenever either p or q is odd, we have

Hp(CPn;Eq(S0)) = 0.

The E2-page is pictured below. An asterisk ∗ indicates a nontrivial entry and a
blank means that entry is zero.
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E
p,q
2 = Hp(CPn;Eq(S0))

Since there are no nonzero differentials, the E∞-page of this spectral se-
quence is exactly what we drew above. Since this is a free module, and there
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Formal Group Laws Mike Hill

are no extensions between free modules, it is easy to reconstruct Ep+q(CPn)

from this E∞-page.
The second two parts of the proposition follow.

In this proof, we only used the fact that CPn has only even cells. So the
argument, and therefore the proposition, holds true for any space Xwith only
even cells, such as BU(n).

Corollary 1.5. If E is even, then

E∗(CP∞) ∼= lim
n

(
E∗(S0)[x]/

〈xn〉

)
∼= E∗(S0)JxK.

If E is even periodic, then we may move (via u : En(−)→ En+2(−)) the genera-
tor x to degree zero.

Corollary 1.6. If E is an even cohomology theory

E∗(CP∞ × · · · ×CP∞︸ ︷︷ ︸
k

) ∼= E∗(S0)Jx1, . . . , xkK

To write down these isomorphisms, we chose an orientation, which in turn
gives an element x ∈ E0(CP∞). We think of this element x as the orientation.

Corollary 1.7. Any even cohomology theory is complex orientable; a choice of
complex orientation gives an isomorphism

E∗(CP∞) ∼= E∗(S0)JxK.

1.2 FORMAL GROUP LAWS

There is a multiplication map on CP∞, given by

CP∞ ×CP∞ ⊗
−→ CP∞.

There are two interpretations of this multiplication map: geometric and al-
gebraic. The geometric interpretation of this multiplication map is the fact
that CP∞ classifies complex line bundles, so given two complex line bundles,
we can tensor them together. By the Yoneda lemma, this must come from a
map between the classifying space for pairs of line bundles, CP∞ ×CP∞, to
the classifying space for line bundles, CP∞. On the other hand, the algebraic
interpretation comes from the fact that CP∞ is a K(Z, 2).

Applying the cohomology theory E∗ to the multiplication, we have

E∗(CP∞)
µ
−→ E∗(CP∞ ×CP∞).
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Then applying the previous isomorphism, we have

E∗(CP∞) E∗(CP∞ ×CP∞)

E∗(S0)JxK E∗(S0)Jy, zK

x F(y, z)

µ

∼= ∼=

The choice of complex orientation specifies an isomorphism between an
abstract power series ring E∗(CP∞) and an actual power series ring E∗(S0)JxK.

We codify the map E∗(S0)JxK→ E∗(S0)Jy, zK in a formal group law.

Definition 1.8. A formal group law over a ring R is a power series F(x,y) ∈
RJx,yK that is

(a) unital: F(x, 0) = F(0, x) = x;

(b) commutative: F(x,y) = F(y, z);

(c) associative: F(x, F(y, z)) = F(F(x,y), z) ∈ RJx,y, zK

We are defining a new kind of addition on the maximal ideal of the power
series ring RJxK, and the properties we wrote down guarantee that this defines
a unital, commutative, and associative operation. But we don’t know that this
has an inverse, a priori.

What we have seen is that an even (periodic) cohomology theory and a
choice of orientation gives a formal group law. Theorems of Lazard and Quillen
give the relation explicitly.

Theorem 1.9 (Lazard). The functor that sends a ring R to the set of formal group
laws over R is representable by a ring L, where

L ∼= Z[x1, x2, . . .]

The fact that this functor is representable should not be surprising. The
properties of the formal group law give conditions on the coefficients of power
series, and applying these relations to a free Z-algebra yields L. Maps out of
this ring L capture the formal group laws. On the other hand, the fact that L is
polynomial is miraculous.

Remark 1.10. We have been a bit careless about the gradings on the rings here.
There is a question of how the grading on the ring interacts with the formal
group law. This endows the ring Lwith a grading, once you trace through the
formal group law properties.

Definition 1.11. The ring L ∼= Z[x1, x2, . . .] with |xi| = −2i is the Lazard ring.
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Now consider the Thom spectrum MU. The first space in this spectrum is
MU1 ' CP∞, so we have a map

Σ−2CP∞ →MU

which gives a canonical complex orientation on the cohomology theory repre-
sented by MU. Hence, this gives a formal group law over MU∗(S0).

Theorem 1.12 (Quillen). MU∗(S0) ∼= L, and the formal group law here is the
universal one.

Definition 1.13. A homomorphism of formal group laws f : F→ G is a power
series f(x) ∈ RJxK such that

f(F(x,y)) = G(f(x), f(y)).

An isomorphism of formal group laws is a homomorphism f : F→ G that has
an inverse under composition.

An isomorphism of formal group laws is strict if f(x) ≡ x (mod x2).

Strict isomorphism are the ones that take coordinates to coordinates, in
the analogy between vector spaces/bases and complex orientable cohomology
theories/choices of these orientations.

Theorem 1.14 (Quillen). The ring (MU∧MU)∗(S0) represents strict isomor-
phisms and the isomorphism taking the left orientation to the right is the
universal strict isomorphism.
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BP, Landweber exactness, and other examples Dylan Wilson

2 BP, LANDWEBER EXACTNESS, AND OTHER

EXAMPLES

In the previous lecture, we saw that for any complex oriented cohomology
theory E, there is an associated formal group law.

Remark 2.1. This formal group law tells us how to write the Chern class of the
tensor product of line bundles:

c1(L1⊗ L2) = FE(c1(L1), c1(L2))

Example 2.2.

(a) If E = HZ, then the associated formal group law is FHZ(x,y) = x+ y.
This is the additive formal group law.

(b) If E = KU, then c1(L) = β([L] − 1) ∈ KU0(X) where β is the Bott class.
The associated formal group law is

FKU(x,y) = x+ y+βxy.

This is the multiplicative formal group law.

(c) If E = MU, then we have the universal formal group law, which starts

FMU(x,y) = x+ y+ . . . .

In this talk, we will produce more examples, motivated by a theorem of
Conner–Floyd, which roughly says that you can recover KU-homology from
MU-homology.

Theorem 2.3 (Conner–Floyd). For any spectrum X, there is an isomorphism of
rings

MU∗(X)⊗MU∗ KU∗ ∼= KU∗(X).

This leads to the question:

Question 2.4. When, given a map MU∗ → R (i.e. a formal group law over R), is
the functor

X 7→MU∗(X)⊗MU∗ R

a homology theory?

To check the Eilenberg-Steenrod axioms, we really only need to check the
exactness axiom. Say, given a cofiber sequence

A→ B→ C,

7



BP, Landweber exactness, and other examples Dylan Wilson

can we apply MU∗(−)⊗MU∗ R and get an exact sequence?
This is not always true, because tensoring with R is not an exact functor. So

we may ask that R is flat over MU∗, but MU∗ is a polynomial ring and there
aren’t many interesting examples of flat algebras over polynomial rings. So the
idea is instead to consider (−)⊗MU∗ R as a functor from a different category,
consisting of MU∗-modules with extra structure.

Consider a (homotopy) ring spectrum E. For any other spectrum X, E∗X
becomes an E∗E-comodule in the following way. Since E is a ring spectrum, we
may use the unit map to define a map of spectra

E∧X = S0 ∧ E∧X→ E∧ E∧X.

Applying the functor π∗(−), we get a map

E∗(X)→ E∗E⊗E∗ E∗X

if E∗E is flat over E∗. This is a coaction of E∗E on E∗X, which gives E∗X the
structure of an E∧ E-comodule.

Example 2.5. If E = HF2, then E∗E = A∗ = F2[ζ1, ζ2, . . .]. Let X = S0 ∪2 e1 be

the zero-sphere with a cell attached via the degree 2 map S1 2−→ S1.

H∗(X) A∗⊗H∗(X)
e1 1⊗ e1 + ζ1⊗ e0

Example 2.6. If E = MU, then the ring MU∗(MU) represents isomorphisms of
formal group laws. The comultiplication on MU∗MU is a homomorphism

MU∗MU ∆
−→MU∗MU⊗MU∗ MU∗MU .

To determine what this means, apply the functor Hom(−,R). The module
Hom(MU∗MU,R) consists of isomorphisms of formal group laws over R, and
Hom(MU∗MU⊗MU∗ MU∗MU,R) consists of pairs of isomorphisms of formal
group laws over R, such that these group law isomorphisms are composable.
Then ∆∗ becomes the composition

Hom(MU∗MU⊗MU∗ MU∗MU,R) ∆∗−−→ Hom(MU∗MU,R)

So (MU∗, MU∗MU) corepresents a functor from rings to groupoids.

This answers our question about what we should pick as the source category
for the functor (−)⊗MU∗ R: it should be the category Comod(MU∗MU) of
comodules over MU∗MU.

8
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Question 2.7. When is (−)⊗MU∗ R : Comod(MU∗MU)→Mod(R) exact?

Definition 2.8 (Terminology/Notation). If F is a formal group law, we write
x+F y = F(x,y) for the “addition” defined by F, and write [n]F(x) for the formal
power series

x+F x+F · · ·+F x︸ ︷︷ ︸
n

.

Let vi denote the coefficient of xp
i

in [p]F(x), for vi ∈ MU∗.

The number vn is an invariant that we could go and compute, in fact, it is a
strict isomorphism invariant modulo the ideal 〈p, v1, v2, . . . , vn−1〉.

Lemma 2.9. [p]F(x) = axp
n
+ higher order terms

Definition 2.10. If [p]F(x) = axp
n
+ . . ., we say that F has height at least n.

If a ∈ R is a unit, then we say that F has height n.

The Landweber theorem gives conditions under which the functor (−)⊗MU∗ R

is exact.

Theorem 2.11 (Landweber Exact Functor Theorem). Given a formal group law
MU∗ → R such that for all primes p, and all n

R/
〈p, v1, . . . , vn−1〉

·vn−−→ R/
〈p, v1, . . . , vn−1〉

is injective, then the functor

(−)⊗MU∗ R : Comod(MU∗MU)→Mod(R)

is exact.

Definition 2.12. If a formal group law satisfies the condition of the previous
theorem, it is called Landweber exact.

Example 2.13. Consider the additive formal group law for HZ,

FHZ(x,y) = x+ y,

we can compute
[p]FHZ

(x) = px,

so vi = 0. We must check that the following are all injective, for all primes p:

Z
·p
−→ Z

Z/p
·p
−→ Z/p

This is not true, so the additive formal group law is not Landweber exact.

9



Proof sketch of Landweber exactness Dylan Wilson

Example 2.14. Consider rational cohomology HQ. The multiplication-by-p-
map

Q
·p
−→ Q

is injective, and moreover Q/p = 0, so all maps Q/p → Q/p are injective. Hence,
the formal group law defined by HQ is Landweber exact.

Example 2.15. Consider complex K-theory KU. We have

[p]FKU(x) = β
−1((βx+ 1)p − 1) = px+ . . .+βp−1xp.

Check injectivity:
KU∗ = Z[β±1]

·p
−→ Z[β±1]

is injective, and so are the homomorphisms

Z[β±1]/p
·βp−1
−−−−→ Z[β±1]/p

and
0
·vn−−→ 0

Example 2.16. Consider MU∗ ∼= Z[x1, x2, . . .]. We may choose vi at p to be
xpi−1. This is Landweber exact. Then

(MU∗)(p)/
〈xn | n 6= pi − 1〉

∼= BP∗ = Z(p)[v1, v2, . . .].

Definition 2.17. The cohomology theory defined by BP is called the Brown-
Peterson Spectrum.

Definition 2.18. Define the Johnson–Wilson theory E(n) with

E(n)∗ :=

(
BP∗/
〈vn+1, vn+2, . . .〉

)
[v−1n ]

2.1 PROOF SKETCH OF LANDWEBER EXACTNESS

The Landweber exact functor theorem is essentially a theorem in algebra, to-
gether with some convenient facts about MU∗.

(1) With appropriate finiteness conditions, ifM is an R-module, then there is
a filtration ofM

M0 ⊆M1 ⊆M2 ⊆ · · ·
such that

gr∗(M) =
⊕
i

R/Pi

where Pi ⊆ R are prime ideals. This is a vast generalization of the classifi-
cation of modules.

10



Proof sketch of Landweber exactness Dylan Wilson

(2) This allows us to compute Tor and Ext of these things easily:

Tor(M,N) = 0 ⇐⇒ Tor(R/P,N) = 0

for all prime ideals P of R.

(3) If M has the extra structure of an MU∗(MU)-comodule, then you can
arrange for P to be invariant, i.e. givenψ : MU∗ →MU∗(MU)⊗MU∗ MU∗,
we have

ψ(P) ⊆ MU∗(MU)⊗MU∗ P

(4) We use the invariant prime ideal theorem, which says that the ideals
〈p, v1, . . . , vn〉 are exactly the finitely generated invariant prime ideals in
MU∗.

(5) We can do some technical work to guarantee that the previous items still
apply toM = MU∗, even though it may not meet the finiteness conditions
from step (1).

Example 2.19. Another example of formal group laws comes from elliptic
curves. Consider

g(x) =

∫x
0

dt√
1+ δt2 + εt4

considered as a power series in x. Then the elliptic formal group law is

g−1(g(x) + g(y)) = FEll(x,y).

This is a formal group law over Z[12 ][ε, δ].
After inverting ε, this formal group law is Landweber exact over Z[12 ][ε

±1, δ].
This is due to Landweber–Ravenel–Strong, it is called Tmf0(2) in modern

language.
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Bousfield localization and the Hasse square Mike Hill

3 BOUSFIELD LOCALIZATION AND THE HASSE

SQUARE

This talk is about Bousfield localization, but we will first talk about the geometry
of localization. This should mirror the way that we localize rings, but now in
the category of spectra.

We have already seen the height stratification of formal group laws by the
invariant prime ideals:

〈p〉 ⊆ 〈p, v1〉 ⊆ 〈p, v1, v2〉 ⊆ . . .

So once we localize at a prime, we have a stratification of formal group laws by
height.

Theorem 3.1. For each prime p, there is a complex oriented cohomology theory
BP with

BP∗ = Z(p)[v1, v2, . . .],

and a p-typical formal group law over R is classified by a map BP∗ → R sending
each vi to the appropriate element of R defined by the formal group law.

Definition 3.2. The spectrum BP is called a Brown–Peterson spectrum.

We may draw a picture of the relation between MU and each BP by drawing
a quotient of Spec(MU∗). Notice that morphisms of affine schemes Spec(R)→
Spec(MU∗) are in bijection with ring homomorphisms R → MU∗, or with
formal group laws over R. Isomorphisms of formal group laws give an action
of an algebraic group G on Spec(MU∗); the quotient Spec(MU∗)/G (which is
properly thought of as a stack) collapses any two prime ideals of MU∗ which
can be related by an isomorphism of formal group laws. Therefore, the points
of Spec(MU∗) are exactly the invariant prime ideals from before.

Since MU∗ ∼= Z[x1, x2, . . .], Spec(MU∗) contains a copy of Spec(Z), and this
is preserved by the action of G. Above each nonzero prime in Spec(Z), we
have a tower corresponding to Spec(BP∗)/G for the Brown–Peterson spectrum
associated to p.

Theorem 3.3. For each prime p and each nonnegative integer n, there is a
spectrum E(n) with

E(n)∗ = BP∗[v−1n ] = Z(p)[v1, v2, . . . , vn−1, v±1n ].

If a formal group law over Z(p) is a map BP∗ → R for the p-typical Brown–
Peterson spectrum, then a formal group law of height at most nmust have vn
invertible. In other words, maps BP∗[v−1n ] → R classify the p-typical formal

12



Bousfield Localization Mike Hill

Spec(Z) :

Spec(E(1)∗)

Spec(E(2)∗)

〈0〉 〈2〉 〈3〉 〈5〉
· · ·

· · ·

· · ·

〈3, v1〉

〈3, v1, v2〉

Spec(K(n)∗) ...
...

...

Sp
ec
(B

P
∗)

:

Sp
ec
(B

P
∗)

:

Sp
ec
(B

P
∗)

:

Figure 1: A picture of Spec(MU∗)/G.

group laws of height at most n. Several open sets are shaded in the picture
below, representing pictorially the formal group laws of height at most n for
some n. Each of these open sets corresponds to Spec(E(n)∗)/G for some n.

Theorem 3.4. For each prime p and each nonnegative integer n, there is a
complex-orientable spectrum K(n) with

K(n)∗ =
Z(p)[v1, v2, . . . , vn−1, v±1n ]/

〈p, v1, v2, . . . , vn−1〉
∼= Fp[v

±1
n ].

Note that if we consider only homogeneous expressions in K(n)∗ = Fp[v
±1
n ],

then we have a graded field. In the picture, this corresponds to a single point
above the bottom row representing Spec(Z). Much as p-typical formal group
laws of height at most n are classified by maps E(n)∗ → R, formal group laws
of height exactly n are classified by maps K(n)∗ → R.

Theorem 3.5. Any two formal group laws of height n are isomorphic over an
algebraically closed field.

3.1 BOUSFIELD LOCALIZATION

Following the analogy with algebraic geometry, we want to ask which part of
an MU∗(MU)-comodule is seen by one of these open sets in the picture.

Definition 3.6. If E is a homology theory, then we say that a spectrum Z is
E-acyclic if E∗(Z) = 0, or equivalently, E∧Z ' pt.

13
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If you think of the smash product as an extension of the tensor product,
then this is saying that tensoring with E obtains zero, or that elements of Z are
invertible in E.

Definition 3.7. A spectrum K is E-local if for all E-acylic spectra Z, K0(Z) = 0.

Definition 3.8. A map of spectra f : F → K is an E-equivalence if f∗ : E∗(F) →
E∗(K) is an isomorphism.

Proposition 3.9. Say that K→ K ′ is an E-equivalence, and J is E-local. Then the
induced map [K ′, J]→ [K, J] is an isomorphism.

This says that E-local spectra are precisely those that can’t tell the difference
between E-equivalent spectra.

Theorem 3.10 (Bousfield). There is a functor LE : Sp→ Sp, and a natural trans-
formation η : id =⇒ LE such that

(a) ηX is an E-equivalence;

(b) LE(X) is always E-local;

(c) η is initial among such functors: any map X → Y such that Y is E-local
factors through LE(X).

Moreover, LE is idempotent as a functor: LE(X)→ LE(LE(X)) is an equiva-
lence, and the map is LE(ηX).

Remark 3.11. This is built from a localization of a model category structure on
Sp: we keep the same cofibrations, but then require that weak equivalences are
E-equivalences. This forces a choice of fibrations, and fibrant objects are exactly
the E-local ones. Then LE(−) is fibrant replacement in this new model structure.

Example 3.12. Let J be a set of primes. Then write

S0[J−1] := colim
(
S0

j1−→ S0
j1j2−−−→ S0 → · · ·) ,

where the map S0 n−→ S0 is given by the suspension of the map of degree n from
the 1-sphere to itself. S0[J−1] is a ring spectrum, and

LS0[J−1](X) = S
0[J−1]∧X.

The analogy with rings is that localization of an R-module M at a prime
ideal P is given byMP = RP ⊗RM.

14
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Example 3.13. Let E = S0/p = cofib
(
S0

p
−→ S0

)
. Then localization at E is a

function spectrum:

LS0/p = F(Σ−1
(
S0[ 1p ]/S0

)
,X) = lim

(
S0/pn

)
∧X.

This is a p-completion.

Theorem 3.14 (Sullivan). There is a (homotopy) pullback square

LZ(p)
X LZ/p(X)

LQ(X) LQLZ/p(X)

p

Exercise 3.15. Prove this theorem. Use the fact that the map LZ/p(X) →
LQLZ/p(X) is a rational equivalence, and the bottom map is a Z/2-equivalence.

Theorem 3.16. There is a natural equivalence between the localization functors

LE(n)(−) ' LK(0)∨K(1)∨···∨K(n)(−).

Hence, there are natural transformations

· · ·→ LE(n)(−)→ LE(n−1)(−)→ · · · .

So for any spectrum, we have a tower of spectra.

Definition 3.17. The chromatic tower of a spectrum X is the diagram

· · ·→ LE(n)(X)→ LE(n−1)(X)→ · · ·→ LE(0)(X)

The fibers of the maps in the tower are the monochromatic layers of X.

There is a map from X to this tower from the natural transformations
ηX : X → LE(n)(X), so we may compare X to the limit of this system. If
X ' holimn(LE(n)X), then we have chromatic convergence.

Following the example of the rational sphere, we have the following theorem
that matches our intuition that localization looks like −⊗R RP.

Theorem 3.18. LE(n)(X) ' LE(n)(S0)∧X

Theorem 3.19 (Hasse Square). There is a (homotopy) pullback square

LE(n)(X) LK(n)(X)

LE(n−1)(X) LE(n−1)LK(n)(X)

p

?
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4 MORAVA E-THEORY, MORAVA K-THEORY, AND

THE STABILIZER GROUP

Since this is a chromatic homotopy theory conference, let’s think about a map
between spheres

Sk
g
−→ S0.

More generally, for any cohomology theory E, consider applying it to this
diagram:

E∗[k]
d(g)
−−−→ E∗,

where E∗[k] is the shift of E∗ in degree by k. We call the map d(g) because it is
given by the degree of the map g of spheres, if we take usual cohomology.

If d(g) = 0, then consider instead

Sk
g
−→ S0 → C(g)→ Sk+1

where C(g) is the mapping cone. If we apply E∗ to this sequence, we arrive at

E∗[k]→ E∗ → E∗(C(g))→ E∗[k+ 1]→ E∗[1].

Since d(g) = 0, we the first and last terms vanish. hence, we are left with

0→ E∗ → E∗(C(g))→ E∗[k+ 1]→ 0

and this defines an element in Ext(E∗[k+ 1],E∗), which is Ext in the category of
E∗E-comodules.

Example 4.1. If E = HF2, then we have

S1
η
−→ S0 → C(η)→ S2

This defines an element h1 ∈ Ext1A∗((HF2)∗[2], (HF2)∗).

H∗(S0)← H∗(C(η))← H∗(S2).

This is frequently drawn as

Sq2

In general, we get a sequence of invariants of a map Sk → S0 living in
ExtSE∗E(E∗[k+ s],E∗). There is a spectral spectral sequence, called the Adams-
Novikov spectral sequence

ExtSE∗E(E∗[k+ s],E∗) =⇒ π∗(LE(S)).

16
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This is what we want to compute. If we take E = MU, then (being lazy and
omitting the shifts), we have

ExtMU∗MU(MU∗, MU∗) =⇒ π∗(S
0)

So we can use this to compute the stable homotopy groups of spheres.

4.1 MODULI STACK OF FORMAL GROUP LAWS

LetMFG be the moduli stack of formal group laws. This is roughly a “homo-
topy quotient” of groupoids

Spec(MU∗)/ Spec(MU∗(MU)).

A map Spec(R)→MFG is a formal group law over R. If we have a map of rings
R2 → R1, then we have a diagram

Spec(R1)

MFG

Spec(R2)

F1

F2

We think that F1⊗R1 R2 ∼= F2.
MFG classifies bundles of formal group laws. For any ring R, a point in

Spec(R) is a residue field of R, some field k and a map Spec(k)→ Spec(R). So
the composite

Spec(k)→ Spec(R) α−→MFG

is the map of a point toMFG. The map α classifies a formal group law over R,
so we may say that a formal group law over R is determined by a formal group
law over the residue fields R/P for each P ∈ Spec(R). The idea is that “points”
in algebraic geometry are Spec(k), where k is an algebraically closed field.

(MFG)(p) = · · ·
height

Theorem 4.2 (Lazard). Over an algebraically closed field of characteristic p,
height is a complete invariant of formal group laws.

Remark 4.3. Over Z(p), [p]F determines F.

Theorem 4.4. Let R be a commutative ring. There is an equivalence of groupoids
after applying Hom(−,R):

((MU∗)(p), (MU∗(MU))(p)) ∼= (BP∗, BP∗(BP)).

17
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Claim 4.5. MU∗MU-comodules are quasi-coherent sheaves onMFG.

Proof. What does a quasi-coherent sheaf onMFG mean?

g∗F F

Spec(R) MFG
g

A quasicoherent sheaf onMFG should consist of

• for all η : Spec(R)→MFG, an R-moduleMη;

• for all diagrams
Spec(R1)

MFG

Spec(R2)

η1

η2

an isomorphismMη2 ⊗R2 R1 ∼=Mη1 .

• compatibilities between these data.

Among all maps from Spec(R)→MFG, we have a particularly useful one:
the universal formal group law L = MU∗ →MFG.

Spec(MU∗)

MFG

We can then form a quasi-coherent sheaf on this

Spec(MU∗MU) Spec(MU∗)

Spec(MU∗) MFG

p

which consists of the data of

• an MU∗-moduleM0 and,

• an MU∗-moduleM1 and,

18
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• an isomorphism of MU∗MU-modules

M0⊗MU∗ MU∗MU ∼= MU∗MU⊗MU∗M1.

It turns out that this is exactly equivalent to the data of an MU∗MU-comodule
(exercise).

Corollary 4.6. Comod(BP∗ BP) ∼= Comod
(
(MU∗MU)(p)

)
Hence, we can compute Ext in either of these categories. In particular,

ExtBP∗ BP(BP∗, BP∗) ∼= Ext(MU∗MU)(p)
((MU∗)(p), (MU∗)(p))

BP∗ is the tensor unit in BP∗ BP-comodules. In the land of quasi-coherent
sheaves, this is the structure sheaf O(MFG)(p)

.
We reinterpret Ext∗MU∗MU(MU∗, MU∗) as sheaf cohomology as

Ext∗MU∗MU(MU∗, MU∗) = RΓ ∗(OMFG) = H
∗(MFG).

Let’s compute the cohomology ofMFG by finding an open cover and using
Mayer-Vietoris: try taking a small neighborhood around each point inMFG
and compute the cohomology there.

(MFG)(p) = · · ·

What is an infinitesimal neighborhood of a point inMFG? Well, functions
on an infinitesimal neighborhood should be like power series, e.g. Spec(FpJtK).
More generally, a neighborhood should be Spec(R), where R is a complete,
Noetherian, local ring.

What is an infinitesimal neighborhood of a height n formal group law over
a field k, insideMFG?

Spec(k) MFG

Spec(R)

We search for the universal example of a Noetherian complete local ring R with
a diagram as above.

Let C be the category of tuples (R,M,k,φ) where R is a complete Noetherian
local ring with maximal idealM, k is a field such that R/M ∼= k, and φ : R→ k

is a homomorphism.

19
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Definition 4.7. Fix a formal group law Γ over a perfect field k of height n.
Define a functor Def(Γ) : C→ Groupoid that takes (R,M,k,φ) to the groupoid
G whose objects are formal group laws F over R such that F⊗R R/M = Γ and
whose morphisms are identities mod η.

Theorem 4.8 (Lubin–Tate). Def(Γ) takes values in the category of sets, and is
corepresented by a ring

E(k, Γ)0 ∼=W(k)Ju1, . . . ,un−1K

whereW(k) is the ring of Witt vectors over k.

The upshot of this is that E(k, Γ)0 carries the universal such deformation of
Γ ; i.e. a formal group law

MU∗ → E(k, Γ)∗ := E(k, Γ)[u±1].

This is Landweber exact, so we get a cohomology theory E(k, Γ) called Lubin–
Tate theory or Morava E-theory.

Automorphisms of Γ over k produce automorphisms of the universal defor-
mation by naturality. The automorphism group Aut(k, Γ) = Gn is called the
Morava stabilizer group, which acts on E(k, Γ)∗.

H∗(formal nbhd of (k, Γ)) = H∗(Gn;E(k, Γ)∗)

H∗(Gn;E(k, Γ)∗) π∗(LK(n)S
0)

H∗(MFG) π∗(S0)

Remark 4.9. So we have a procedure to solve any problem in homotopy theory:
we pick a prime (hope it’s not 2), and pick a height (hope it’s 1), and then use the
diagram as above together with the homotopy pullback square in the previous
talk.
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5 SOME K(1)-LOCAL COMPUTATIONS

We ended the last talk with H∗c(Gn, (En)∗), where Gn = Aut(Γ , Fpn) and En =

E(Γ , Fpn). This is trying to compute the Bousfield localization of the sphere at
Morava K-theory, via a spectral sequence:

Hsc(Gn, (En)t) =⇒ πt−sLK(n)S
0.

All of the occurrences of n are the same, and are the height of the formal group
law Γ .

If Γ is the Honda formal group law, then [p]Γ (x) = x
pn .

(En)∗ = Zp(ζpn−1)Ju1, . . . ,un−1K[u±1].

Theorem 5.1 (Derihatz–Hopkins). EhGn
n ' LK(n)S0.

Now take n = 1. We will think about K-theory.

KU∗ ∼= Z[β±1]

with β ∈ KU2.

KU∗(CP) ∼=
Z[β±1][x]/

〈xn+1〉.

When we complete, we have

KU∗(CP∞) ∼= Z[β±1]JxK,

with x ∈ KU0(CP∞). The group law in question is the multiplicative formal
group law

FKU(x,y) = x+ y+ xy.

The p-series is
[p]KU(x) ≡ xp (mod p)

KU /p is the cohomology theory with height 1 formal group law.
The Morava K-theory K(1) is K/pwith formal group law

Γ(x,y) = x+ y+ xy

over Fp[u
±1].

The Morava E-theory E1 is Kp = limiKU /pi, which is p-completed K-
theory.

Exercise 5.2. (E1)∗ = Zp[β
±1], where β = u.

What is G1 = Aut(Γ , Fp)?
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Proposition 5.3. Let k be a field of characteristic p and let Γ be the height n = 1

Honda formal group law viewed over k. Let f(x) ∈ kJxK be an endomorphism.
Then

f(x) =

Γ∑
i≥0

aix
pi ,

for ai ∈ Fp, where
∑Γ means that we are using the formal group law +Γ to

add elements.
Furthermore, the map below is an isomorphism:

Zp End(Γ)

α = a0 + pa1 + p
2a2 + . . .

∑Γ
i≥0 ai[p

i]Γ (x) =
∑Γ
i≥0 ax

pi

We have End(Γ) ∼= Zp, and Aut(Γ) ∼= Z×p . What does Z×p look like?
We have an isomorphism

Z×p ∼= µ×U

If p is odd, then µ = Cp−1 and U = 〈1+ p〉 ∼= (Zp,+). We will write g = 1+ p

for the additive generator of Zp.
If p is even, then µ = (±1) = C2, and U = 〈1+ 4〉 ∼= Z2. Therefore,

Z×2
∼= C2 ×Z2. Hence,

Z×p ∼=

{
Cp−1 ×Zp p odd

C2 ×Z2 p even

(Kp)∗ = Zp[β
±1] has an action of G1.

The Adams operations on K-theory are for k, ` ≥ 0,

ψk : KU0(−)→ KU0(−)

such that when L is a line bundle,

ψk(L) = L⊗k

and moreover,
ψkψ` = ψk` = ψ`ψk.

Exercise 5.4. ψk(βn) = knβn

However, the Adams operations are not stable. If instead we take K-theory
with coefficients in R, e.g. Z[1/k], where k ∈ R×, then we can extend ψk to
stable operations on the spectrum of K-theory with coefficients in R.
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Consider Z×p acting on Kp. For any α ∈ Z×p ,

ψα(βn) = αnβn.

Then we have an action of G1 ∼= Z×p acting on E1 = Kp via the p-completed
Adams operations.

Let’s recall what we’re trying to do: compute

Ext∗,∗
ZpJZ×p K(Zp, Zp[β

±1]) = H∗c(Z
×
p , Zp[β

±1]) =⇒ π∗LK(1)S
0.

Here,

ZpJZ×p K = lim
i,j

Z/
pi

[
Z×p
/
(1+ pj)Z×p

]
.

Likewise,
ZpJZpK = lim

i,j
Z/pi

[
Z/pj

]
.

Now assume that p is odd. So

Z×p ∼= Cp−1 ×Zp

and |Cp−1| is a unit in Zp. Then we learn from standard group cohomology
facts (involving the Lyndon–Hochschild–Serre spectral sequence)

H∗(Z×p ,M) ∼= H∗(Zp,MCp−1).

In our case, let’s figure out what the Cp−1-fixed points of M are. Given
α ∈ Cp−1 ⊆ Z×p , we have αp−1 = 1. We also know

ψα(βm) = αmβm = βm ⇐⇒ (p− 1) | m.

So
(Zp[β

±1])Cp−1 = Zp[β
±(p−1)] = Zp[v

±1
1 ].

So the new goal is to compute the group cohomology

H∗(Zp, Zp[v
±1
1 ]),

where 〈1+ p〉 = Zp and

ψ1+p(vk1) = (1+ p)k(p−1)vki .

Exercise 5.5. Use the projective resolution

0→ ZpJZpK g−1−−−→ ZpJZpK→ Zp → 0.

where the first Zp is 〈g〉 and the second one is 〈g〉.
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Another method to do these computations is to consider

LK(1)S
0 ∼= E

hG1
1

∼= (Kp)
hZ×p

where Z×p ∼= Cp−1 ×Zp, as before. Hence, we have

LK(1)S
0 ∼= E

hG1
1

∼= (Kp)
hZ×p ∼= (K

hCp−1
p )hZp ∼= (K

Cp−1
p )hZp .

Earlier, we learned that (KCp−1p )∗ = Zp[v
±1
1 ]. This is the p-complete Adams

summand.
There is a shadow of the short exact sequence from the previous exercise in

homotopy theory: namely, a fiber sequence

LK(1)S
0 → K

Cp−1
p

ψg−1
−−−−→ K

Cp−1
p → ΣLK(1)S

0.

This gives a long exacts sequence in homotopy:

0 π2(p−1)kLK(1)S
0 π2(p−1)kK

Cp−1 π2(p−1)kK
Cp−1 π2(p−1)k−1LK(1)S

0 0
ψq−1

When k 6= 0, we have

0 π2(p−1)kLK(1)S
0 π2(p−1)kK

Cp−1 π2(p−1)kK
Cp−1 π2(p−1)k−1LK(1)S

0 0

0 Zp{v
k
1 } Zp{v

k
1 }

Z/
pνp(k)+1

{vk1 } 0

vk1 ((1+ p)k(p−1) − 1)vk1

ψq−1

∼= ∼= ∼=

pνp(k)+1 unit

And when k = 0, this becomes

0→ π0LK(1)S
0 ∼=
−→ Zp{1}

0
−→ Zp{1}

∼=
−→ π−1LK(1)S

0 → 0

Exercise 5.6. νp((1 + p)k(p−1) − 1) = νp(k) + 1 where νp(x) is the highest
power of p that divides x.

Theorem 5.7.

πnLK(1)S
0 =


Zp n = 0,−1,

Z/pνp(k)+1 n = 2k(p− 1) − 1,

0 otherwise.

Consider the J-homomorphism J : π∗O→ πS∗ where O is the infinite orthog-
onal group. This is given by the colimit of maps

colim

 O(n) ΩnSn

g g : SRn → SRn


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where SRn is the one-point compactification.
Since

πiO ∼=


Z/2 i ≡ 0, 1 (mod 8)

Z i = 4k− 1

0 otherwise.

We have a theorem:

Theorem 5.8. The composite below is an isomorphism

imp(J)→ π∗S
0 → π∗LK(1)S

0.
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6 THE GREAT CONJECTURES

Let V be a finite complex equipped with maps

Sd+k
Σdi
−−→ ΣdV

v
−→ V

j
−→ S`.

with the following properties:

• d > 0 and all iterates of v are essential. We say that such a map v is peri-
odic. We know that v has this property because it induces an isomorphism
in K(n)∗(−) for some n > 0with K(n)∗V 6= 0.

• In the known examples, i is inclusion of the bottom cell into V , and j is
projection onto the top cell.

• It was known that for each t > 0, the composite

Std+k
Σdti
−−−→ ΣdtV

vt
−→ V

j
−→ S`

represents a nontrivial element in πtd+kS`.

Such complexes can be used to find examples of periodic families of elements
in the homotopy groups of spheres.

Example 6.1. Only three examples were known in 1973. Toda had constructed
finite complexes he called V(n) with

BP∗ V(n) ∼= BP∗ /〈p, v1, . . . , vn〉

for 0 ≤ n ≤ 3, and cofiber sequences

Σ2p
n−2V(n− 1)

vn−−→ V(n− 1)→ V(n)

for 1 ≤ n ≤ 3.
To this day, nobody has constructed V(4).
In each case there is a lower bound on the prime p: in 2010, Lee Nave showed

that V((p+ 1)/2) does not exist.

Question 6.2.

(a) Are there more maps like this? Can we use them to construct more
periodic families in the homotopy groups of spheres?

(b) Are there any periodic maps that are not detected by BP-theory or MU-
theory?

(c) What happens if we replace the prime ideal In = 〈p, v1, . . . , vn−1〉 with a
smaller invariant regular ideal with n generators?
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Recall that
BP∗ ∼= Zp[v1, v2, . . .]

where |vn| = 2(p
n − 1) and

Γ := BP∗ BP ∼= BP∗[t1, t2, . . .]

with |ti| = 2(p
i − 1), which has Hopf algebroid structure.

The E2-term of the Adams-Novikov spectral sequence converging to the
p-local stable homotopy groups of spheres is

Es,t
2 = Exts,t

BP∗ BP(BP∗, BP∗)

So this object is of great interest. It can be studied using the LES BP∗(BP)-
comodules

0→ BP∗ →M0 →M1 →M2 → · · ·
called the chromatic resolution.

This leads to a trigraded chromatic spectral sequence converging to the
bigraded Adams-Novikov E2-term, with

En,s,t
1 = Exts,t

BP∗ BP(BP∗,Mn) =⇒ En+s,t
2 .

For fixed n, this group is related to the cohomology fo the n-th Morava
stabilizer group, which is the automorphism group of a certain formal group
law of height n. It is also related to the vn-periodic phenomena in the stable
homotopy groups of spheres.

We used the term chromatic because each column (value of n) displays
periodic families of elements with varying frequencies, like the astronomical1

spectrum of light.
The comodulesMn are defined inductively as follows:

• M0 is obtained from BP∗ by inverting p. This means there is a short exact
sequence

0 N0 M0 N1 0

BP∗ BP∗⊗Q BP∗/〈p∞〉
• For n > 0,Mn is obtained from Nn by inverting vn.

0 Nn Mn Nn+1 0

BP∗/〈p∞,v∞1 ,...,v∞n−1〉 v−1n BP∗/〈p∞,v∞1 ,...,v∞n−1〉

v−1n

1Why is light astronomical? Because stars.
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The chromatic resolution

0→ BP∗ →M0 →M1 → · · ·
is obtained by splicing together these short exact sequences for all n ≥ 0. This
construction is purely algebraic. It takes place in the category of BP∗(BP)-
comodules.

Question 6.3. Is there a similar construction, and the beautiful algebra that goes
along with it, in the stable homotopy category?

6.1 BOUSFIELD LOCALIZATION

0→ Nn
v−1n−−→Mn → Nn+1 → 0

0→ BP∗ →M0 →M1 →M2 → · · ·
It would be nice if each short exact sequence above were the BP∗-homology

of a cofiber sequence of spectra. Then we would have spectraMn and Nn with
BP∗(Mn) ∼= Mn and BP∗(Nn) ∼= Nn. This was easy enough for n = 0. We
know how to invert a prime p homotopically. The resulting N1 is the Moore
spectrum for the group Q/Zp.

Question 6.4. But how would we invert v1 to do the next step?

As luck would have it, Bousfield localization exists! This is the secret
weapon.

Definition 6.5. Suppose we have a generalized homology theory represented
by a spectrum E. We say a spectrum Z is E-local, if whenever f : A → B is an
E∗-equivalence, then the induced map

f∗ : [B,Z]→ [A,Z]

is an isomorphism.

The condition that Z is an E-local spectrum is the following: if C is an
E∗-acyclic spectrum, meaning that E∗C = 0, then [C,Z] = 0.

Theorem 6.6 (Bousfield Localization). For a given E there is a coaugmented
functor LE such that for any spectrum X, LE(X) is E-local, and the map X →
LE(X) is an E∗ equivalence.

It turns out that when E and X are both connective, LE(X) can be described
in purely algebraic terms. It is either obtained from X by inverting some set
of primes, or it is the p-adic completion for a single prime p. Things are more
complicated if either E or X fails to be connective.
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Question 6.7. What if our hypothetical spectrumMn could be obtained from
the inductively constructed Nn by some form of Bousfield localization?

The logical choice for E appeared to be the Johnson-Wilson spectrum E(n).
It is a BP-module spectrum with

π∗E(n) ∼= Zp[v1, . . . , vn−1v±1n ]

It is closely related to the fancier Morava spectrum En, but not exactly the
same. However, they give the same localizations.

Definition 6.8. Two spectra E and E ′ are Bousfield equivalent if they have
the same class of acyclic spectra, that is spectra C with E∗C = 0 if and only if
E ′C = 0.

The Bousfield equivalence class of E is denoted by 〈E〉. We say that 〈E〉 ≥ 〈F〉
if E∗C = 0 implies that F∗C = 0.

Writing 〈E〉 ≥ 〈F〉means that the class of E-acyclic spectra is bigger than or
equal to the class of F-acyclic spectra: the homology theory E∗ gives at least as
much information as F∗.

It follows that the maximal Bousfield class is that of the sphere spectrum S,
and the minimal Bousfield class is that of a point ∗.

It is easy to check that wedges and smash products of Bousfield classes are
well-defined, that is,

〈E〉∧ 〈F〉 := 〈E∧ F〉
〈E〉∨ 〈F〉 := 〈E∨ F〉

These two operations satisfy the expected distributive law. A collection with
such operations is called a lattice, and this particular collection is called the
Bousfield lattice A.

Remark 6.9. For any spectrum E, 〈E〉∨ 〈E〉 = 〈E〉, but it is not the case that
〈E〉∧ 〈E〉 = 〈E〉. There are spectra that become contractible when smashed with
themselves.

Definition 6.10. The collection of classes 〈E〉 for which 〈E〉 ∧ 〈E〉 = 〈E〉 is
called the Bousfield distributive lattice DL. It includes all connective and ring
spectra.

The compliment (if it exists) 〈E〉c of a class 〈E〉 is a class with

〈E〉c ∨ 〈E〉 = 〈S〉

and
〈E〉c ∧ 〈E〉 = 〈∗〉.

The collection of Bousfield equivalence classes with complements forms a
Boolean algebra.
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Theorem 6.11 (Formal properties of Bousfield classes).

(a) IfW → X→ Y
f
−→ ΣW is a cofiber sequence, then 〈X〉 ≤ 〈W〉∨ 〈Y〉.

(b) If f is smash nilpotent, i.e. f∧k : Yk → (ΣW)∧k is null for some k, then
〈X〉 = 〈W〉∨ 〈Y〉.

(c) For a self-map ΣdX v
−→ X, let Cv denote its cofiber and let X̂ denote the

homotopy colimit (mapping telescope) of

X
v
−→ Σ−dX

v
−→ · · ·

Then 〈X〉 = 〈X̂〉∨ 〈CV 〉 and 〈X〉∧ 〈X̂〉 = 〈∗〉.

Theorem 6.12 (Some Bousfield equivalence classes).

(a)
〈S〉 = 〈SQ〉∨

∨
p prime

〈S/p〉

where SQ is the rational Moore spectrum and S/p is the mod p Moore
spectrum;

(b)
〈BP〉 = 〈H/p〉∨

∨
n≥0
〈K(n)〉

whereH/p is the mod p Eilenberg–MacLane-spectrum andK(n) is Morava
K-theory;

(c)
〈E(n)〉 = 〈En〉 =

∨
0≤i≤n

〈K(i)〉.

In each case, the smash of any two wedge summands on the right is contractible.

6.2 THE CHROMATIC TOWER

The localization functor LE is determined by the Bousfield class 〈E〉. When
〈E〉 ≥ 〈F〉, then there is a natural transformation LE =⇒ LF.

Definition 6.13. For a fixed prime p, let Ln = LE(n). Then for any spectrum X,
we get a diagram called the chromatic tower of X:

X→ L∞X→ · · ·→ Ln(X)→ Ln−1X→ · · ·→ L1X→ L0X,

where L∞X is localization with respect to
∨
n≥0〈K(n)〉.
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This raises some questions:

(1) When is the map X→ L∞X is an equivalence? Then X is called harmonic.
We call L∞X dissonant if L∞X ' ∗. L∞X is the harmonic localization of
X.

(2) When the map X→ holimLnX is an equivalence? This is the chromatic
convergence question.

(3) Can we describe BP∗ LnX in terms of BP∗ X? This is the localization
question.

If X is dissonant, then L∞X ' ∗, so K(n)∗X = 0 for all n. It follows from
the definitions that there are no essential maps from a dissonant spectrum to a
harmonic one.

Theorem 6.14 (Ravenel).

(a) every p-local finite spectrum is harmonic

(b) a p-local connective spectrum X is harmonic when BP∗ X has finite projec-
tive dimension as a BP∗-module.

(c) The mod p Eilenberg MacLane spectrum H/p is dissonant. This is true
for any spectrum whose homotopy group are torsion and bounded above.

A p-local spectrum X is chromatically convergent if it is equivalent to the
homotopy limit of the diagram

· · ·→ LnX→ Ln−1X → · · ·→ L1X→ L0X.

Theorem 6.15 (Hopkins–Ravenel). All p-local finite spectra are chromatically
convergent.

Theorem 6.16 (Barthel). Any p-local connective spectrum X is chromatically
convergent when BP∗ X has finite projective dimension as a BP∗-module.

Recall that in question 6.3 we asked whether or not the chromatic resolution
has a geometric underpinning. This is a special case fo the localization question
– how can we describe BP∗ LnX in terms of BP∗ X?

It turns out that Ln BP is easy to analyze, and this makes it easy to under-
stand X∧ Ln BP.

Theorem 6.17 (Localization conjecture). For any spectrum X,

BP∧LnX ' X∧ Ln BP .

In particular, when E(n− 1)∗X = 0, then BP∗ LnX = v−1n BP∗ X.

It follows that the chromatic resolution can be realized as desired. Moreover,
the functor Ln satisfies a stronger condition:

Theorem 6.18 (Smash product conjecture). For any spectrum X, LnX ∼= X∧ LnS.

31



Some Conjectures Doug Ravenel

6.3 SOME CONJECTURES

Ravenel’s 1984 conjecture ends with a list, and all but one of them (the telescope
conjecture) were proved before 2000 by Hopkins and collaborators.

Theorem 6.19 (Nilpotence Theorem, Devinatz–Hopkins–Smith). (a) For a fi-
nite spectrum X, a map v : ΣdX→ X is nilpotent if and only if MU∗(v) is
nilpotent.

(b) For a finite spectrum X, a map g : X → Y is smash nilpotent if the map
MU∧g is null-homotopic

(c) Let R be a connective ring spectrum of finite type, and let h : π∗R→MU∗ R
be the Hurewicz map. Then α ∈ π∗R is nilpotent when h(α) = 0.

(d) Let W → X → Y
f
−→ ΣW be a cofiber sequence of finite spectra with

MU∗(f) = 0. Then 〈X〉 = 〈W〉∨ 〈Y〉

If it were the case that 〈MU〉 = 〈S〉, or if 〈BP〉 = 〈S(p)〉, for each prime p,
then the nilpotence theorem would follow. But 〈BP〉 < 〈S(p)〉, meaning that
there are BP∗-acyclic p-local spectra that are not contractible. In other words,
MU doesn’t see everything!

In fact, there are connective p-local spectra T(m) form ≥ 0with

BP∗ T(m) ∼= BP∗[t1, t2, . . . , tm]

(so T(0) = S(p)). and

〈T(0)〉 > 〈T(1)〉 > 〈T(2)〉 > . . . > 〈BP〉.

So not only does 〈BP〉 = 〈S(p)〉 fail, but there’s an infinite sequence of failures
in between!

Now consider the first part of the nilpotence conjecture: For a finite spectrum
X, a map v : ΣdX→ X is nilpotent if and only if MU∗(v) is nilpotent. This means
that such a map can be periodic (the opposite of nilpotent) only if it detected as
such by MU-homology. In the p-local case, the internal properties of MU-theory
imply that vmust induce a nontrivial isomorphism in some Morava K-theory
K(n)∗.

Definition 6.20. A p-local spectrum X has chromatic type n if K(n− 1)∗X = 0

but K(n)∗X 6= 0.

Notice that K(i)∗X = 0 for all i ≤ n− 1 if X has chromatic type n, since
K(i)∗X = 0 =⇒ K(i− 1)∗X = 0.

Theorem 6.21 (Periodicity Theorem, Hopkins–Smith 1998). Let X be a p-local
finite spectrum of chromatic type n. Then there is a map v : ΣdX→ X (a vn-self
map) with K(n)∗(v) an isomorphism and H∗(v;Z/p) = 0.
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We may in fact also relate the degree d of this vn-self map to n. If n = 0 then
d = 0, and if n > 0, d is a multiple of 2pn − 2.

Additionally, such a map satisfies an asymptotic uniqueness property:
given another such map w : ΣeX→ X, then there are positive integers i, j such
that id = je and vi = wj.

It follows that the cofiber of v (or of any of its iterates) is a p-local finite
spectrum of chromatic type n+ 1. This means that there are finite complexes
of all chromatic types. Finite complexes of arbitrary chromatic type were first
constructed by Steve Mitchell in 1985. Consequently, there are lots of periodic
families in π∗S.

A pleasant consequence of the Nilpotence Theorem is the following:

Theorem 6.22 (The class invariant conjecture). The Bousfield class of a p-local
finite spectrum X is determined by its chromatic type, i.e. the smallest n for
which K(n)∗X 6= 0.

In particular, if H∗X is not all torsion, then 〈X〉 = 〈S(p)〉.
Suppose that X is a p-local finite spectrum of chromatic type n. The Period-

icity theorem says that it has a vn self-map v : ΣdX→ X. Let X̂ be the associated
mapping telescope, meaning the homotopy colimit of

X
v
−→ Σ−dX

v
−→ Σ−2dX

v
−→ · · ·

Note that it is independent of the choice of v. Since v is a K(n)-equivalence and
therefore an E(n)-equivalence, we have maps

X→ X̂
λ
−→ LnX

Conjecture 6.23 (The telescope conjecture). For any p-local spectrum X of chro-
matic type n, the map λ : X̂→ LnX is an equivalence.

This is easy for n = 0, and true for n = 1.

Conjecture 6.24 (Ravenel). The telescope conjecture is false for n ≥ 2.
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7 CHROMATIC SPLITTING

There are two ideas going on today:

(1) Chromatic assembly: If X is a finite CW-spectrum, then we may compare
X to the limit of its chromatic tower:

X→ holimLnX.

(2) Chromatic fracture: There is a pullback square:

LnX LK(n)X

Ln−1X Ln−1LK(n)X

after Zp-localization.

In this talk, we’ll focus on the map Ln−1X→ Ln−1LK(n)X. Let’s recall some
of the typical players:

• En = E(Fpn , Γn) is the Morava E-theory, which we will start to call just E
shortly;

(En)∗X = π∗LK(n)(En ∧X).

• The Adams–Novikov spectral sequence

Hs(Gn,EtX) =⇒ πt−sLK(n)X.

• Gn = Aut(Fpn , Γn) ∼= Aut(Γn/Fpn)o Gal(Fpn/Fp)

• Goerss–Hopkins–Miller: Gn acts on En and various fixed point spectra
EhHn for H ⊆ Gn closed.

• Sn = Aut(Γn/Fpn) ⊆ End(Γn/Fpn); the latter is a free module over the
Witt vectorsW =W(Fpn) of rank n.

Aut(Γn/Fpn) GLn(W) W×

Z×p

det
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• ζn ∈ H1(Gn, Zp) is the homomorphism that is the composite below:

Gn Sn o Gal Z×p ×Gal Z×p Z×p/C Zp

ζn

det

∼=

Alternatively, we also say that ζn ∈ H1(Gn,E0) under the map

H1(Gn, Zp)→ H1(Gn,E0)

where E0 =WJµ1, . . . ,µn+1K.

Theorem 7.1. ζn is a permanent cycle in the Adams-Novikov spectral sequence
detecting a homotopy class ζn ∈ π−1LK(n)S0.

Proof. Let G1n = ker(ζn). Then there is a fiber sequence

EhGn EhG1n EhG1n ΣLK(n)S
0

LK(n)S
0 S0

ψ−1

1 ζn

for ψ ∈ Gn, ζn(ψ) ∈ Zp is a generator.

L1S
0 LK(1)S

0 Zp ⊕Zpζ1
π∗LK(1)S

0/
torsion

LHQS
0 L0S

0 L0LK(1)S
0

HQ HQp ∨ Σ
−1HQp

⊇

When n = 1 and p ≥ 3, then H∗(G1, (E1)∗/torsion) ∼= Λ(ζ1).
If p = 2,

H∗(G1, (E1)0) = H∗(Z×2 , Z2) ∼= Λ(ζ1)⊗Zp[x]/(2x)

where |x| = 2. And here,
Es,0∞ ∼= Λ(ζ1).
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Lets consider n = 2. Our job is to calculate L1LK(2)S0. It fits into the
following (homotopy) pullback square:

L1LK(2)S
0 LK(1)LK(2)S

0

L0LK(1)S
0 L0LK(1)LK(0)S

0

Theorem 7.2 (Morava).

H∗(Sn, Q) ∼= Λ(x1, x3, . . . , x2n−1)

with |xi| = i. The class x1 is a rational version of ζn.

Likewise, H∗(Sn, Zp)/torsion is an exterior algebra. It fits into the diagram
below:

Λ(x1, x3, . . . , x2n−1) H∗(Sn, Zp) H∗(Gn,W) H∗(Gn,E0)
∼= ∼=

This gives a bunch of classes in H∗(Gn,E0).

Theorem 7.3 (Shimomura–Yabe (p ≥ 5), Henn–Goerss–Mahowald (p = 3),
Beaudry–Bobkova–Henn–Goerss (p = 2)).

π∗LK(2)S
0/

torsion
∼= ΛZp(ζ2, e)

where |e| = 3.

Let’s calculate LK(1)X. This is periodic:

v
pk

1 : ΣdS/pn → S/pn

for some d. Write
v−11 X∧ S/pn = ̂X∧ S/pn.

Then
LK(1)X = holim v−11 (X∧ S/pn) ;

this is a special fact for n = 1.

Theorem 7.4 (Shimamura–Yabe (p ≥ 5), Henn–Maramanov–Mahowald (p = 3)).
For p ≥ 3,

v−11 π∗LK(2)(S/p) ∼= Λ(ζ1,α1)⊗Fp[v
±1
1 ],

where α1 ∈ π2p−3S0 ∼= Z/p.
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Note that
π∗LK(1)(S

0/p) ∼= Λ(ζ1)⊗Fp[v
±1
1 ],

and v1ζ1 = α1 up to sign. The theorem and this observation yield

LK(1)LK(2)(S/p) ' LK(1)(S/p)∨ Σ−1LK(1)(S/p).

Therefore,
LK(1)LK(2)S

0 ' LK(1)S0 ∨ Σ−1LK(1)S0.

Back to the pullback square: we can fill in some of the equalities

LK(1)S
0 ∨ Σ−1L1S

0 ∨ Σ−3L0S
0 ∨ Σ−4L0S

0 L1LK(2)S
0 LK(1)LK(2)S

0

L0LK(1)S
0 L0LK(1)LK(0)S

0

HQp ∨ Σ
−1HQp ∨ Σ

−3HQp ∨ Σ
−1HQp

'

Recall also that L0S0 = HQ.

Theorem 7.5 (Hopkins’ Chromatic Splitting Conjecture).

(a) The image of any element under the inclusion

Λ(ζn, x3, . . . , x2n−1) ↪→ H∗(Gn,E0)

is a non-zero infinite cycle.

(b) The map ∨
i1<...<ik

Ln−ikS
r '−→ Ln−1LK(n)S

0

is an equivalence, where r =
∑
t |x2it − 1|

(c) H∗(Sn, Zp) ∼= H∗(Gn,W)
∼=
−→ H∗(Gn,E0) for all n and all p.

Question 7.6. The right-hand-side of the last part of the conjecture is part of
the second page of a spectral sequence with E∗,02 = H∗(Gn,E0). Is Es,0∞ = 0 for
s > n.

Let’s consider the case n = p = 2. What is LK(1)LK(2)S0? We have a diagram

Z×2 /C2 ∼= Z2

Gn Z×2

C2 = Z/2

det

ζ2

χ
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In this case, we have a new cohomology class

χ ∈ H1(G2, Z/2).

H1(G2, Z/2) H1(G2,E0/2)

H2(G2, Z/2) H2(G2,E0/2) π∗LK(2)S/p

β β

Theorem 7.7 (Beaudry–Goerss–Henn).

(a) H∗(G0,W)
∼=
−→ H∗(G2,E0)

(b) Es,0∞ = 0 for s > n2 = 4.

(c) E∗,0∞ ∼= Λ(Z2, e)⊕Z/2 · x̃⊕Z/2x̃ · · · ζ2 with |e| = 3.

(d) LK(1)LK(2)S0 ' LK(1)S0 ∨ LK(1)S−1 ∨ LK(1)Σ−2S/p∨ LK(1)Σ−3S/p

prime p

Chromatic Level n

n = p− 1

2

1

Chromatic is
algebraic

Bears in
these woods
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8 PICARD GROUPS AND DUALITY

Let (C,⊗, I) be a symmetric monoidal category.

Definition 8.1. On object M in C is invertible if there is some other object N
such thatM⊗N = I.

Definition 8.2. The Picard group of C is the group Pic(C) of isomorphism
classes of invertible objects in C with group operation ⊗ and unit [I].

If C is such that this is genuinely a group (the isomorphism classes of objects
form a set), then this is an abelian group.

Example 8.3. In the category (Vectk,⊗k,k), an object is invertible if and only if
it is one-dimensional and so isomorphic to k. Therefore, Pic(Vectk) is trivial.

Example 8.4. If C is the category of graded k-vector spaces, then an object is
invertible if and only if it has dimension 1, but it may live in any degree. In this
case, Pic(C) = {Σmk | m ∈ Z} ∼= Z.

Example 8.5. If C is the category of vector bundles over a space X, then invert-
ible objects are line bundles on X. If we take X = CP1, the Picard group is cyclic,
generated by the tautological line bundle.

8.1 PICARD GROUPS IN STABLE HOMOTOPY

Fact 8.6. In the category (Sp,∧,S0),

Pic(Sp) = {Sn | n ∈ Z} ∼= Z.

Proof. By passing from spaces to spectra, we have inverted the spheres, so we
know that Sn are invertible for all n ∈ Z. On the other hand, let X ∈ Pic(Sp).
Then there is some Y such that X∧ Y ' S0. If k is a field, there is a Künneth
isomorphism

Hk∗X⊗kHk∗Y ∼= Hk∗(X∧ Y) ' Hk∗(S0) = k.

Therefore Hk∗X is an invertible graded k-vector space, for all fields k. Then the
universal coefficient theorem shows that

HZ∗X ∼= ΣmZ.
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To prove that ΣmZ ' S0, consider the Postnikov tower of S0:

...

τ≤2S
0

τ≤1S
0

Σ−mX HZ τ≤0S
0 S0

The obstructions to lifting the map vanish, and therefore ΣmX → S0 is an
equivalence.

So this isn’t that interesting, but we don’t know a lot about the category of
spectra. Instead, we will consider the chromatic picture. Much of this appears
in a paper of Hopkins–Mahowald–Sadofsky.

The Picard groups we look at are the Picard groups of K(n)-local spectra

Definition 8.7.

Picn := Pic(SpK(n)) = {Z ∈ SpK(n) | ∃ Y ∈ SpK(n),LK(n)(Z∧Y) ' S0K(n)}/ 'K(n) .

where SpK(n) = LK(N)Sp.

We might also consider

Pic(Spn) = Pic(LEnSp).

Theorem 8.8 (Hopkins–Mahowald–Sadofsky). The following are equivalent:

(a) Z ∈ Picn,

(b) dimK(n)∗ K(n)∗Z = 1,

(c) K(n)∗Z ∈ Pic(SpK(n)).

Proof. For the forward direction, use the Künneth isomorphism,

K(n)∗ = K(n)∗S
0 ' K(n)∗Z⊗K(n)∗ K(n)∗(Z

−1)

Hence, K(n)∗Z is an invertible graded K(n)∗-module. Notice that K(n)∗ =

Fp[v
±1
n ] is a graded field, so its invertible modules are one-dimensional.

40



The Picard group of spectra localized at En Vesna Stojanoska

Conversely, claim that the inverse of Z is the Spanier–Whitehead dual of Z,
Dn(Z) = F(Z,S0

K(n)), where F(A,B) is the function spectrum representing the
cohomology theory

X 7→ [X∧A,B].

Consider the evaluation map

ev : Z∧ F(Z,S0K(n))→ S0K(n).

Claim that it is a K(n)∗ isomorphism, and therefore a K(n)-equivalence. To see
this, notice that

K(n)∗(F(Z,S0K(n))) = HomK(n)∗(K(n)∗Z,K(n)∗),

and then K(n)∗ev is the same as ev(K(n)∗Z), which is an isomorphism by the
assumption on Z.

8.2 THE PICARD GROUP OF SPECTRA LOCALIZED AT En

Theorem 8.9 (Hopkins–Mahowald–Sadofsky). The following are equivalent:

1. Z ∈ Picn,

2. (En)∗Z ∈ Pic((En)∗) = Z/2,

3. (En)∗Z lies in the Picard group of continuous, graded (G,E∗)-bimodules.

Recall that (En)∗ = E0[u
±1], where E0 = WJu1, . . . ,un−1K. This has a

maximal idealM = 〈p,u1, . . . ,un−1〉 and E0/M = Fpn .
The proof of this theorem, using the previous, is sort of like a Hensel’s lemma

argument. Importantly, E0 is a complete local ring, and the Picard group of
such a ring is trivial. There is a short exact sequence

0→ Pic(E0)→ Pic((En)∗)→ Z/2→ 0

Remark 8.10. Because it is cumbersome, we will drop the subscript n and write
E instead of En.

Notice that π∗(LK(n)(E∧Z)) = (En)∗Z, and the homotopy group π∗(LK(n)(E∧
Z)) has an action of Gn. This is the idea behind second equivalence in the state-
ment of the theorem.

Definition 8.11. Let Picalg
n be the Picard group of continuous, graded (G,E∗)-

bimodules.
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There is a map ξn Picn → Picalg
n given by ξn(Z) = E∗Z.

Picn Picalg
n

1 κn Pic0n Picalg,0
n H1c(G,E×0 )

ξn

ξ0n

(8.1)

where κn = ker(ξ0n) is the exotic Picard group. In general, ξ0n is not known to
be surjective.

Theorem 8.12 (Hopkins–Mahowald–Sadofsky). κn = 0 if (p− 1) does not di-
vide n and n2 ≤ 2(p− 1).

Let’s investigate the diagram (8.1). First assume n = 1. In this case, E =

En = K∧
p , and G = Z×p acts by the Adams operations. Moreover, E0 ∼= Zp, so

H1c(Z
×
p ,E×0 ) = Homc(Z×p , Z×p )

If p is odd, then Z×p = 〈l〉, and

Picalg,0
1 = Z×p = Z/〈p− 1〉 ×Zp.

If p = 2, then Z×p = Z/2× 〈`〉, and

Picalg,0
1 = Z×2 ×Z/2 = Z2 ×Z/2×Z/2.

In both cases, ξ0n is surjective. We search for a splitting of ξ10 . If p is odd:

S0K(1) → K∧
p
ψ`−1
−−−−→ K∧

p

Xλ → Kp
ψ`−1
−−−−→ Kp

Xλ is the fiber of the map ψ` − 1 for λ ∈ Zp = {units ≡(p) 1}.
So when p is odd, κ1 = 0. When p = 2, κ1 = Z/2, which is generated

by LK(1)DQ, where Q is the question mark complex and D is the Spanier–
Whitehead dual.

If instead n > 1, things become more complicated. When n = 2, Picalg,0
2

has been computed by Hopkins for p > 3, Karamonov for p = 3, and Henn
for p = 2. When p ≥ 3, ε2 is onto, and κ2 = Z/3×Z/3 for p = 3 (due to
Goerss–Hopkins–Miller–Ravenel) and for p = 2, κ2 ⊇ Z/8 (due to Beaudry–
Bobkova–Goerss–Hopkins).

Conjecturally, the exotic Picard group κn is related to the Brown–Commenetz
duals ofMn.
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Definition 8.13. The Brown–Comenetz spectrum IQ/Z is the spectrum repre-
senting the cohomology theory X 7→ HomZ(π∗X, Q/Z).

Fact 8.14.

πnIQ/Z =

{
Q/Z n = 0,

(π−nS
0)∨ n < 0.

Theorem 8.15 (Goerss–Hopkins). In = F(MnS
0, IQ/Z) ∈ Picn.

Conjecture 8.16. If κn is nontrivial, then a suitable shift of In is a nontrivial
element of κn.
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