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After the recent proof theoretical investigations of
#imple type theory, it would seem natural to make an attempt at
wet theory as formalized by Zermelo and Fraenkel., However,
mainly because of the form of the replacement axiom, it does
not. seem as if set theory lends itself very well to a proof
theoretical analysis,

Instead, I have formulated an intuitionistic theory of
types in which (the intuitionistic and intentional version of)
the simple theory of finite types is imbedded as a subsystem,
The imbedding is such that the Hauptsatz for simple type theory
proved by Girard 1970 and Martin-Ld6f 1970 follows combinatorially
from the Hauptsatz for the full theory which constitutes the
principal technical result of this paper. I do not yet know
how the proof theoretic strength of the present theory compares
with that of Zermelo and Fraenkel's set theory.

In a fortheoming paper I plan to show that, unlike
set theory, the present theory of types is adequate for a
straightforward formalization of category theory. This is so
because the basic axiom that there is a type of types introduces
precisely that kind of selfreference which is needed in order to
construct, for instance, functor categories and the category of

all categories,



i INTUITIVE EXPLANATIONS OF THE BASIC CONCEPTS

1.1 In what follows mathematical objects will be regarded

as our own constructions, Every mathematical object is of a
certain kind or type which is uniquely associated with the object
in question. A type is defined by preseribing how we are allowed
to construct objects of that type. The types themselves are
mathematical objects, namely, those objects whose type is the
type of types. 1In other words, a type is the same as an object
of the type of types. I shall denote the type of types by the
symbol

V.

Note that V is itself a type, namely, the type of types, and
hence an object of type V.

The idea of logical types is due to Russell 1903 and
1908, He defined a type as the range of significance of a propo-
gsitional function. This notion of type is compatible with the
one that will be formalized in the present paper, because the
domain of a propositional function will always be a type and,
conversely, every type will occur as the domain of a propositional
function.

.1.2 A proposition is defined by prescribing what we have

to do in order to prove it, For example,
971 is a non prime number

is a proposition which we prove by exhibiting two natural numbers



greater than one and a computation which shows that their product
equals 971. The similarity between the notion of proposition and
the notion of type described above is not accidental, Indeed,

a proposition may always be regarded as a type, namely, the type
of proofs of that proposition, and, conversely, a type always
determines a proposition, namely, the proposition which we prove
by exhibiting an object of that type. This explains why I shall
treat the notion of type and the notion of proposition as one

and the same notion, thereby taking seriously the analogy between

types (or categories in the terminology of Curry and Feys 1958)

and propositions discovered by Curry and Feys 1958 in the case

of the positive implicational calculus and extended to Heyting
arithmetic by Howard 1969.

1D The relation which an object bears to its type, that is,

the relation

a is an object of type A

or, if we think of A as a proposition rather than a type,

a is a proof of the proposition A

will be denoted by

acA.

For example,

VeV

expresses that V is an object of type V. 1In intuitionistic

mathematics the relation a€ A is more fundamental than the

assertion relation



A

which merely expresses that A holds or is true, that is, that there
is a proof a of the proposition A, because half, and, usually,

the more valuable half, of the information contained in a€A is
lost when passing to A, I think that a €A may be regarded as the
general form of the theorems of intuitionistic mathematics,

The relation a€A is decidable., 1Indeed, a type is well-
defined only if we have prescribed how we are allowed to construct
objects of that type, and this is to mean that we should be able
to check whether or not an arbitrarily given object meets the
presoription. In the case when A is thought of as a proposition,
Kreisel 1960 has argued for the decidability of the proof rela-
tion a A. We recognize a proof of a proposition when we see one,
as he says. That is, it is not a proof unless we recognize it
as such. On the other hand, it was made clear by Brouwer that
there is no reason for us to believe that the assertion relation
is decidable, because that belief could only be justified if we
thought it would be possible to construct a method which, when
applied to an arbitrary mathematical proposition, would yield
either a proof or a disproof of that proposition.

1.4 Suppose that we have defined a function, rule or method

which associates with every object x of type A a certain type

B(x). Then we allow ourselves to form the cartesian product

(TTx €A)B(x)

of the types B(x) when x ranges over A. Alternatively, if we
think of B(x) as a proposition for every object x of type A,

then (TTx€A)B(x) is the logical product or conjunetion of the




propositions B(x) obtained by letting x range over A. The
cartesian product (TTxe€A)B(x) is to be a type and, therefore,

I have to prescribe how we are allowed to construct objects of
that type. Let b be a function which associates with every
object x of type A an object b(x) of type B(x). Then this func-
tion b is an object of type (T\xe&A)B(x). In symbols,

be (TTx €A)B(x).
Alternatively, if we think of b(x) as a proof

B(x)

of the proposition B(x) for every object x of type A, then, by
joining these proofs together, which is usually indicated by a

figure of the form

B(x) for all x€A
(TTxeA)B(x)

we get the proof b of the universal proposition (T[x€A)B(x).
In the special case when B(x) is defined to be one and

the same type B for every object x of type A, (TIxgA)B(x) will

be abbreviated

A->B.

It is the type of functions whose arguments are of type A and

whose values are of type B. Thinking of A and B as propositions,

it is the proposition




A implies B.

A proof of the implication A->B is a function (rule or method)
which takes an arbitrarily given proof of A into a proof of B.

Note that this is precisely the intuitionistic explanation of the

notion of implication.

1.5 If b is an object of type (11x€A)B(x), that is, a

function which takes an arbitrary object x of type A into an

object of type B(x), then we can apply b to an object a of type A,
The result

b(a)

of this application operation is an object of type B(a).

1.6 If two linguistic expressions a and b both denote the

same object, we shall say that they are definitionally or

intentionally equal and write

a=>,

Other notions of equality, such as equality (in the usual sense)
between real numbers and extensional equality between species of
objects of some given type, have to be defined. As for the
distinction between intension and extension, see Whitehead and

Russell 1910 and Church 1941.



2 FORMALIZATION OF A THEORY OF TYPES

2.4 The formal symbols are

T X &

the constant

variables
x’ y’ z, . L] X, Y' Z, L
and parantheses

G ).

The symbol ‘X stands for functional abstraction as in Church 1932,
2.2 From the formal symbols we build up certain (in general,

meaningless) symbol strings to be called formal expressions.

Every occurrence of a variable in an expression is either free
or bound. I shall denote an expression b by b(x) when I want to
indicate explicitly that it may contain some free occurrences of
the variable x.

2:2:1 V is an expression.

2:2.2 A variable x is an expression, and the occurrence of x
in this expression is free,

2.2.5 If A and B(x) are expressions and the variable x does
not occur free in A, then (TTx€A)B(x) is an expression in which

every occurrence of x is bound. An occurrence of a variable



other than x in (TIx€A)B(x) is free or bound depending on whether

it was free or bound in that one of the expressions A and B(x) in

which it occurs.

2.2.4 If A and b(x) are expressions and the variable x does
not occur free in A, then (Ax€A)b(x) is an expression. The
definition of free and bound variables is the same as in the
previous paragraph.

2.2.5 If a and b are expressions, then (ba) is an expression.
An occurrence of a variable in (ba) is free or bound depending

on whether it was free or bound in that one of the expressions

a and b in which it occurs.

Following Schonfinkel 1924, I shall use

bal...an

as an abbreviation for
(...(bal)...an).

2.3 Expressions may be simplified by means of the

reduction rule

()\xeA)b(x)a = b(a).

Here b(a) denotes the expression which is obtained by substitut-
ing the expression a for all free occurrences of the variable x
in the expression b(x). Before the substitution can be carried

© out, however, some bound variables in b(x) may have to be renamed
so that no variable which is free in a becomes bound in b(a).

In the following I shall tacitly assume that bound variables are



renamed whenever necessary in order to avoid undesired ties.
Also, expressions which only differ in the naming of their bound
variables are identified.

In an application of the reduction rule the right

member is said to be obtained from the left member by contraction.

An expression a reduces to an expression b, abbreviated

a>b

as in Curry and Feys 1958, if b can be obtained by repeated
contractions of parts of the expression a. An expression is

irreducible or normal if it cannot be further reduced.

2.4 Two expressions a and b are definitionally or inten-

tionally equal and we write

a=>

if they reduce to a common expression, that is, if there is an
expression ¢ such that a = c¢ and b 2 ¢, The relation = is an
equivalence relation. The reflexivity and the symmetry are
obvious from the definition, whereas the transitivity is a con-
-ééquehcé bf the folloﬁing theorem first proved by Church and
Rosser 1936 for the type free calculus of lambda conversion. The
proof given below is an adaptation of a proof for the type free
combinator calculus shown to me by William Tait.

2.5 Property of Church and Rosser. If a> b and a = e,

then there is an expression d such that b > d and ¢ = d.

Proof. We shall first prove the theorem for an
auxiliary relation ;;1.

2:5:1 Definition of the relation 21.

2.5.1.14 VZIV.



2:5.:4:2 If x is a variable, then lex.

2.5.1.3 If A>,C and B(x) =,D(x), then (TTxeA)B(x) 2,
(TTxec)p(x).

2.5.1.4 If AZ,C and b(x) > d(x), then (Axe€A)b(x) =
(Axec)d(x).

2.5.1.5 If a>.c and b>,d, then ba >, de.

2.5.1.6 This is the crucial case. If a 2,¢ and b(x) 21d(x),

then (\x €A)b(x)a 21d(c) .

2.5.2 Lemma. If a>,c and b(x)aid(x), then b(a) zld(c).
Proof. By a straightforward induction on the length

of the proof of b(x) zid(x).

2.5.3 Lemma. If a>,b and a>,c, then there is an expression

d such that b?id and c¢ zid.

Proof. By induction on the sum (or maximum) of the
lengths of the proofs of 8311) and azic.
2.5.3.1 a is the constant V. Trivial,
2.5.3.2 a is a variable. Also trivial.
2,5.3.3 a is of the form (TTxeAi)Az(x). Then b and ¢ are
necessarily of the forms(Tix €B1)32(x) and (T\'xéci)cz(x),

respectively, where

A 2By, A2(x)BiB2(x),
A =,Cy, Az(x)zlcz(x).

By induction hypothesis we can find D, and D2(x) such that

c, 2,D,, C2(x) 21D2(x) ;
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Letting d be the expression (TYxeDi)Dz(x), we have b > d and

¢ >,d as desired.

2.5.3.4 a is of the form ()\xeAl)ag(x). This case is com-
pletely analogous to the previous one,

2.5.3.5 a is of the form 8,8, and b and ¢ are of the formsb2b1
and C5Cy s respectively, where

8y =40y, 8y 2409,

8424%> 85 Z1%p-
By induction hypothesis we can find d1 and d2 such that

b1 ?1d b ?ld

1’ 2 27

¢y 2494 o Z49p-
We can now take d to be the expression d2d1.

2.5.3.6 a is of the form ()\xeAl)a?_(x)al and b and ¢ are of

the forms b2(b1) and (>‘XE01)°2(X)°1’ respectively, where

a, Zibl’ 32(x) ?1b2(x) ’
a,2,¢4, ()\xeAl)az(x)ZI(}\xecl)c2(x).

By induction hypothesis we can find d, and d2(x) such that

b1 ?1‘11’ bg(x) Bldg(x)9
cl ?1d19 02(X) 21d2(X).

Using lemma 2.5.2 and definition 2.5.1.6, we can conclude that
by(b,) =,d,(d,) and (Ax€C,)ey(x)o > d,(a,), respectively,

so that d can be taken to be d2(d1).
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2.5.3.7 a is of the form ()\xe.‘xi)a2(x)a1 and b and ¢ are of the
forms ()\xéBi)bQ(x)b1 and c2(ci), respectively. This case is
completely symmetric to the previous one.

2.5.3.8 a is of the form ()\xeAi)az(x)a1 and b and ¢ are of the

forms b2(b1) and 02(01), respectively, where

8,209 a2(x) /1°2(x)'

By induction hypothesis we can find d, and d2(x) such that

b, 2,4, b,(x) 2,d,(x),

¢y 2494 ey (x) >,dy(x).

Using lemma 2.5.2 twice, we can conclude that b2(b1) }1d2(d1) and

02(01) )1d2(d1) so that d can be taken to be d2(d1).

2.5.4 If we define the relation a > b for arbitrary n by
putting a;oa and letting az 4C mean that a> b and b;ic for
some b, then it is clear that a > b if and only if a > b for
some n.

2.5.5 Suppose now that a > b and a > ¢, Then a > b and
az.ec for some m and n, By repeatedly applying lemma 2.5.3, we
can find 4 such that b> d and ¢ 2 d and a fortiori b > d and
¢ > d. The proof of the property of Church and Rosser is now

complete.

2.6 Uniqueness of normal form. If an expression has a

normal form, its normal form is unique.
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Proof. Let a be an arbitrary expression and suppose
that a > b and a > ¢ where b and ¢ are both normal. According to
the property of Church and Rosser, there is an expression d such
that b> d and ¢ > d. Since b and ¢ are both normal, they must
be identical with d and hence with each other, Remember that
identity means syntactical identity neglecting differences in the
naming of bound variables,

2.7 I shall now set up a formal deductive system which will
codify the principles of reasoning that were described informally

in the beginning of this paper. The derivations in this system

are to be certain tree like arrangements of symbol strings of

the form
agA

where a and A are formal expressions, When a€A has been derived,

it may be read
a denotes an object whose type is denoted by A
or, for short,
a is a term with type symbol A.

An expression a is a term if a€A can be derived for some ex-

pression A, and an expression A is a type symbol if there is a

derivation of A€V.

A derivation is started by appealing to an axiom or

making an assumption and proceeds downwards by means of the

rules of inference. Some of the rules of inference have the
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property that, when passing from the premises to the conclusion,

certain assumptions (all identical in form) are cancelled. Just

as Gentzen 1934 did in his system of natural deduction for first
order logic, I shall indicate this by enclosing the assumptions
in question within square brackets. A derivation is closed if

all of its assumptions have been cancelled. Otherwise, it is

open.

The axiom, assumptions and rules of inference are
as follows.

2.7+1
VEV

This is the basic axiom with which every derivation begins. There
are no other axioms.
9.%.2 If we have a (possibly open) derivation of AEV, then

we may introduce a new variable x and use

XEA

as assumption. The type symbol A is to be uniquely associated
with x, that is, having made the assumption xX€A, we are not

allowed to use x€B as assumption unless B is identical with A.

2.7.3

ke ]

A€EV B(x)€EV

wuts (TTx €A)B(x) € V

This rule of inference is subjected to the restriction that the
variable x must not occur in any assumption of the derivation of

B{x) € V other than the indicated x€A. Note that, when passing
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from B(x)€V to (TIx€A)B(x)€V, all assumptions of the form x €A

are cancelled, but, instead, the conclusion becomes dependent on

the assumptions of the derivation of A€V whioch allowed us to

use x €A as assumption.

2,.7.4
[x ea]
N A€V b(x) € B(x)
FRNe (AxeA)b(x) e (TixeA)B(x)

Similar remarks as for the previous rule of inference.

2.7.5

b€ (TTxeA)B(x) acA
ba€ B(a)

application rule

Here, of course, B(a) denotes the result of substituting a for
all free occurrences of x in B(x).
2.7.6

ac€cA B:€EV
if A =B

equality rule
a€B

An application of the equality rule with A and B identical is

redundant and can be removed. Also, whenever convenient, we can

assume that there are no two successive applications of the
equality rule, because, clearly, two such applications can be

made into one application of the same rule.
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Example,

[xev] [xex]

VeV (AxeX)xe(TMxe X)X

(AXxeV)(Axex)xe(Txev)(Txex)x

This derivation is closed. The term (AX€V)(Ax€X)x denotes
the function which, when applied to a type, yields the identity

function on that type.

Note that an open derivation

Xié Ai “ve xnéAn(xi""9xn_1)

a(xi, i ,xn) € A(xl, e ,xn)
is always accompanied by certain other derivations

X, €A, x,EA, xn-ieAn-l(xi""’xn-2)

A EV A2(x1)6V An(xi,...xn_i)év

1

namely, those derivations that allowed us to introduce succes-

sively the assumptions x, €A, ..., XnéAn(xi""'xn-i)'
2.8 Theorem. From a derivation of a€A we can find a

derivation of A€V. In other words, a€A cannot be derived

unless A is a type symbol.

Proof. By induction on the length of the given deriva-
tion of a€A. Six cases have to be distinguished.

2.8.1 VEV., Clear,

2.8.2 x€A. Clear, because we can only introduce an assump-
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tion of this form if we have previously derived A€ V.

2.8.3

[xea]

A€EV B(x)evV

(TTxeA)B(x) eV

Clear, because V€V is an axiom.

2.8.4

[xes]

AEV b(x)OEB(x)
(Ax €A)b(x)e (TTxeA)B(x)

By induction hypothesis we get
XEA
B(x)eV

which, taken together with the given derivation of A€V, allows
us to conclude (TIx€A)B(x) €V by the [lrule.

2.8.5

. .
o
.

be(TTxe A)B(x) a€A
ba € B(a)

By induction hypothesis we get a derivation of (TIx€A)B(x)é€V,

After deleting possible redundant applications of the equality
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rule in the end of this derivation, it must be of the form

| € A}

A€V B(x) eV

(TTxeA)B(x) eV

We get the desired derivation

agA
B(a)€vV

of B(a) €V by substituting a for all free occurrences of x
throughout the derivation of B(x) €V from x€A and attaching the

given derivation of a€A to the derivation obtained after the

substitution.

2.8.6

.
. L
. .

agA BevV

a€EB

where A = B, Clear, because the derivation of the right premise

is a derivation of BEV as desired.

2.9 Theorem. If we have a derivation of a€A and a > b,

then we can find a derivation of b€A.

Proof. It will suffice to handle the contraction of

a single subterm. By deleting, if necessary, redundant applications



18

of the equality rule, we can assume that the given derivation has

the form
[xeA) [xec]
Aev b(x) € B(x) c:ev D(x)eV
(Ax€A)b(x) € (TTxeA)B(x) (TIxec)n(x)eV :

(ANxeA)b(x)€ (TTxec)n(x) agc
(Ax€eA)b(x)aéD(a)

where (TTx€A)B(x) = (TTxeC)n(x), that is, A = C and B(x) = D(x).

If this derivation is rebuilt as follows

a&ecC AevV

a€A aecC
b(a) € B(a) D(a)evV

b(a) €D(a)

we obtain the desired derivation in which (Ax€A)b(x)a has been
contracted to b(a).

2.10 Theorem. If a€A and b€B can both be derived and

a = b, then A = B.

This is the formal counterpart of the idea that every
mathematical object is of a uniquely determined type.

Proof. That a = b means that there is an expression c

such that a > ¢ and b > ¢. Using the previous theorem, we can
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find derivations of c€A and c€B. The proof that A = B is by
induction on the sum of the lengths of these derivations.
If the last inference of one of the derivations, say

the second, is an application of the equality rule

: ceC BEYV

CEA CEB

we know by induction hypothesis that A = C. Since B = C, we can

conclude A = B as desired. It remains to consider the five cases
that arise when none of the derivations ends with an application

of the equality rule. They must then both end with applications

of one and the same rule of inference which is determined by the

form of ec.

2.10.1 VeV. Trivial,

2:.310.2 Suppose x€A and X€B are both assumptions. Then A

and B are identical so that a fortiori A = B.

2.10.3 If both derivations end with applications of the [Trule,
then A and B are both V so that a fortiori A = B.

2.10.4 If both derivations end with applications of the )\rule,
they must have the forms

[xeA] [xea]

A€V b(x)€B(x) A€V vix)enils)
(AxeA)b(x)€ (TTxeA)B(x)  (Ax€A)b(x) € (TTxea)D(x)

By induction hypothesis B(x) = D(x) and, consequently,
(TTxeA)B(x) = (TTx€A)D(x) as desired.
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2.10.5 If both derivations end with applications of the rule

of application, they must have the forms

be (TTxeA)B(x) a€A be(TTx.ec)n(x) a€cC
ba € B(a) ba €D(a)

By induction hypothesis A = C and B(x) = D(x) so that B(a) = D(a)
as desired.

2.11 Theorem. If we have a derivation of a€A and b is a

term such that a = b, then we can find a derivation of b€A.

Proof. That b is a term means that we have a deriva-
tion of b€B. From the previous theorem we can conclude that

A = B. Also, theorem 2.8 allows us to find a derivation of A€ V.

An application of the equality rule

bE€B Aev

bEA

now yields the desired derivation.

2.12 Theorem., If we have a derivation of a€A and B is a

term such that A = B, then we can find a derivation of a €B.

Proof. First, use theorem 2.8 to obtain a derivation
of A€V, and, second, use the previous theorem to obtain a deri-

vation of BE€V, We then get the desired derivation

by applying the equality rule.
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3 REPRESENTATION OF SOME LOGICAL AND MATHEMATICAL
CONCEPTS IN THE FORMAL THEORY

3.1 Implication and the type of functions from one type

to another. For two type symbols A and B we put
A—>B = (TTx€A)B

where the variable x occurs free neither in A nor in B. In order

to avoid an excessive number of parantheses,

Ai-»(... —>(An_1—9An)...)
will be abbreviated to
A1—>... ->An_1—>An.

Clearly, A —>B is a type symbol, and, since
K= (Ax€A)(AxX€B)x EA>B—>A

and

S=(N26éA>B—>C)(AyeA—>B)(AxeA)(zx(yx))
€ (A->B—~C)=>(A—>B)=>A->cC,

the usual positive implicational axioms are satisfied. Except
for the type restriotions, K and S are the combinators introduced

by Schénfinkel 1924, Modus ponens

b€EA—>B acA

ba€B

is a special case of the rule of application.
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3,2 Falsehood and the empty type. Prawitz's 1965 definition

for second order logic can be carried over to the present formal-

ism, that is, we put

A = (Txev)x.
Clearly, .l is a type symbol, and
(AXeV)(Ax e l)(xx) € (TTxevV)(L —>X)

so that the intuitionistic axiom of absurdity is satisfied.

3.3 Negation. If A is a type symbol, we put as usual
- A =A—=>1.

Clearly, — A is again a type symbol. Russell's 1903 definition
of the negation of A as (TTX&€V)(A—>X) would do just as well,
3.4 Conjunction and the cartesian product of two types.

For two type symbols A and B we put with Russell 1903
AXB = (TTX€V)((A—=B—=>X) —=X).

It is readily verified that AXB is a type symbol, Define the

pairing operation by
(a,b) = (AX€V)(ANz€A->B—>X)(zab) € AXB
for a and b with type symbols A and B, respectively, so that
(AxeA)(AyeB)(x,y) € A>B->AXB,
and introduce the corresponding projeections

p=(Nz€AXB)(zA(NX€EA)(AY€EB)X) € AXB—>A
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and
qg=(ANz€AXB)(zB(Ax€A)(Ay€B)y) € AXB —>B.
Then we see that the usual conjunctive axioms are satisfied, and
p(a,b) =a and q(a,b) =D

as desired.
I Disjunction and the disjoint union of two types. For

two type symbols A and B we put with Russell 1903
A+B = (TIXEV)((A—=>X) = (B —=>X) >X).

Clearly, A+ B is a type symbol. If we define the associated in-

jections by

i= (ANXEA)AXEV)(ANTEADX)(AgEB—>X)(fx) €E A>A+B
and

j= (AYEB)(AXEV)(NLEA>X)(AgeB >X)(gy) € B~>A+B
and put

h= (ANXEV)INLEA>X)(ANgeB—>X)(NzeA+ B)(zXfg)
€ (TTxev)((A=>X)-> (B=>X)>A+B->X),

we see that the usual axioms for intuitionistic disjunction are

satisfied, Also,

hcfg(ia) = fa and hCfg(jb) = gb

80 that the diagram
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i J
A ——>» A+B €«<—— B

e e

C
commutes.
3.6 Existence and disjoint union. We can use Prawitz's 1965
definition

(ZxeA)B(x) = (TTX ev)((TTx€a)(B(x) =>X) =>X).

Here, of course, A is a type symbol and B(x) is a type symbol
under the assumption that x is a variable with type symbol A.
This guarantees that (Zx€A)B(x) is a type symbol as well. If

we introduce the associated injection

i=(Ax€A)NYEB(x))(INXeV)(ANLE(TTx€A)(B(x) =>X))(fxy)
€ (TTxeA)(B(x) > (Zx€A)B(x))
and put

h=(NXeV)(Nte (TTxeA)(B(x)—>X))(Az€(Z x€A)B(x))(2zXf)
€ (TIxev)((TTxea)(B(x) > X) > (Zx€A)B(x) >X),

we see that the usual axioms for intuitionistic existence are

satisfied. Also,

hCcf(iab) = fab

so that the diagram

B(a) —> (Ex €A)B(x)

8 l hCf
C
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commutes. Finally,

p=(Nz&(Zx€A)B(x))(zA(Ax€A)(Ny€eB(x))x)
€ (Zx€A)B(x)>A

has the property that
p(iab) = a.

This means that, when p is applied to a proof of (Z xe€A)B(x),
we obtain the object of type A which exists by virtue of that

proof. Note that, when B does not contain the variable x free,
(Zx€A)B is identical with A XB.

3.7 Power type. Put
P=(AXEV)(X—>V) € V>V,

Clearly, if A is a type symbol, then PA is a type symbol which
denotes the type of propositional functions defined on the type
denoted by A. An object of type PA is called a species (or class
in the terminology of Principia Mathematica) of objects of type A.
Note that a species is always a species of objects of a certain
type. The definitions of inclusion, extensional equality, com-
plementation, intersection, and so on, are all standard.

3.8 Identity. Let A be a type symbol. Following Russell

1903, we define the identity relation between objects of type A

by putting

I=(hxeA) xyeA)('lTxeA >V)(Xx—>Xy) € ADA—>V,

It is then easily verified that the laws of identity,
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(Mxea)(1xx),
(MTxea)(TTyeA) (1xy - Iyx),
(Mx€A)(TTyeA)(TTzeA)(Ixy -> Iyz —> Ixz),

become satisfied. Note that, because of the equality rule, Iab
holds provided a and b are definitionally equal terms of type A.
The converse will be a consequence of the Hauptsatz.

3.9 Finite types. For every natural number n we put

M, = (T\'xev)(g-—» coo X —>X)

n
with the understanding that
MO = 1 = (TTIXe V)X.

It is natural to use M1 to represent not only the one element type
but also the logical constant truth 1. A simple combinatorial

argument shows that

(AXeV)(Ax,€X)...(AX €X)x, € M,

a = (AXEV)(Ax €X)...(Ax, €X)x € M,

are the only closed irreducible terms of type M, and, in particu-

lar, that there is no closed irreducible term of type MO = 1.

Now, let A be an arbitrarily given type symbol and a,, ..., a_

terms with type symbol A. We can then define a function

£ = ()\zémn)(zAai...an) € M, —>A
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with the property that

fml =a1, R fmn=8n-
3.10 Natural numbers. As in Martin-Lof 1970a we put
M= (TIXEV)(X> (X—=>X)=X) €V,
0= (NXeV)(AxeX)(AyeX—=X)x € M,

(Aze€M)(NX€V)(Ax€eX)(Ay€ X —=X)(y(zXxy)) € M—>M,
R= (AXEV)(Ax€X)(AyeXx—=X)(\zeM)(zXxy)
€ (TMXeV)(X= (X—=2X) >M—>X).

Then, if A is a type symbol and a, b and ¢ have type symbols

A, A—> A and M, respectively,

RAab0 = a,
RAab(sc) = b(RAabe),

so that we can define functions by recursion. A simple combina-

torial argument shows that the numerals

0= (AXEV)(AX€X)(AYEX>X)x € M,
1= (AXEV)(AxEX)(AyEXX)(yx) € M,
2 = (AXeV)(Mx€X)(AyeXx—=>X)(y(yx)) € N,

are the only closed irreducible terms with type symbol M. Except
for the type restrictions, this is the representation of the
natural numbers invented by Church 1933. Using the definition

of the property of being a natural number given by Frege and

Dedekind,
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N = (AxeM)(TTXEM - V) (X0 - (TTxe M) (Xx —>X(sx)) —> Xx),

the relativized versions of the Peano axioms,

NO,
(TTxeM)(Nx - N(sx)),
(TTxeM)(Nx > - 10(sx)),
(TTxeM)(TTye M) (Nx = Ny - 1(sx)(sy) = Ixy),
(TTXeM—=>V)(X0 = (TTxe M) (Nx > Xx >X(sx)) = (TTxe M) (Nx =>Xx)),

become provable. I have not succeeded in defining the type of

natural numbers in such a way that the axiom of induction becomes

provable without relativization.

Example, The term RVMP with type symbol M —>V denotes
the function which, when applied to a natural number m, yields
the mth power of the type of natural numbers. Note that the
existence of this funetion cannot be established in Zermelo's

gset theory.
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% REDUCTION OF SOME OTHER FORMAL THEORIES TO THE
THEORY OF TYPES
5.1 Godel's primitive recursive functionals of finite type.

As is clear from sections 3.1 and 3.10, they can be constructed

py means of M, >, 0, s, R and lambda abstraction.

4.2 Girard's theory. As was pointed out by Martin-L&f 1970a,
the theory of Girard 1970 can be given the following simplified
form provided we make the inessential change of excluding the
zero constant of each type from his theory.

4.2.1 Types.

4,2,1.1 The type variables X, Y, ... are types.

4.2.%.2 If A and B are types, then so is A —» B.

4,2,1.3 If B(X) is a type, then so is TIXB(X).

4,2.2 Terms.

4,2,2.1 The variables x, y, ... of type A are terms of type A.
4,2,2.2 If x is a variable of type A and b(x) is a term of

type B, then Axb(x) is a term of type A =>B.

4,2.2.3 If b(X) is a term of type B(X) and X does not occur
free in the type of a free variable in b(X), then AXb(X) is a
term of type TIXB(X).

4,2,2.4 If a and b are terms of typesA and A —>B, respectively,

then ba is a term of type B.
4.2,2,5 If A is a type and b is a term of type TIXB(X), then

PA is a term of type B(A).
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4,23 When formulated in this way, the reduction of Girard's

theory to the theory of types becomes trivial. Indeed, the type
qariables are represented by variables with type symbol V, and

e T, lambda abstraction and application are represented by the
entities which are denoted and named likewise in the theory of
typeS.

Another way of arguing is this. Girard's theory in the
gpove formulation is isomorphic to that part of intuitionistic
gecond order logic which is obtained by exeluding everything that
has to do with individuals. Therefore, being a subsystem of
gecond order logic and a fortiori of simple type theory, its
reduction to the theory of types follows from the reduction of
simple type theory which we now proceed to carry out.

4.3 Simple type theory. We shall consider the following
intuitionistic and intentional version of the theory of simple
types. The classical and extensional version can be reduced to
the intuitionistic and intentional version by means of the double
negation interpretation and Takeuti's 1953 restriction theory.
4.3.1 Types.

43.1.1 0 is a type.

43.1.2 If n > 0 and Tys ++y T, are types, then so is

n
(ci,...,fr:n).
£.3.2 Terms and formulae. A formula is the same as a term
of type ().

%.3.2.1 A variable of type T is a term of type T .

“3.2.,2 1f £ ig an nary function symbol and t., ..., t are

termg of type 0, then ft ooty is a term of type O.

5 |
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§,3.2.3 If t is a term of type ('tl,...,rcn) and to, +ee t
are terms of typesT,, ..., T » Tespectively, then tt,...t, is
a formula.

4.3,2.4 If A and B are formulae, then so is A —>B.

§,3.2.5 If x is a variable of type .U and B(x) is a formula,
then \JxB(x) is a formula,

4.3.2.6 If Xys eee9 X are variables of types’Cl, sieieny T:n’
respectively, and B(xi,...,xn) is a formula, then
)ugf..an(xi,...,xn) is a term of type (T y...,T,)-

5,3.3 Reduction of terms. One term reduces to another if the
latter can be obtained from the former by repeated contractions

of subformulae according to the reduction rule
>‘x1'"an(x1""’xn)t1”’tn > B(ti""’tn)'

The property of Church and Rosser is easily established for this
kind of reduction. Two terms are definitionally or intentionally
equal if they reduce to a common term. Intentional equality will
be denoted by =. A simple combinatorial argument, very similar
to the proof of normalization for first order logic, shows that

every term and, in particular, every formula can be reduced to

normal form.

4.3.4 Rules of inference. The following is an extension of

Gentzen's 1934 calculus of natural deduction for first order
logic to higher types.

[2]

B

introduction
E A->B
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—>elimination A—> R A
modus ponens B
B(x)
\dintroduction
Y xB(x)
V xB(x)
Velimination
B(t)
A
equality — if A =B
B
4.%.5 Translation into the theory of types. I shall denote

the translation operation by a star.

5.3.5.1 Types.
5.%:5.1.1 O* is taken to be some fixed variable with type

symbol V.

%* * *
4.3.50102 (rci,oo.”cn) 18 ’C'l .*ooo —)’Cn-)v. In partic-

*
ular, () is V.
4,3,5.2 Terms and formulae.

4,3.5.2.,1 A variable of type U is translated into a variable

with type symbol B,
*
4,3,5.2,2 If £ is an nary function symbol, then f is some

fixed variable with type symbol

e W
8*"’ T —)9)-—» 0
" ¥*
and, {i¢ b wwu t, are terms of type 0, we let (fti"‘tn) be
1%,

R
1000tn.

-
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5.%5.5:2.3 (ttl...t ) is tFi*
4,%.5.2.4 (A“’B) is A - p*

1'oot

4.3.5.2.5 If X 18 & variable of type =, we 1et (VxB(x))"
pe (TTx €THB*(x).

4.3.5.2.6 If x,, ..., X, are variables of types"c’l, oot T gy
respectively, we let (>\x ce X B(xl,...,x )) be

)\x €T )o--()\x é'C )B (x ...,xn).

5,.3.947 Derivations. By induction on the length of a deriva-
tion a of a formula A in simple type theory I shall construct a
term a¥* ana a derivation of a'€ A* in the theory of types.
§,2.5:7:1 Corresponding to an assumption A in simple type theory
we make an assumption of the form x(:A* in the theory of types.

k.%.5:3:.2 —>introduction.
[a]

B

A—>B
¥
By induction hypothesis we have constructed b (x) and a derivation

*
XEA

b*(X) cB™

Define the translation of the derivation of A->B to be

()\XEA*)b*(x). The Arule allows us then to infer

[x 6. A*_‘]

*
b*(x)éB

(A x eA®)p¥(x) eA*> B*

MY 2 P - =
VA At v s ;‘AG AT PR A
Rl i A2 .

AN ey el Nt
AN Ay gt

84 (0

T—.....
DA

" -
£

—— -

-
P — o X - —— T—

B e e [ S ————— L e e
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28 desired.

¥ 3.5,3,3 —>elimination.

BY induction hypothesis we have constructed a® and b* and

derivations

.

0 .
.

’ .

*
b*e(A—!’B) a¥e A

Define the translation of the derivation of B to be b*a®. The

rule of application allows us then to infer

as desired.

4,3,5.3.4 Vintroduction.

Let T be the type of the variable x. By induction hypothesis

"e have constructed b*(x) and a derivation

*
XeT

.
L4
L

p¥(x) €B"(x)
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pefine the translation of the derivation of VxB(x) %6 B

%, ¥
b (x). The \
(%xéﬁ ) rule allows yg then to infer
th’C*]

6*(x);;3*(x)
(Ax eT)v*(x) € (¥ xn(x))*

as desired.

5.%:5:.55 Velimination.

VY xB(x)
B(t)

By induction hypothesis we have constructed b'* and a derivation

' *
b*e (V¥ xB(x))
Also, if €T is the type of the term t, we can find a derivation

t*eT™

¥, %
Define the translation of the derivation of B(t) to be b"t . The

rule of application allows us then to infer

b¥e (;an(x))* t'e T
b’t*é(B(t))*

*
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as desired. Here we have tacitly used the faot that (VxB(X))*
™
is (TTx€T™)B™(x) ana that (n(t))* is BV (t%).

4.3.5.3.6 Equality,

wl>.oo

where A = B. By induction hypothesis we have constructed a* and

a derivation

.

a*é A*

Also, we can find a derivation

Define the translation of the derivation of B to be a*. The

equality rule allows us then to infer

as desired. Here we have tacitly used the fact that A = B implies

A% B*. fThe translation of simple type theory is now complete.
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THE HAUPTSATZ AND ITS CONSEQUENCES

5.1 Hauptsatz. Every term reduces to a normal term.

Proof. 1In the course of the proof Roman letters will
just as before denote formal expressions, whereas Greek letters
will denote abstract objects such as types, functions and propo-
gitional funetions.

The idea of the proof is this. With every term
8(11""’xn) all of whose free variables occur among X9 veer Xy

I shall associate an abstract object

Ra(x .,xn)(gi"”’gn)

which depends on certain other abstract objects El’ T E

TEE
n
which are associated with the variables Xy ooy Xpo For the
gake of notational simplicity, I shall write O(a without exhibit-
ing explicitly the free variables and the abstract objects which
are asgsociated with them.

. When A is a type symbol, o(A is to be a triple
(’CA,QA, GA) where T, is a type, w, an object of type T,
(which we can forget about at this stage) and QA a binary pro-
positional function whose first argument is a formal expression
and whose second argument is an object of type T,. 0,(a, %)
may be thought of as expressing that § is a computation of a.

The predicate O, will be constructed so as to have the crucial

Property

6,(a, ) implies that a is normalizable.

Finally, it will be shown that if a is a term, that is, if there

’
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TE derivation of a€ A, then X, 18 an object of type ‘T, such
that QA(O,“Q) where ¢ is a term to which a reduces. Beocause
of the property of ©, just stated, o is normalizable. But a
reduces to o and so a is normalizable as well, The proof of the
pauptsatz will then be complete,

§.4.4 The definition of o  is by induction on the con-
gtruotion of a,

5.1.1.1 Ky is the triple (T°y,w,, 0 ) where

7', 18 the type of triples (T ,w, B ) where T 1is a type, W an
object of that type, and O a binary propositional function
whose first argument is a formal expression and whose second
argument is an object of type T,

wv is the triple (T, w, 9) where U is some fixed non empty
type, w some fixed object of that type, and ©Q(a,§) the propo-
gition that a is normalizable, and

GV is the binary propositional function whose value for an
expression A and an object (T ,w,B ) of type Ty is the conjunc-
tion of (the universal closures of) the following three propo-
sitions.

5.1.1.1.1 A is normal.

5.4.1.1.2 @ (a,§) implies that a is normalizable.

5.1.1.1.3 @ (a,w) provided a is a normal expression of the
form ya, ...a where y is a variable.

5.1.1,2 o(x(f) is E This definition makes sense, of course,
no matter what the type of the object T is.

5.1.1.3 is the triple (T (yry ¢ca)p(x)’

X (TTx €A)B(x)
w(TTxeA)B(x), OmxéA)B(x)) where
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fc‘(-n'xéA)B(x) is the type of functions T which to an object ’g

¢ type T, assigns an object 'r\(g) of type (UB(x)(E ),
w(-n'xéA)B(x) is the function which to an object 'g of type ’UA
agsigns wB(x)(g), and

Q(ﬂxéA)B(X)(b'Y)) is the proposition that, for all expressions a
and objects f of type T,, if BA(a,f) then ba reduces to an
expression d such that QB(X)(E)(G,T\(E)), and, furthermore, if

» reduces to (ANx €C)d(x) then C is normalizable.

this definition makes sense provided o(A is of type f(,’v and
O(B(x)(g) is of type T, for g of type T,.

5.1.1.4 X () xeA)p(x) 18 the function which to an object ¥

of type T, assigns o(b(x)(g)' This definition makes sense
.provided 'o(A is a welldefined object of type T, and o(b(x)('g)

is welldefined for 'g of type ’U’A.
5.1.1.5 Kpq 18 the result o(b(o<a) of applying X, to oX,.
This definition makes sense provided we know that o(b is a
funetion and that O(a is an object whose type is the domain of
that function,

542 Substitution property. ofy(y)(X,) = Xy(q) in the

sense that if one member is welldefined so is the other and

the two are definitionally equal.

Proof., Immediate by induction on the construction
of b(x) and using the following three obvious properties.

501,24 If &, = Xy and Og(yy(§) = Xp(x)(§) for & of

tYpe (UA. = ’tcy then O((]Tng)B(x) = 0((“!6 C)D(x)‘ Here as

before and in the following the equality sign denotes defini-
tional equality.
5.1.2,90 If o, = g and db(x)(g) = <>(cl(x)(g) for  of

tyPe 'tA = ’VC, then d(%xéA)b(x) . d()\!éC)d(X).
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51,2.3 If oty = Xg 80 Oy = Xy, then Xpa = Hge-
" Compatibility with equality. If o(, and o, are both

eldeﬁned and a = b, then Xy = ol

Proof. It suffices to show that, if X, is well-
etined and a reduces to b, then o(, is welldefined and o = X,.
ecause f the properties 5.1.2.1, 5.1.2.2 and 5.1.2.3 it even

qttices to show that, if ol()\xéA)b(x)a is welldefined, then
o 18 °(b(a) and the two are definitionally equal. Now, this is

indeed 804 because

KinxeAb(x)a = X(hxea)n(x)(Ha) = Kp(x)(Kg) = Kp(a)-

gere the first two equalities hold by definition and the third

pecause of the substitution property.

5.1.4 By induction on the length of a derivation

xieAi P xnéAn(xi"",xn_i)

a(xi,. ; .,xn) éA(xi,...,xn)

I shall prove that,

if o(A is a welldefined object of type Ty
i

it
dA( XyreoesXy )(21""’ En-i) is a welldefined object
ottype Ty for gl of type T , ...y Ep,_y OF type
1

| T;An 1( 1,...,x 2)(21""’.?“_

tbenO(A( )(El"'.’g ) and o‘a(xl,...,x )( Ei"'."g )

are 1,.-.,X
" Welldefined objects of typesftV and ’CA(xi,...,x ) El"“’ En)s
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,pecti"ely’ such that, if
re

gAl(aiygi)y ey QAn(xi,'°"xn_1)(§1,...’E"'i)(an’ En)y

e 3(31”"’an) reduces to an expression ¢ such that

eA( ”xn)(gi,.‘.,En)(c,da(xl,...,xn)(El,‘..’ En)).

Xygee
Six cases have to be distinguished depending on the

forn of the last inference of the derivation, In order to

slleviate the notation, T shall not exhibit explicitly any assump-

tions except the one which is possibly involved in the particular

inference under consideration.

5.1.4.1

VEV

fe have to show that ok, that is, the triple (T .,,W,, GV), is
an object of type ’Uv, which is immediately clear, and that the
proposition GV(V,O(V) holds. GV(V,CXV) is the conjunction of
the following three propositions which we proceed to verify.
54.4,1.1 V is normal. Clear,

5.1.4,1,2 QV(A,D() implies that A is normalizable. Clear,
because ev(A,O() is the conjunction of three propositions, the
first of which says that A is normal.

51.4.1.3  B,(A, W) provided A is a normal expression of the
forn ya,...a . Clear, because in that case A is normal, and,
ing to the definition of the triple (T,w, B) which is wy,

it hag the property that G(a,'g) implies that a is normalizable
“¥ell ag the property that B(a,w) holds provided a is a normal

®pression of the form ya,...a .
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5.1.ﬁ.2
X€A

ye have to show that, if O(A is a welldefined object of type Ty,
then o, is & welldefined object of type Ty and, for € of

type Ty X (E) is a welldetined object of type T, such that
if QA(a,E) then a reduces to an expression ¢ such that
GA(c'O(x(E))' This is trivial because o(x(g) is € and ¢

can be taken to be a itself.

5.1.4.3

[xeA]

AEV B(x)EV

(TTx €A)B(x)EV

By induction hypothesis we know that o(A is a welldefined object

of type Ty and that A > C such that 0,(C,X,). Also, for ¥

of type T, O(B(x)(g) is a welldefined object of type ‘U, such
; >

that OA(a.g) implies that B(a) = D such that Gv(n,o(B(x)(‘g )).

Consequently, °<(Tl'xéA)B(x) is welldefined by 5.1.1.3. It

remains only to verify that (TTx€A)B(x) > E such that

GV(E’O((TFxéA)B(x))’ that is, that the following three

conditions are fullfilled.

5.1.4.3.1 E is normal. We know already that @, (C,X,) so that

C 18 normal and QA(x,wA). Also, GA(x,wA) implies that

B(x) > D(x) such that QV(D(x),O(B(x)(wA)) so that D(x) is

Nornal as well, If we take E to be (TTx¢C)D(x), then, clearly,

(Mx €a)B(x) 2 E and E is normal,
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§,1.4.3.2 Q(TTxeA)B(x)(baV]) implies that b is normalizable.

By definition e(ﬂxéA)B(x)(b,Y]) is the proposition

for all a and § of type T,, if GA(a,"g) then ba > d
gsuch that BB(X)(g)(a,w](g)), and, furthermore, 1if

b > (AX€EC)d(x) then C is normalizable.

(, is an object of type T, such that ©,(x,w,). mHence bx > d
such that GB(X)(wA)(d,'yI(wA)) which implies that d is normal-
jzable gince B(x) > D(x) such that ev(n(x),o(n(x)(wA)). Finally,
if d is normalizable, then so is bx, and, if bx is normalizable,
then so is b, because b cannot reduce to (Ax €C)d(x) unless

¢ is normalizable.

5.1.4.3.3 Q(TTXéA)B(X)(b’w('ﬁxeA)B(x)) holds provided b is

a normal expression of the form ya ceeBo. Remember that

1
w(‘lTxeA)B(x)(E) was defined to be wB(x)(E) for £ of type T,
Therefore, we have to verify that if QA(a,'f) then ba = d such
that QB(X)(E)(d,wB(x)(f)). Now, since A = C such that
O,c,x,), B,(a,%) implies that a is normalizable. Let d be

the normal expression ya,...a a where a .1 is the normal form

n n+1
of a. Then GB(x)(E )(d,wB(x)(E )) because B(a) 2 D such

that By(D, oy 1) (§ ).
5.1.4.4

[xeA]

A€V b(x) € B(x)
(Ax €A)b(x)E (TTx e A)B(x)

BY induction hypothesis we know that O(A is a welldefined object

"I type T and that A > C such that Oy(C,Xy). Also, for T of
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type Ty O(B(x)(g) and O(b(x)(E) are welldefined objects of
type Ty @nd Tp\(€), respectively, such that if 6,(a,§)
then b(a) = d such that GB(X)(g )(d,%y1(€)). We have to

ghow that o((Tl'xéA)B(x) and o are welldefined

(N xeA)b(x)
objects of type ‘CV and ’U‘(TTxeA)B(x)’ respectively, which is
clear from 5.1.1.3 and 5.1.1.4. The treatment of this case will

be completed by showing that

G(TTxeA)B(x)((xxéA)b(x)’ o‘()\xéA)b(x))’

that is, that, for all a and § of type <T,, it O,(a,§) then

A’
(\x €A)b(x)a > d such that

GB(x)(E)(d’ “()\xeA)b(x)(E))’

and, furthermore, if (Ax€A)b(x)> (Ax€C)d(x) then C is normal-
izable. Now, this is indeed so, because ( Ax€A)b(x)a >b(a) > d
and d()\xéA)b(x)(E) was defined to be o(b(x)(g) for £ of type
'UA, and, furthermore, A is normalizable by induection hypothesis.
Here I have tacitly used the fact that, if AZ> C and A is normaliz-
able, then so is C because of the property of Church and Rosser.

5:1.%.5

be(TTx.éA)B(x) acA

ba € B(a)

By induetion hypothesis we know that o(, and o(('\TxéA)B(x) el
velldefined objects of type Ty. Also, X, and X, are well-
defined objects of type U, and T (1Tx €A)B(x)’ TFespectively,
&nd a > ¢ and b > d such that ©,(c, o) and Q(TTxéA)B(x)(d’o(b)-
Remembering the definition of the latter predicate, we can

Conclude that de ? f such that

O5(x)(Ka) (11X (o))
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defined t
o0 Kpg W28 defined to be o, (,) and o(B(x)(o(a) = Xp(a)

coause of the substitution property, we can conclude

93(8)(f’°(ba)

and ba > de 2 f as desired.

5,1.4.6

agéEA Bev

aeB

shere A = B. By induction hypothesis °(A and o(a are welldefined
objects of type 'r;v and 't,'A, respectively, and a 2 ¢ such that
QA(°’°‘a)' Also, Xg is a welldefined object of type Ty

Since A = B, we can conclude that <>(A = o(B by using 5.1.3.

Consequently,
where a 2 ¢ as desired.
5.4.9 We are now almost done. Suppose that we are given

an arbitrary derivation

xiéAi P xnéAn(xl"“an_i)

a(xl, — ,xn) EA(XyyeneyX)
"ith accompanying derivations

) X16A1 XiéAl o0 Xn_léAn_i(Xl,...,xn_2)

A
1€V Ay(x))ev A gy VEV
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phen we know that

o(,\ is a welldefined objeot of type q;'v and that A > C suoh

‘hat ev(cl‘«A )|

-
.
.

Y (xl....,xn 1)(§1"°"En 1) is a woelldefined objeot of
type Ty for E’l of type 'C‘\ G Bgna En \
Vi, Sagieiog )(’E,.....’gn,, such that, it 6, (a € )i i

GA“_ Xgvee Xy o )(51"“';" oll8, 1oEn 1). then

A (8yreerBy_q) > > € such that

of type

VCE e Ep ).

B,(c. ,x
V'¥n An(xl"“'xn-t

Thus, if we put

wllwA,...,wn=W

1 )(wl’o-o’w

7
An(xi"“'xn-i n-1

then

0, (xgr )y vvvs B, (5 (Wyyeee 0 (x,,00,)

1

so that we can conclude that a(xl,.. .,xn) reduces to an

expression ¢ such that

0

)(wi,...,u)n)(o,O( )(w19-0'7wn))'

A(XyyenesX, a(Xyy000yX)

On the other hand, by theorem 2.8 there is a derivation

xiéAi s o xnéAn(xl"“’xn_i)

.
.

A(xl,...,xh)ev

80 that A(xi,...,xn) reduces to an expression C such that
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Gv(c,o(A(xi,“”xn)(wl,...,wn)).

fence ¢ is normalizable and, since a(xi,...,xn) reduces to ¢,

so 18 a(xi""’xn)‘ But a(xi,...,xn) was an arbitrary term and

therefore the proof of the Hauptsatz is complete.

5.2 Corollary. There is no closed term with type

This corollary expresses that the theory of types
is simply consistent.

Proof. Because of the Hauptsatz it suffices to show
that there is no closed normal term with type symbol _L .
A normal term is either V, or of the form (TTx €A)B(x) with
normal A and B(x), or of the form (A x€A)b(x) with normal A and
b(x), or of the form ya,...a with normal a5 +..y @ . Ilence
a closed normal term with type symbol (TIX€V)X would have to be
of the form ()xXéV)b(X) where b(X) is normal and has type
symbol X. But then b(X) would have to be of the form ya, ...a
which is impossible unless n = 0 and y is X. This, however, is

also impossible because X has type symbol V and not X,

5.3 Corollary. A closed term with type symbol M reduces

fo a numeral.
Proof. This follows immediately from the Hauptsatz,
because, as remarked in section 3.11, the closed normal terms

with type symbol M are precisely the numerals.

5.4 Corollary. A number theoretic function which can be

tonstructed in the theory of types is mechanically computable.

Proof. By saying that a number theoretic function

®n be constructed in the theory of types I mean that there is
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. closed term T with type symbol M —>M which denotes it. Suppose
ge want 1O find the value of the function for a certain natural
number which is denoted by the numeral m. Then fm denotes the
value of the function for this argument. But fm is a closed term
with type symbol M so that, acecording to the previous corollary,
it reduces to a numeral n. It only remains to remark that the
normal form of a term can be found in a purely mechanical way,
that is, by manipulating symbol strings according to rules which

do not refer to their meaning.

0f course, the fact that there is a (not necessarily
mechanical) rule for computing every function in the present
theory of types does not require any proof at all, once it has
been recognized that the axiom and rules of inference of the
theory are consonant with the constructive notion of function
according to which a function is the same as a rule or method.

5.5 Corollary. Let a and b be two closed terms with

closed type symbol A. Then there is a closed term with type

symbol (TTX €A —>V)(Xa -> Xb) if and only if a = b.

Proof. It is readily verified that
(AX€A>V)(AxeXa)x is a closed term which has type symbol
(TXé€A —=>V)(Xa > Xb) provided a = b. Conversely, suppose there
is a closed term with type symbol (TTX&€A —>V)(Xa—>Xb) where we
can assume without restriction of generality that a and A are
both normal. Since neither A-—> V nor V is intentionally equal to
Xa < Xb, the normal form of this term, which exists according to
the Hauptsatz, must be of the form (AXEA—>V)(AxeXa)e(X,x)

¥here the normal term ¢(X,x) has type symbol Xb. But c(X,x)
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pust D€ of the form ya&;...a where y is either X or x. Hence

she type symbol of o(X,X) must be intentionally equal to A=>V,
vy or Xa, and this is only possible if ¢(X,x) is x and a = b.

—_— —— —— —

5.6 Corollary. There is no term of the form aa.

In other words, selfapplication is impossible.

. Note that it is selfapplication that gives rise to
the non normalizable terms like A\x(xx) Ax(xx) (for other
exanples see Curry and Feys 1958) in Church's type free calculus
of lambda conversion.

Proof. Let A be the normal form of the type symbol
of a. For aa to be a term, A would have to be identical with
(TxeA)B(x) for some B(x) which is impossible.

5.7 Corollary. For two terms a and b it can be mechani-

cally decided whether or not a = b,

Proof. The decision procedure is this. Reduce
aand b to normal form, which is possible according to the Haupt-
satz, and check whether or not their normal forms are identical
except possibly for differences in the naming of their bound

variables,

5.8 Corollary. It can be mechanically decided whether

or not a closed expression is a term.

For expressions that are not necessarily closed
the appropriate formulation of the corollary is as follows.

Given exXpressions
Al’ A2(X1), LR An(xl’ oeze. ’xn-i) and a(x1) L )xn)

“ntaining free variables in the indicated way, it can be
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11y decided whether or not there exist derivations

'eChan ica

x €A (xgy.0eXy o)

n-1

X, €A, ... xneAn(xi"”’xn-i)

.
. .
. .

a(xi, - .,xn)éA(xi, o .,xn)

In particular, for n = O we have the assertion of the corollary.
Proof. We use induction on the sum of the lengths

of the expressions A , ..., An(xi""’xn-l) and a(xi,...,xn).

Five cases have to be distinguished depending on the form

of a(xi,...,xn).

5.8.1 Ags ooy An(xi"“’xn-i) and V. If n = 0 the answer

is yes and the required derivation is
VEV

and if n > 0 the answer is y'es if and only if the answer is yes
tor Agy oy An-i(xl"“’xn-z) and An(xi’”"xn-i)’ and, in
addition, the type symbol of An(xi""’xn-i) is intentionally
tqual to V, which can be checked mechanically according to the
Previous corollary.
5.8.2 Ay vony An(xi’”"xn-i) and x;. The answer is yes
if an i

d only if the answer is yes for Ay coey An-i(xl’“”xn-z)
and An(xl""’xn-1)’ and, in addition, the type symbol of

An("p-u,xn_i) is intentionally equal to V.
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5.8.3 Afy woes An(xi""’xn-1) and (TrxeA(xﬂ"”xn))
B(xi""’xn’x)‘ The answer is yes if and only if the answer is
ges foT Agy ooy An(xi,...,xn_i), A(x;y...,x ) and B(xi,...,xn,x),
and. in addition, the type symbol of B(xl,...,xn,x) is inten-
tionally equal to V.

5,8,4 Ai’ Ll o An(xl,...,xn_i) and (XIGA(xi,...,Xn))
b(xif“”xn’x)' The answer is yes if and only if the answer is
yes for Ay ...y An(xi""’xn-i)’ A(xi,...,xn) and b(x1"“’xn’x)'
5.8.5 Ay weey Ap(xg,..0,x ) and b(xi,...,xn)a(xi,...,xn)-
the answer is ves if and only if the answer is yes for

Ayy oees An(xi""’xn-1) and a(xi,...,xn) as well as for

Ags woes A (xy,...,x, 4) and b(x,,...,x ), and, in addition, the
normal form of the tvpe symbol of b(xl,...,xn) is of the form
(TYxéA(xi,...,xn))B(xl,...,xn,x) where A(xl,...,xn) is the

normel form of the type symbol of a(xl,...,xn).

5.9 Corollary. For two closed terms a and A it can E

mechanically decided whether or not a€A is derivable. In parti-

cular, it can be mechanically decided whether or not a closed

term is a type symbol.

Proof. a €A is derivable if and only if the type
symbol of a is intentionally equal to A, and, according to
corollary 5.7, it can be mechanically decided whether or not

this is so.
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5,10 The combinatorial model. It follows from the pre-
ceding three corollaries that the species of closed normal terms
is mechanically decidable and that it forms a model for the
theory of types. 1In this model definitional equality = is inter-
preted as syntactical identity neglecting differences in the
naming of bound variables, which is clearly a mechanically
decidable relation, and a €A is interpreted to mean that it is
derivable in the theory which is mechanically decidable by
corollary 5.9. Moreover, for every object in the model, that is,
for every closed normal term, it can be mechanically decided if
it is the interpretation of a type or a funetion. And, in the
latter case, given an arbitrary other object in the model,

it can be mechanically decided if it is applicable to that object
in which case the result of the application is obtained by
juxtaposition followed by reduction to normal form, which is

also a mechanical operation.

Although the theory of types that we are considering
has a combinatorial model of the kind just described, the insight
that this is so cannot be gained without using abstract (non com-
binatorial) notions. This is in entire agreement with the
philosophical position of G&del's 1958 paper in Dialectica.

In our case the abstract notions used are essentially of the kind
that are formalized in the theory itself,

5.11 Completeness of first order intuitionistic logiec.
Consider a first order formula C containing no other logical
tonstants than —-> and V, and let £, ... and P, ... be the func-
tion and predicate symbols which occur in it. Let C¥ denote its

translation into the theory of types as defined in section 4.3,
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thereby choosing the variable X with type symbol V as the trans-
jation of the type of individuals.

Theorem. There is 2 closed term with type gnbol

(ﬂer)('le’éx—»... >X>X)...(Mp%x—>... 2x>V)...C"

it and only if the formula C is provable in first order intuition-

gtic predicate logic.
1552

Since the type symbol mentioned in the theorem denotes
the proposition that the formula C is true in all models, this
may be regarded as an intuitionistic completeness theorem for
(a fragment of) first order intuitionistic predicate logic.
More precisely, the theorem says that first order intuitionistic

predicate logic is complete relative to the theory of types.

Kreisel 1968 has suggested to call this property faithfulness

rather than completeness in order to avoid misunderstanding.

Proof. One way is simple. Suppose namely that C is
provable in first order intuitionistic logic and let ¢ denote
its proof. 1In section 4.3.5.3 we saw how to obtain c* and a
derivation of c’é C* from the assumptions X€V, f‘é X“Pooe XX,

viibg p’ex—a... X >V, ... Consequently,
(Xxev)(xf*exa...—>x—>x)...(xp*ex->...—>x—>v)...c*
is a closed term with type symbol
* % *
(Mxev)(TIt7€x—>... 2X2X)...(TTP€X—>... 2X->V)...C .

Conversely, suppose there is a closed term with this
Tpe symbol, According to the Hauptsatz, it reduces to a normal

term, This normal term must be of the form

(XXEV)(Xf’e X¥ .5, -)X—)X)...()P’éx-i cos —’X—*V)...c*



54

* i a normal term with type symbol C'. That c™ is the

where C

translation of a derivation ¢ of the formula C in first order
intuitionistic logic, which is all that there remains for us to
prove, is a consequence of the following lemma.

5,11.1 Lemma. Let C be a first order formula and suppose

—

that c* is a normal term with type symbol C* which contains no

other variables than X with type symbol V, function variables

with type symbols of the form X > .., X —> X, predicate variables

with type symbols of the form X—> ... 2X—>V, individual

variables with type symbol X, and, finally, variables with type

symbols of the form A¥ where A i a first order formula. Then

there is a derivation ¢ of the formula C in first order intuition-

istic logic whose translation is cX.

Proof. By induction on the construction of c*
Three cases have to be distinguished.
5.11.1.1  ¢* and c* are of the form (A x€X)b (x) and
(TTxéX)B*(x), respectively. By induction hypothesis there is

a derivation

Bix)

%*
in first order logic whose translation is b (x). Consequently,

We can take ¢ to be the derivation

W xB(x)




5.11.1.2

respectively. By induction hypothesis there is a derivation
A
B

in first order logic whose translation is b*(x). Consequently,

ge can take ¢ to be the derivation

D}]

B

A—B

*

3
5.11.1.3 ¢ is of the form ya:...an. This is not possible

unless y has type symbol of the form B* where B is a formula of

first order logic. But then the type symbol of a: must be

#
either X or of the form Ai where Ai is a first order formula.

*
Being normal, a; must be the translation of, in the first case,

an individual term t and, in the second case, a derivation a;
*

55

# » »
¢* and c* are of the form (AX €A )b*(x) and A > B

of the formula A'i in first order logic. Consequently, ¢  1is the

trangslation of the derivation ¢ which is obtained by letting the

assumption B be followed by a sequence of elimination inferences,

in the first case, a Velimination with t in the conclusion

tnd, in the second case, an application of modus ponens with Ay

48 minor premise,
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