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After the recent proof theoretical investigations of
imple type theory, it would seem natural to make an attempt at
#et theory as tormal1zed by Zermelo and Praenkel. However,

mainly b0cause of the form of the replacement axiom, it does
not seom as if set theory lends 1tself very well to a proof
theoretical analysis.

Instead, I have formulated an intuitionistic theory of
types in which (the intuitionistio and intentional version of)
the simple theory of finite types is imbedded as a subsystem.
The imbedding is such that the Hauptsatz for simple type theory
proved by Girard 1970 and Martin-Löf 1970 follows combinatorially
from the Hauptsatz for the full theory which constitutes the
prinoipal technioal result of this paper. I do not yet know
how the proof theoretic streng th of the present theory compares

with that of Zermelo and Fraenkel's set theory.

In a fortheoming paper I plan to show that, unlike
set theory, the present theory of types is adequate for a

straightforward formalization of category theory. This is so

because the basio axiom that there is a type of types introduces

preoisely that kind of selfreference which is needed in order to
oonstruot, for instance, functor categories and the category of

all categories.



INTUITIVE EXPLANATIONS OP THE BASIC CONCEPTS

1.1
as our own constructions. Every nathematical object 1s of a

certain kind or type which is uniquely associated with the objeot
in question. A type is defined by preseribing how we are allowed

to construct objects of that type. The types themselves are

mathematical objects, namely, those objects whose type is the
type of types. In other words, a type is the same as an object
of the type of types. I shall denote the type of types by the
symbol

In what follows mathematioal objects will be regarded

.
Note that V is itself a type, namely, the type of types, and
hence an object of type V.

The idea of logical types is due to Russell 1903 and
1908. He defined a type as the range of 8ignificance of a propo-

sitional function. This notion of type is compatible with the
one that will be formalized in the present paper, because the
domain of a propositional function will always be a type and,
conversely, every type will oceur as the domain of a propositional
funetion.

1.2

to do in order to prove it. For example,
A proposition is defined by preseribing what we have

971 is a non prime number

is a proposition which we prove by exhibiting two natural numbers
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greater than one and a computation which shows that their product
equals 971. The similarity between the notion of proposition and
the notion of type described above is not aceidental. Indeed,
a proposition may always be regarded as a type, namely, the type
of proofs of that proposition, and, oonversely , a type always
determines a proposition, namely, the proposition which we prove

by exhibiting an object of that type.
treat the notion of type and the notion of propositi on as one
and the same notion, thereby taking seriously the analogy between
types (or categories in the terminology of Curry and Feys 1958)

and propositions discovered by Curry and Feys 1958 in the case

of the positive implicational calculus and extended to Heyting

arithmetic by Howard 1969.

1.3
the relation

This explains why I shall

The relation which an obj ect bears to its type, that is,

a is an object of type A

or, if we think of A as a proposition rather than a type,
a is a proof of the proposition A

will de denoted by

a

For example,

vEV

expresses that v is an object of type V. In intuitionistic
mathematics the relation a €A is more fundamental than the
assertion relation
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FA

which merely expresses that

is a proof a of the propos1tion A, because half, and, usually,
the more valuable half, of the information contained in a €A is
lost when passing to FA. I think that a EA may be regarded as the
general form of the theorems of intuitionistic mathematics.

holds or is true, that is, that there

The relation a EA is decidable. Indeed, a type is well-
defined only if we have prescribed how we are allowed to construct
objeots of that type, and this is to mean that we should be able
to oheck whether or not an arbitrarily given object meets the
presoription.

Kreisel 1960 has argued for the deoidability of the proof rela-
tion a A. We recognize a proof of a proposition when we see one,
as he says. That is, it is not a proof unless we recognize it
as such. on the other hand, it was made clear by Brouwer that
there is no reason for us to believe that the assertion relation
is decidable, because that belief oould only be justified if we
thought it would be possible to construct a method which, when
applied to an arbitrary mathematioal proposition, would yield
either a proof or a disproof of that proposition.
1..4

which associates with every object x of type A a certain type

B(x). Then we allow ourselves to form the cartesian product

In the case when A is thought of as a proposition,

Suppose that we have defined a funation, rule or method

(TTxEA)B(x)

of the types B(x) when x ranges over A. Alternatively, if we
think of B(x) as a proposition for every objeot x of type A,
then (TTx EA)B(x) is the logical produet or conjunotion of the



propositions B(x) obtained by letting x range over A. The

cartesian product (TTx € A)B(x) is to be a type and, therefore,

I have to prescribe how we are allowed to construot objeots of
that type. Let b be a function which associates with every

objeot x of type A an objeot b(x) of type B(x). Then this funo-

tion b is an objeot of type (TTxeA)B(x). In symbols,

be (TTx eA)B(x).

Alternatively, if we think of b(x) as a proof

B(x)

of the proposition B(x) for every object x of type A, then, by

joining these proofs together, which is usually indicated by a

figure of the form

B(x) for all x€A
(TTxEA)B(x)

we get the proof b of the universal proposition (T[x€A)B(x).

In the special case when B(x) is defined to be one and

the same type B for every object x of type A, (WxEA)B(x) will
be abbreviated

AB.
It is the type of funotions whose arguments are of type A and
whose values are of type B. Thinking of A and B as propositions,

it is the proposition



A implies B.

A proof of the implication A > B is a function (rule or method)
which takes an arbitrarily given proof of A into a proof of B.
Note that this is precisely the intuitionistic explanation of the
notion of implication.
1.5

function which takes an arbitrary object x of type A into an

object of type B(x), then we can apply b to an object a of type A,
The result

If b is an object of type (lx€A)B(x), that is, a

b(a)

of this application operation is an object of type B(a).

1.6
same object, we shall say that they are definitionally or

intentionally equal and write

If two 1inguistic expressions a and b both denote the

b.a

other notions of equality, such as equality (in the usual sense)
between real numbers and extensional equality between species of
objects of some given type, have to be defined.

distinction between intension and extension, see Whitehead and

Russell 1910 and Church 1941.

As for the
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FORMALIZA'T ION OF A THEORY OF TYPES2

2.1 The formal symbols are

TT. A, ,the constant

variables

X, Y, Z, A,Y, 2, .
and parantheses

(..
The symbo1 A stands for funetional abstraction as in Church 1932.
2.2

meaningless) symbol strings to be called formal expressions.
Every occurrence of a variable in an expression is either free
or bound.

indicate explicitly that it may contain some free oceurrences of
the variable x.
2.2.1
2.2.2

in this expre8sion 1s free,
2.2.3
not occur free in A, then (x€A)B(x) is an expression in which
every occurrence of x is bound. An occurrence of a variable

From the formal symbols we build up certain (in general,

I shall denote an expression b by b(x) when I want to

V is an expression.
A variable x is an expression, and the occurrence of x

If A and B(x) are expressions and the variable x does



other than x in (UxEA))B(x) is free or bound depending on whether

it was free or bound in that one of the expressions A and B(x) in
which it ocours.
2.2.4
not ocour free in A, then (AxéA)b(x) is an expression. The

definition of free and bound variables is the same as in the
previous paragraph.

2.2.5
An occurrence of a variable in (ba) is free or bound depending
on whether it was free or bound in that one of the expressions
a and b in which it occurs.

If A and b(x) are expressions and the variable x does

If a and b are expressions, then (ba) is an expression .

Following Schönfinkel 1924, I shall use

ba an

as an abbreviation for

(..(ba)...a,).
2.3 Expressions may be simplified by means of the
reductlon rule

(AxEA)D(x)a 2 b{a).

Here b(a) denotes the expression which is obtained by substitut-
ing the expression a for all free occurrences of the variable x
in the expression b(x). Before the substitution can be carried
out, however, some bound variables in b(x) may have to be renamed
s0 that no variable which is free in a becomes bound in bla).
In the following I shall tacitly assume that bound variables are
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renamed whenever necessary in order to avoid undesired ties.
Also, expressions which only differ in the naming of their bound
variables are identified.

In an application of the reduction rule the right
member is said to be obtained from the 1eft member by contraction.
An expression a reduces to an expression b, abbreviated

ab
as in Curry and Feys 1958, if b can be obtained by repeated
contractions of parts of the expression a. An expression is
irreducible or normal if it cannot be further reduced.
2.4

tionally equal and we write
Two expressi ons a and b are definitionally or inten-

a b

if they reduce to a common expression, that is, if there is an
expression o such that a20 and b0, The relation = is an
equivalence relation. The reflexivity and the symmetry are
obvious iron the definition, whereas the transitivity is a con-
sequence of the following theorem first proved by Churoh and
Rosser 1936 for the type free calculus of lambda oonversion. The
proof given below is an adaptation of a proof tor the type tree
combinator calculus shown to me by Wil1liam Tait.
2.5

then there is an expression d such that b > d and c>d.
Property of Church and Rosser. I a> b and a 0,

Proof. We shall first prove the theorem for an
auxiliary relation 12.5.1
2.5.1.1

Definition of the relation

VV.



2.5.1.2 If x 1s a variable, then x >X.It A>c and B(x) >p(«), then (TIx eA)B(x)>,2.5.1.3
(TTxec)D(x).
2.5.1.4 t APC and b(z) >,a(x), then (AxeA)b(x) >
(Aze c)a(x).
2.5.1.5

2.5.1.6 This is the erucial case. If a 20 and b(x) >,d(x),
then (Ax EA)b(x)a >,a(e).
2.5.2

If a >o and b >d, then ba >do.

Lemma. It a >0 and b{x) >d(x), then b(a) >d(c).
Proof. By a straightforward induotion on the length

of the proof of b(x) >,d(x).
2.5.3
d such that b >,d and o >d.

Lemma. ab and a°, then there is an expression
Proof. By induotion on the sum (or maximum) of the

lengths of the proofs of a>b and a >0.
2.5.3.1 a is the constant V. Trivial.
2.5.3.2

2.5.3.3

necessarily of the toms (Tíx € B,)B,(x) and (11x eC,)cg(x),
respectively, where

a is a variable. Also trivial.
a is of the form (TTxeA,)az(x). Then b and c are

Aga)Baa),
Agx)(x).

A 1

A1
By induotion hypothesis we can 1ind D, and D,) suoh that

B(x)D(z),
(x)P).
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Letting d be the expression (TTx eD,)D,(z), we have b>d and

2d as desired.
2.5.3.4

pletely analogous to the previous one

2.5.3.5
and c1 respectively, where

a is of the form (AzeA,)a,(x). This case is com-

a is of the form aga, and b and o are of the forms b,b,

a212
By induction hypo the sis we can find d, and dg such that

We can now take d to be the expression d,d.
2.5.3.6 a is of the form (Ax EA,)a,(x)a, and b and o are of

the forms b,(b,) and (Axec,)e,(x)eq, respectively, where

(x€A)a(z)2,(xec,)eg(x).a1°1
By induotion hypothesis we can find d, and d,(x) such that

b,(z) ,4,(a),
x)dx).

Using 1emma 2.5.2 and definition 2.5.1.6, we can conclude that
bb)a(a,) and (Ax€C,)o2(x)o,>1a(d,), respectively,
so that d can be taken to be dgld,).
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2.5.3.7 a is of the form (Ax€A,)a,(x)a, and b and c are of the

forms (Ax€ B,)b,(x)b, and o,(e,), respectively. This case is
completely symmetrio to the previous one.

2.5.3.8 a is of the torn (Ax€A,)a,(z)a, and d and o are of the
forms b(b,) and c,(o,), respeotively, here

a a(x) ba(a),
ag(x) >o(x).

By induotion hypothesis we can find d, and d,(x) such that

D(x) 4x),
x)(x).

Using lemma 2.5.2 twice, we can conclude that b(b,) 2,d,(a,) and

ogfe),(d,) so that d oan be taken to be dgld,).
2.5.4

putting a a and 1letting a >n+10 mean that a >,b and b>,e for
some b, then it is clear that a b if and only if a z,b for
some n.

2.5.5

a 2,o for some m and n. By repeatedly applying lemma 2.5.3, we

can find d such that b>d and c>d and a fortiori b> d and

e d. The proof of the property of Church and Rosser is now

complete.

2.6

normal 1orm, 1s normal torm 18 unique.

If we define the relation a 2,b for arbitrary n by

Suppose now that ab and ac. Then ab and

Uniqueness of normal form. an expression has a
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Proof. Let a be an arbitrary expression and suppose

that aband a> where b and c are both normal. According to

the property of Church and Rosser, there is an expression d such

that bd and o>d.
be identical with d and hence with each other. Remember that

identity means syntactical identity neglecting differences in the
naming of bound variabl es .
2.7

codify the principles of reasoning that were described informally
in the beginning of this paper. The derivations in this system
are to be certain tree like arrangements of symbol strings of
the form

Since b and c are both normal, they must

I shall now set up a formal deductive system which will

aEA

where a and A are formal expressions. When a€A has been derived,
it may be read

a denotes an object whose type is denoted by A

or, for short,

a is a term with type symbol A.

An expression a 1s a term if a €A can be derived for some ex-
pression A, and an expression A is a type symbol if there is a
derivation of AEV.

A derivation is started by appealing to an axiom or

making an assumption and proceeds downwards by means of the

rules of inference. Some of the rules of inference have the
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property that, vhen passing from the premises to the conclusion,
certain assumptions (all identical in form) are cancelled.
as Gentzen 1934 did in his system of natural deduction for first
order logic, I shall indicate this by enclosing the assumptions
in question within square brackets. A derivation is closed if
all of its assunptions have been cancelled. 0therwise, it is
Open

Just

The axiom, assumptions and rules of inference are
as follows.
2.7.1

VEV

This is the basic axiom with which every derivation begins.
are no other axioms.

2.7.2
we may introduce a new variable x and use

There

If we have a (possibly open) derivation of AEV, then

xEA

as assunption. The type symbol A is to be uniquely associated

with x, that is, having made the assumption xEA, We are not
allowed to use x€B as assumption unless B is identical with A,

2.7.3

AGV B(x)eV
(TTxEA)B(x)e vTrule

This rule of inferenoe is subjected to the restriotion that the

variable x must not ocur in any assumption of the derivation of

Bx) E V other than the indicated xEA, Note that, when passing
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from B(x) € V to (Tx€A)B(x) € V, all assumptions of the form x €A

are canoelled, but, instead, the conolusion bocomes dependent on
the assumptions of the derivation of A EV whioh alllowed us to
use x EA as assumption.
2.7.4

b(x)E B(x)AEVArule (AxeA)b(x) e (Tix EA)B(x)

Similar remarks as for the previous rule of inference.
2.7.5

bE (TTx€A)B(x)
ba e B(a)

aEA
application rule

Here, of course, B(a) denotes the result of substituting a for
all free occurrences of x in B(x) .
2.7.6

aEA BEVequality rule if A = Ba EB
An application of the equality rule with A and B identioal ia
redundant and can be removed.
assume that there are no two successive applications of the
equality rule, because, clearly, two suoh applications can be
made into one application of the same rule.

Also, whenever convenient, we can
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Example.

xe
(Axex)x e(Tīxex)xVEV

(Axev)(Axex)xe(TTxev)(Tlxex)x

This derivation is olosed. The tem (AxEV)(Axex)x denotes
the function which, when applied to a type, yields the identity
function on that type.

Note that an open derivation

a(x XEA(X..n
is always accompanied by eertain other derivations

**-1EAn-1***a-2
AEV

namely, those derivations that allowed us to introduce succes-

sively the assumptions x,€A4, ., *nEA X*n-1

2.8

derivation of AE V. In other words, a €A cannot be derived
unless A is a type symbol.

Ax3n-1)€VApx,)Ev

Theorem. From a derivation of a €A we can find a

Proof. By induction on the length of the given deriva-

tion of a €A. Six cases have to be distinguished.
2.8.1
2.8.2

vEV. Clear.
xEA. Clear, because we can only introduce an assump-
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tion of this form if we have previously derived AEV.
2.8.3

A EV B(x)EV
(TTxE A)B(x) €V

Clear, because VEV is an axiom.
2.8.4

b(x) € B(x)AEV
(AxEA)b(x)e(TTxeA)B(x)

By induction hypo thes is we get

xEA

B(x) EV

which, taken together with the given derivation of AEV, allows
us to cone1ude (TTx eA)B(x) EV by the TTrule.
2.8.5

bE(TxeA)B(x)
ba E B(a)

aEA

By induotion hypothesis we get a derivation of (TixEA)B(x) € V.

After deleting possible redundant applications of the equality
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rule in the end of this derivation, it must be of the form

B(x) EVA EV

(TTx eA)B(x) € v

We get the desired derivation

aEA

B(a) Ev

of B(a) EV by substituting a for all free occurrences of x
throughout the derivation of B(x) EV from xEA and attaching the

given derivation of aEA to the derivation obtained after the
substitution.
2.8.6

a EA BEV

aEB

where A = B. Clear, because the derivation of the right premise

is a derivation of BEV as desired.
2.9

then we can find a derivation of b€A.
Theorem. If we have a derivation of a€A and a> b,

Proof. It will suffice to handle the contraction of
By deleting, if necessary, redundant applicationsa single subterm.



of the equality rule, we can assume that the given derivation has
the form

b(x) E B(x)AEV cEV D(x)€ v

(TTx€ C)D(x)€ V(AxEA)b(x) E (TTx eA)B(x)
(AxEA)b(x) € (Tīx e C)D(x) a EC

(AxEA)b(x)a €D(a)

where (TTx EA)B(x) = (TTx ec)D(x), that is, A = C and B(x) = D(x).

If this derivation is rebuilt as follows

:

AEVaEC

aeA EC

b(a) e B(a) Da) ev
ba) ED(a)

we obtain the desired derivation in which (AxeA)b(x)a has been
contracted to b(a).
2.10
a = b, then A = B.

Theorem. If a€A and b€B can both be derived and

This is the formal counterpart of the idea that every

mathematical object is of a uniquely determined type.
Proof. That a = b means that there is an expression o

such that a> c and b>C. Using the previous theorem, we can
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find derivations of cEA and c€B. The proof that A = B is by
induction on the sum of the lengths of these derivations.

If the last inference of one of the derivations, say
the second, is an application of the equality rule

cEC BEV

cEA c EB

we know by induetion hypothesis that A = C. Since B = C, we can

conclude A = B as desired. It remains to consider the five cases
that arise when none of the derivations ends with an application
of the equality rule. They must then both end with applications
of one and the same rule of inference which is determined by the
form of c.

2.10.1
2.10.2
and B are identical so that a fortiori A = B.

2.10.3
then A and B are both V so that a fortiori A = B.

2.10.4

they must have the forms

VEV. Trivial.
Suppose xEA and xEB are both assunptions. Then A

If both derivations end with applications of the TTrule,

If both derivations end with applications of the Arule,

xEA

b(x)€ B(x) b(x) € D(x)A EV AEV

(AxeA)b(x) € (TĪx€A)D(x)(AxEA)D(x) e (TTxeA)B(x)

By induction hypothesis B(x) = D(x) and, consequently,
(TTxEA)B(x) = (TTx€ A)D(x) as desired.
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If both derivations end with applieations of the rule2.10.5

of application, they must have the forms

bE (TTx€A)B(x)

ba & B(a)
bETIxEC)D(x)

ba ED(a)

a EA a EC

By induction hypothesis A = C and B(x) = D(x) so that B(a) = D{a)

as desired.
2.11
term such that a = b, then we can find a derivation of bEA,

Theorem. If we have a derivation of a €A and b is a

Proof. That b is a term means that we have a deriva-

tion of bEB. From the previous theorem we can conclude that
A B. Also, theorem 2.8 allows us to find a derivation of AEV,
An application of the equality rule

AEVbEB
bEA

now yields the desired derivation.
2.12

term such that A = B, then we can find a derivation of a €B.
Theorem. I we have a derivation of a EA and B is a
Proof. First, use theorem 2.8 to obtain a derivation

of A EV, and, second, use the previous theorem to obtain a deri-
vation of BEV. We then get the desired derivation

BEVa E A

aEB

by applying the equality rule.
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REPRESENTATION OF soME LOG ICAL AND MATHEMATICAL3

cONCEPTS IN THE FORMAL THEORY

Implication and the type of functions from one type3. 1

to another. For two type symbols A and B we put

AB =(TTx€A)B

where the variable x occurs free neither in A nor in B. In order
to avoid an excessive number of parantheses,

A(>{An-1A,)..)
will be abbreviated to

A An-1An
Clearly, A>B is a type symbol,, and, since

K =(AxEA)(Axe B)x € A>B>A
and

(AzeAB>C)(Ay€A>B)(AxeA)(2x(yx))
(AB>c)>(A>B)>A>C,

S

the usual positive implicational axioms are satisfied. Except
for the type restriotions, K and s are the combinators introduced
by Schönfinkel 1924. Modus ponens

bEAB aE A

baEB

is a special case of the rule of application.
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Falsehood and the empty type. Prawitz's 1965 definition3.2

for second order logic can be carried over to the present formal-
ism, that is, we put

=(TxEV)x.
is a type symbol, andClearly,

(Axev)(Ax 6L)(23) € (TTxEV)(L -x)
30 that the intuitionistic axiom of absurdity is satisfied.

Negation. If A is a type symbol, we put as usual3.3

- A = A >L.
Clearly, - A is again a type symbol. Russell 's 1903 definition
of the negation of A as (TTXE V) (A >X) would do just as well.
3.4

For two type symbols A and B we put with Russell 1903
Conjunction and the cartesian product of two types.

AXB (TTx€v)((A>B>X)>X).

It is readily verified that AXB is a type symbol. Define the
pairing operation by

(a,b) = (Axev)(^ z€A B->X)(zab) E AXB

for a and b with type symbols A and B, respectively, so that

(xEA)(Aye B)(x,v) € A >B>AXB,
and introduoe the oorresponding projeetions

(zEAXB)(zA(Ax€a)(AyeB)x) € AXB->AP
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and

(AzEAXB)(2B(^x6A)(AyeB)y) € AXB >B.
Then we see that the usual conjunetive axioms are satisfied, and

p(a,b) a 9(a,b) = band

as desired.
5.5

two type symbols A and B we put with Russell 1903
Disjunetion and the disjoint union of two types. For

(TĪxEv)((4 x) > (B x) > x).A+B

Clearly, A+B is a type symbol. If we define the associated in-jections by

i = (AxÉA)(AXEV)(AfEA -X)(Ag€B>x)(fx) E A->A+ B

and

(yEB)(Ax€v)(Af6A-X)( AgeB>X)(8y) E B->A+B3

and put

h (xEV)(\fEA X)(AgeB->x)(A zEA+ B)(2xtg)
e (TTX EV)(A >X) - (B x) > A+ B X),

we see that the usual axioms for intuitionistie disjunotion are
satisfied. Also,

ncfe(jb) = gbhcfg(ia) = fa and

80 that the diagram
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A >A +B B

hCfg

commutes.

3..6

definition
Existence and disjoint union. We can use Prawitz's 1965

(ZxEA)B(x) = (TUx EV)(TĪx€A)(B(x) >x)>X).

Here, of course, A is a type symbol and B(x) is a type symbol
under the assumption that x is a variable with type symbol A.
This guarantees that (2x€A)B(x) is a type symbol as well. If
we introduce the associated injection

i = (Ax €A)(A y€ B(x)(Axev)(^te (Mx€A)(B(x) >x))(txy)
e (TTxeA)(B(x)-> (ZxEA)B(z)

and put

(xev)(AIe (Tx€A)(B(x)-> x)(Az e (Ex ea)B(x))(zxr)
(TXEV)(TTxEa)((x)->x)> (Zx€A)B(x) >x),

h

we see that the usual axioms for intuitionistio existence are

satisfied. Also,

hcf(iab) = fab

s0 that the diagram

i8 (x6A)B(x)B(a)

hcffa
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commutes. Final1ly,

(Aze(Zx€A)B(z))(zA(AxeA)(AyeB(x))x)
(2x€A)B(x)->A

p

has the property that

p(iab) = a.

This means that, when p is applied to a proof of (2xEA)B(x),
we obtain the object of type A which exists by virtue of that
proof. Note that, when B does not eontain the variable x free,
(ZxEA)B is identical with AXB.

3.7 POwer type. Put

P (AXEV)({X>v) EV->V.
Clearly, if A is a type symbol, then PA is a type symbol which
denotes the type of propositional functions defined on the type
denoted by A. An object of type PA is called a species (or class
in the terminology of Principia Mathematica) of objects of type A.
Note that a species is always a species of objects of a certain
type. The definitions of inclusion, extensional equali ty, com-
plementation, interseetion, and so on, are all standard
3.8

1903, we define the identity relation between objects of type A
by putting

Identity. Let a de a type symbol, Following Russell

I =(xEA)(Ay€a)(TTxEA>v)(Xx->Xy) E A >A->v.

It is then easily verified that the laws of identity,
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(Tx€A)(Ixx),
(TTxEA)(TTyéA)(IxyIyx),

(TxEA)(TTyeA)(TzeA)(Ixy Iyz >Ixz),
become satisfied, Note that, because of the equality rule, Iab
holds provided a and b are definitionally equal terms of type A.
The converse will be a consequence of the Hauptsatz.
3.9 Finite types. For every natural number n we put

M(TTXEV)(

with the understanding that

Mo L= (TXEV)x.
It is natural to use M, to represent not only the one element type
but also the logical constant truth T. A simple combinatorial
argument shows that

= (Axe v)( Ax^€ X)...(Az,€ X)x, € M

(AxEv)(Ax,€x)...(Az,EX)*, € Mn

are the only closed irreducible terms of type M, and, in particu-

lar, that there is no closed irreducible term of type Mo = .
Now, let A be an arbitrarily given type symbol and aj ,terms with type symbol A. We can then define a funetion

t (Az€M,)(zAa,..)€MA
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with the property that

Tm a1 Im &n'

Natural numbers. As in Martin-Löf 1970a we put3.10

M (TTX EV) (X-> (XX)> X) € V,
0 (AXé V)(AxeX)(Ayex X)x é M,
(zeM)(AxEv)(Axex)(Aye x->x)\y(2Xxv)) e M->M,
(AxEv)(Ax6x)(Ayex->x)(AzeM)(zXxy)
é (TTXEV)(x-> (x>x) >M->X).

R

Then, if A is a type symbol and a, b and c have type symbols
A, AA and M, respectively,

RAabo = a,
RAab(sc) = b{RAabe),

so that we can define funetions by recursion. A simple combina-

torial argunent shows that the numerals

0 (AxeV)(Ax6x)(Ayex>X)x E M,
1 (Axev)(Ax€x)(A y€x>x)(yx) € M,
2 (AXEV)( Ax €X)(Ay€X->X)(v(yx))€ M,

are the only closed irreducible terms with type symbol M. Except
for the type restrietions, this is the representation of the
natural numbers invented by Church 1933. Using the definition
of the property of being a natural number given by Frege and

Dedekind,
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(xEM)(TUXEM>V)(x0-(TxeM)(Xx ->X(sx)) >Xx) ,N

the relativized versions of the Peano axioms,

NO,

(TTx€M) (Nx > N( sx)),
(TTxEM)(Nx>- IO( sx)),

(TTxEM)(TyeM)(Nx Ny >I(sx)(sy) -> Ixy),
(TxEMV)(x0 -> (Txe M) (Nx->Xx >x(sx)) -> (TTxeM)(Nx->Xx),
become provable. I have not succeeded in defining the type of
natural numbers in such a way that the axiom of induction becomes
provable without relativization.

Example. The term RVMP with type symbol M>V denotes
the function whiah, when applied to a natural number m, yields
the mth power of the type of natural numbers. Note that the
existenee of this function cannot be established in Zermelo's
set theory.
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REDUCT ION OF SOME OTHER FORMAL THEORIES TO THE

PHEORY OF TYPES

Gödel's primitive recursive funetionals of finite type.4.1

As is clear irom sectlons 3.1 and 3.10, they can be constructed
by means of M, , 0, S, R and lambda abstraction.4.2

the theory of Girard 1970 can be given the following simplified
form provided we make the inessential change of excluding the
zero constant off each type from his theory.
4.2.1

4.2.1.1

4.2.1.2

4.2.1.3 If B(X) is a type, then so is XB(X).
4.2.2

4.2.2.1

4.2.2.2 If x is a variable of type A and b(x) is a term of
type B, then Axb(x) is a term of type A>B.
4.2.2.3

free in the type of a free variable in b{X), then AXb{X) is a
term of type TXB(X).
4.2.2.4 If a and b are terms of tYpesA and A>B, respectively,
then ba is a term of type B.
4.2.2.5

bA is a term of type B(A).

Girard's theory. As was pointed out by Martin-Löf 1970a,

Types.

The type variables X, Y, ... are types.
If A and B are types, then so is A >B.

Terms.

The variables x, Y, . of type A are terms of type A.
If b(X) is a term of type B(X) and X does not occur

If A is a type and b is a term of type NXB(X), then
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When formulated in this way, the reduction of Girard' s4.2.3

Indeed, the typetheory to the theory or types becomes trivial.
ariables are represented by variables with type symbol V, and

,
TT, 1ambda abstraction and application are represented by the

entities which are denoted and named 1ikewi se in the theory of
types.

Another way of arguing is this. Girard's theory in the
above formulation is isomorphic to that part of intuitionistic
second order 1ogie which is obtained by excluding everything that
has to do with individuals. Therefore, being a subsystem of
second order 1ogio and a fortiori of simple type theory, its
reduction to the theory of types follows from the reduction of
simple type theory which we now proceed to carry out.
4.3

intuitionistic and intentional version of the theory of simple
types. The classical and extensional version can be reduced to
the intuitionistio and intentional version by means of the double
negation interpretation and Takeuti's 1953 restrietion theory.
4.3.1

4.3.1.1 0 is a type.4.3.1.2

We shall consider the followingSimple type theory.

Types.

Ifn>0 and T are types, then so is

( Tn4.3.2

of type ()).

.5.2.1 A variable of type t is a term of type T.

.2.2 If f is an nary funetion symbol and ti , tare

Terms and formulae. A formula is the same as a term

erms

Or type 0, then ft,...t, is a term of type 0.
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If t is a term of type (T,11.,T) and t4.3.2.3

are terms or types *, Trespectively, then tti..na formulla.

4.3.2.4

4.3.2.5 If x is a variable of type t and B(x) is a formula,
then xB(x) is a formula.
4.3.2.6 If Xq^ ,

X are variables of typesT. nrespectively, and B(X11*. * ,X,) is a foruula, then

x B(x1..) is a tern ot type (T.T4.3.3

latter can be obtained from the former by repeated contractions
of subformulae according to the reduction rule

* °n

If A and B are formulae, then so is AB.

Reduction of terms. One term reduces to another if the

The property of Church and Rosser is easily established for this
kind of reduction. Two terms are definitionally or intentionally
equal if they reduce to a common term. Intentional equality will
be denoted by =. A simple combinatorial argument, very similar
to the proof of normalization for first order logic, shows that
every term and, in particular, every formula can be reduced to

normal form.

4.3.4

Gentzen's 1934 calculus of natural deduction for first order
logic to higher types.

Rules of inference. The following is an extension of

introduction A B
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elimination AB A
modus ponens B

B(x)

xB(x)

xB(x)
B(t)

Vintroduction

elimination

1 A = Bequality

Translation into the theory of types. I shall denote4.3.5

the translation operation by a star.
4.3.5.1

4.3.5.1.1 0* is taken to be some fixed variable with type
symbol V.

4.3.5.1.2

ular, () is V.
4.3.5.2

4.3.5.2.1 A variable of type T is translated into a variable
with type symbol T".
4.3.5.2.2 If f is an nary function symbol, then f* is some
Tixed variable with type symbol

Types.

(T T,)is .TV. In partio-

Terms and formulae.

1, ., t
are terms of type 0, e let (ft...t,)" be
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(tt 1 t.(AB) is A"^ *.
4.3.5.2.3

4.3.5.2.4

4.3.5.2.5

be (TTxET)B"(x).
4.3.5.2.6 Ir x1 , X, are variables of typesT,respectively, we let (Axq..x,B(x1..s*,))be

If x is a variable of type T, we let ( xB(X))

n'
(AxET)...(Ax,eT)B(x.).Derivations. By induction on the length of a deriva-4.3.5.3

tion a of a forulaA in simple type theory I shall construct a
term aand a derivation of a'e A in the theory of types.
4.3.5.3.1
we make an assumption of the form x€A" in the theory of types.
4.3.5.3.2

Corresponding to an assumption A in simple type theory

>introduction.

B

A B

By induction hypothesis we have constructed b(x) and a derivation

xEA"

x)e
Define the translation of the derivation of A B to be

(AxeA*)b"(x). The Arule allows us then to infer

b(x) eB
(Axe)»"(x) EA*> B



as
desired.

3.5.3.3 elinination.

ABA

Ry induction hypothesis we have constructed a' and b andBY

derivations

be (A B) ae A

Define the translation of the derivation of B to be ba. The
rule of application allows us then to infer

baeB
as desired.

introduotion.4.3.5.3.4

B(x)
VxB(x)

et Tbe the type of the variable x. By induotion hypothesis

e have eonstruoted b°(x) and a derivation

xET

b(x)EB(x)
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the translationof the derivation of VxB(x) to beDefine

(Ax€T*)"(x). The Arule allows us then to infer

(x)eD(x)
(xeT (x)E (Y xB(x))

as desired.

elimination.4.3.5.3.5

aB(x)
B(t)

By induction hypothesis we have constructed b and a derivation

be (VxB(x))°

Also, if t is the type of the term t, we can find a derivation

eT
Derine the translation of the derivation of B(t) to be bt. Therule of application allows us then to infer

eT*be (VxB(x))*



Here we have taoitly used the faot that (VxB(x))as desired.

is (TTxeT)D"(x) and that (B(t)
4.3.5.3.6

1s B(t).
Bquality.

A

-
B

where A B. By induction hypothesis we have constructed a" and
a derivation

a A
Also, we can find a derivation

Define the translation of the derivation of B to de a". The

equality rule allows us then to infer

aAaeB
as desired. Here we have tacitly used the fact that A B implies

A . The translation of simple type theory is now complete.
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THE HAUPTSATZ AND ITS CONSEQUENCEs

Hauptsatz. Every term reduces to a n0rmal teIm.5.1

Proof. In the course of the proof Roman letters will
just as before denote formal expressions, whereas Greek letters

ill denote abstract objects such as types, funotions and propo-sitional funetions.
The idea of the proof is this. With every term

a(x nall or whose free variables oceur among x ,KnI shall associate an abstract object

which depends on certain other abstract objects51
which are associated with the variables x^ Xn Por the

sake of notational simplicity, I shall write without exhibit-
ing explioi tly the free variables and the abstract objects which
are associated wi th them.

is to be a tripleWhen A is a type symbol,
6A) where T is a type, wA an object of type TA(A

which we can forget about at this stage) and A a binary pro-

positional funetion whose first argument is a formal expression
and whose second argument is an object of type TA BA(a, g)
may be thought of as expressing that 1s a computation of a.

The predicate 6, will be constructed so as to have the erucial

property

(a,) implies that a is nornalizable.
nally, it will be shown that if a is

a term, that is, if there
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Aderivation of aEA, then ox, 1s an objeot of type T such

thate(, where o is a term to which a reduoes. Beoause

of the proper ty oT A Just stated, o is normalizable.
reduoes to a and s0 a 1s normalizable as wel11. The proof of the
Hauptsatz will then be complete.
5.1.1

struotion of a.

5.1.1.1

Tyis the typo of triples (T,w,6) where T 1s a type, w an

object of that type, and a binary propositional funetion
whose first argument is a formal expression and who se second
argument is an object of type t,
wy is the triple (T,w, 6) where T is some fixed non empty
type, w some fixed objeot of that type, and 6(a, 5) the propo-
s1tion that a is normalizable, and

1s the binary propositional funotion whose value for an
expression A and an object (tT,w,6) of type Ty is the oonjuno-
tion of ( the universal olosures of) the following three propo-

81t1ons.

5.1.1.1.1
5.1.1.1.2
5.1.1.1.3
Omya' awhere y is a variable.
5.1.1.2
nomatter what the type of the object 1s.

5.1.1.3

But a

The definition of ox, is by induetion on the con-

y is the triple (Ty, 6,) where

A is normal.
e (a, ) inplies that a is normalizable.6 (a,w) provided a is a normal expression of the

(F) is. This dofinition makes sense, of course,
(TTx eA)B(x) 18 the triple ((Tx€A)B(x) »

(TxEA)B(x): G (T 2x
GA)B(x)) where
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T(Tx€A)B(x) i8 the type of functions m which to an object S

w(TTx In/~is the function which to an objeot of type A
ype assigns an object m 3)of type Tp(z)5),
assigns (x) 3), and
TTx&A)B(x)b. 18 the proposition that, for all expressions a
and objects of type A 1f e^(a,F) then ba reduces to an
expression d such that p(x) S)(d,7()), and, furthermore, if
b reduces to (Ax é C)d(x) then C is normalizable.
This definition makes sense provided d is of type ty and
R(z) 1s of type Ty tor ot type

5.1.1.4

of type TA assigns px)). This definition makes senseprovided oA is a welldefined object of type y and lz)5)
iswelldefined for of type T

(xeA)b(x) is the function whioh to an object 3

ba is the result of applying to a"5.1.1.5

This definition makes sense provided we know that ois a

function and that d is an objeet whose type is the domain of
that function.
5.1.2

sense that if one member is welldefined so is the other and
the two are definitionally equal.

Substitution property. b(x)(%a b(a) in the

Proof. Immediate by induotion on the oonstruction
of b(x) and using the following three obvious properties.
5.1.2.1 and op(x) 5)-*p(x)) for 5 orfype A T then (Tx6A)B(x) (Tx6©)D(x)* lHere as
0Tore and in the following the equality sign denotes defini-
tional equality.
5.1.2.2 If od cpeT T then ox¢A)»(x) °(Ax6C)d(x)"

db(x)) =oa(z) ) tor g otand
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If and a then ba =odoCompatibility with equality. If and o, are botn
s,1.2.5

5,15
relldefinedand a b, then a o

It suffices to show that, if o is well-Proof.
inedand a reduces to b, then & is welldefined and o

ase of the properties 5.1.2.1, 5.1.2.2 and 5.1.2.3 it even
sufticesces to show that, if d(xeA)blx)a is welldefined, then
so shla)and the two are definitionally equal. Now, this is
indeed so, because

dxeA)b(x)a = (^xeA)b(x)*a) &D(x)a) = p(a)
Here the first two equalities hold by definition and the third
because of the substitution property.
5.1.4 By induction on the length of a derivation

xEA ,A*1****a-1.a(x *) EA(x1.
shall prove that,

is awelldefined objeot of type ty

A x,)1..*, Sn-1) is a welldefined objecto type Cy for , of type A,
t

n-1 of type
x 51.* Sn-2),then

Ax 5n) and oa(x,,...x,)G1*... En,)1olldefined objects of typesTy and Ta(x,1.enx,) 51'**** 5n)
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respectivelY, Such that, 1e

then a(a,. an reduces to an expression o such that

Six cases have to be distinguished depending on the
tom of the last inference of the dorivation. In order to
alleviate the notation, I shall not exhibit explicitly any assump-
tions except the one which is possibly involved in the particular
inference under consideration.
5.1.4.1

vEV

Te have to show that ody, that is, the triple (Ty,y, 6), is
an object of type ty, which is inmediately clear, and that the
proposi tion 6,(v,«y) holds. ,(v,) is the conjunetion ofthe following three proposi tions which we proceed to verify.
5.1.4.1.1 Vis normal.5.1,4.1.2

because (A,oX) is the conjunction of three propositions, the
first of which says that A is normal.
5.1.4.1.3

Clear.

A,) implies that A is normalizable. Clear,
y(A, ) provided A is a normal expression of the

ya a C1ear, because in that case A is normal, and,
OWing to the definition of the triple (T,w, 6) which is wy
has the property that 9(a,) implies that a is normalizableTell as the property that 6(a,w) holds provided a is a normal
4pression of the form ya4 n'
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5.1.4.2

xEA

We have to sho that, if o is a welldefined object of type ty
then is awelldefined object of type Ty and, for of
type 3)is a welldefined object of type A such that

it G(a,3) then a reduces to an expression c such that
4,(o, )). This is trivial because d ) is and e

can be taken to be a itself.
5.1.4.3

eA
AEV B(x)€V
(TTx EA)D(x) € V

By induction hypothesis we know that o is a welldefined obj ect
of type y and that AC suoh that e,(c,). Also, for Fof type TA B(x)g) is a welldefined object of type y such

that 6(a.) implies that B(a) >D such that ,(D,op(x)(E).
Consequently, d(TTx GA)B(x) is welldefined by 5.1.1.3. It
remains only to verify that (TTx € A)B(x) > E such that

y8, (TxEA)B(x) ), that is, that the following three
conditions are fullfilled.
5.1.4.3.1 B is normal. We know already that 6y(c, ) so that
Cis normal and (x,w. Also, (x,A) implies thatBlx)>D(x) such that 8,(D(x),op{x()8o that D(x) is
hormal as well. If we take E to be (TTx EC)D(x), then, clearly,
(lxEA)B(x)> E and E is normal.
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(TxEA}B(x) (b, n) implies that b is normal1zable.5.1.4.3.2

By datinition (Tx€A)B(x)b,n) is the proposition

tor all a and g of type TAir 9a,3) thon badsuch that p(x)( )(a,()), and, furtheruore, ib (AxEC)d(x) then C is normalizable.

is an object of type such that e (x,w)
such that B(x)A)(d,7())which implies that d is normal -isable since B(x)> D{x) sueh that 8,(D(x),°%,(x)()). Pinally,
if d is normal izable, then so is bx, and, if bx is normalizable,
then Bo is b, because b cannot reduce to (Ax eC)a(x) unless
Cis normalizable.

5.1.4.3.3

a normal expression of the form ya,. . .an Remember that

Hence bx2d

(TTxEA)B(x)b,a(TTx EA)B(x)) holds provided b is

WTx6A)B(x)E) was detined to be p(x3) tor of typeATherefore, we have to verify that if 6 (a,F) then ba> d such

that p(z) 3)(4,p(x)(E). Now, sinoe A C such that

6,c,, e(a,F) implies that a is nornalizable.
the normal expression ya,...a,n+1 Where an+1 is the norimal form

Let d be

a. Then &p(x) E)(d,(x) S)) because B(a)
that ,(D,oB(x)E )).

D such

5.1.4.4

A
b(x) EB(x)A EV

(AxEA)D(x)E (TTxeA)B(x)

By induetion hypothesis we know that o 1s a wolldefined objeot
o type y and that A>C such that 6y(C,%A Also, for of



type A B(x) and x)) are welldefined objects of

type y and B(x)g), respectively, such that if 6(a,3)
then ba) > d such that n(x)E)(a,«x3). We have to

how that (TTxeA)B(x) and xEA)b(x) are welldefined
objects or pe "y and TxA)B(x) respectively, which is
elear from 5.1.1.5 and 5.1.1.4. The treatment of this case will
be completed by showing that

(TTxEA)B(x){(Ax€A)b(x),0(Ax€a)b(x)

that is, that, for all a and § of type T if B(a,) thenAx EA)b(x)a > d such that

B(x d, (\x€A)b(x)5
and, furthemore, if (Ax€A)b(x)> (Axec)a(x) then c is normal-
izable. Now, this is indeed so, because (Ax€A)b(x)a b(a) > d

and (xEA)b(x)( 5 ) was defined to be o(x)) 1for g of type
Aand, furthermore, A is normalizable by induetion hypothesis.
Fere I have tacitly used the fact that, if A> C and A is normaliz-
able, then so is C because of the property of Church and Rosser.
5.1.4.5

bE(TxeA)B(x) a EA

ba E B(a)

By induotion hypothesis we know that oA ana o(TxEA)B(x) are
welldefined objects of type ty. Also, and c, are wel1-
defined objects of type T and (TTx EA)B(x) respectively,
and a o and bd such that e(c,a and (TTxEA)B(x)(d,).emembering the definition of the latter predicate, we can
Conclude that do f such that

n()t,%,).
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was definod to be o,(«)and on(z)) p(a)thene substitution property, we can conoludebecause of

n(a)f,ba?
andbadef as desired.
5.1.4.6

aéA BEV
a E B

where A B. By induotion hypothesis dand a are welldefined
objects of type ty and A respectively, and a 2 c such that

e(e,o Also, B is a welldefined object of type Ty.
SinceA B, we can conclude that o = p by using 5.1.3.
Consequently,

A

6(o,o)
where a 20as desired.
5.1.5

an arbitrary derivation

Suppose that we are givenWe are now almost done.

EA,' n-1xEA
a(x *,)EA(x|1...

th accompanying derivations

XEA1

Aga)v

n-1An11 *n-2xEA1
.

n-1)€VA
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then we know that

is a welldefined objeot of type Ty and that A, uon

,,)1 n-1) is awolldefinedobjeot of
type Ty or 5, of type t,
A

. n-1 of typeA,'
1***" Sn-2) Buch that, ir e(a.5),...-.n-1****5n-g)(n-1 n-1), then

n-1)n such that
An-

A

A(x,.... S 5n-1)).

Thus, it we put

AX x1) ,n-1)
then

so that we can conclude that a(x .̂.Xnreduces to an
expression o such that

Alx x, o a(x,....x,) * ).
On the other hand, by theorem 2.8 there is a derivation

A(X n€V
ohatA(x,1..,x,) reduoes to an expression C such that
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CA(x,,...,x,)1**..,))
Hence c is normalizable and, since a(x,,...,x)reduces to c,
so is a(x1 *. But a(Xq. .,X, was an arbitrary term and
therefore the proof of the -Hlauptsatz is complete.
5.2

symbolL.
Corollary. There is no closed term with type

This corollary expresses that the theory of types
is sinply consistent.

Proof. Because of the Hauptsatz it suffices to show
that there is no elosed nornal term with type symbol .
A normal term is either V, or of the form (TTx EA)B(x) with
normal A and B(x), or of the form (A x EA)b(x) with normal A and
b(x), or of the form ya,1 aith nornal a *,

an ence
a closed normal term with type symbol (TxEv)X would have to be
of the form (AX EV)b(X) where b(X) is normal and has type
symbol X. But then b(X) would have to be of the form ya,..a
which is impossibl e unless n = 0 and y is X. This, however, is
also imp0ssible because X has type symbol V and not X.
5.3

to a numeral.
Corollary. A closed term with type symbol M reduces

Proof. This follows immediately from the Hauptsatz,
because, as remarked in section 3.11, the closed normal terms
with type symbol M are precisely the numerals .
5.4

construeted in the theory of types is mechanically computable.
Corollary. A number theoretie funetion which can be

Proof. By saying that a number theoretic function
Can be constructed in the theory of types I mean that there is
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olosed term f with type symbol M>M which denotes it. Suppose
we want to find the value of the function for a certain natural
number which is denoted by the numeral m. Then fm denotes the

Talue of the function for this argument. But fm is a closed term
with type symbol M so that, according to the previous corollary,
it reduces to a numeral n. It only remains to remark that the
normal form of a term can be found in a purely mechanical way,
that is, by manipulating symbol strings according to rules which
do not refer to their meaning

a

of course, the fact that there is a (not necessarily
mechanical1) rule for computing every funotion in the present
theory of types does not require any proof at all, once it has
been recognized that the axiom and rules of inference of the
theory are consonant with the cons truetive notion of function
according to which a function is the same as a rule or method.
5.5

closed type symbol A. Then there is a closed term with type
symbol (TTX EA V) (Xa > x») if and only if a = b.

Corollary. Let a and b be two closed terms with

Proof. It is readily verified that
(AXEA V)(AxEXa)x is a closed term which has type symbo1
(ITXEA V)(Xa > Xb) provided a = b. Conversely , suppose there
i8 a closed term with type symbol (TTXEA> V) (Xa -> Xb) where we
can assume without restriction of generality that a and A are
both normal.

AaXb, the normal form of this term, which exists according to
the Fauptsatz, must be of the form (Ax6A -V)(Axexa)o(X,x)
Mhere the normal term o(X,x) has type symbol Xb. But o(X,x)

Since neither A>V nor V is intentionally equal to
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be of the form yaj .8wherey is either X or x. Hencemu

bol of o(X,x) must be intentionally equal to A V,the type

Vor Xa, and this is only possible if o(X,x) is x and a = b.
Corollary. There is no term of the form aa.5.6

In other words, selfapplication is inpossible .
Note that it is selfapplication that gives rise to

the non normal izable terms 1ike Ax(xx) Ax(xx) (for other
examples see Curry and Feys 1958) in Church's type free calculus
of lambda conVersion.

Let A be the normal form of the type symbolProof.
of a. For aa to be a term, A would have to be identical with
(TTx EA)B(x) for some B(x) which is inpossible.
5.7

cally decided whether oI not a = b.
Corollary. For two terms a and b it can be mechani-
Proof. The decision procedure is this. Reduce

and b to normal form, which is possible according to the Haupt -
satz, and check whether or not their normal forms are identical
except possibly for differences in the naming of their bound
variables.
5.8

or not a closed expression is a term.
Corollary. It can be mechanically decided whether

For expressions that are not necessarily closed
the appropriate formulation of the corollary is as follows.
Given expressions

A Agz). Ax1 n-1 and a(xj..3,
02taining free variables in the indicated way, it can be
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ohanically deoided whether or not there exist derivationsmechaj

n-1An-1*.*n-pA xEA

Agx)Ev A n-1)€ VA,EV

and

A...n-1.a(x X)EA(X1

Inparticular, forn = 0 we have the assertion of the corollary.
Proof. We use induetion on the sum of the lengths

of the expressions A1 An1 n-1 and a(x *n
Pive cases have to be distinguished depending on the form
ofa(x n
5.8.1

is yes and the required derivation is

Aq A,(x1 Xn-1)and v. If n= 0 the answer

VEV

and if n >0 the answer is yes if and only if the answer is yes
for A

, An-1X.. n-2
and A,(x *n-1), and, in

addition, the type synbol of A,(x*.Xn-1) is intentionally
equal to V, which can be checked mechanically according to the
previous corollary.
5.8.2

if and only if the answer is yes forA1 * An-1X *n-2
A A,* n-1)and The answer is yes

and
and, in addition, the type symbol of

n-1) is intentionally equal to V.
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A A(,.-1) and (TTxeA(x1..*,5.8.3

B(x,..,). The answer is yes if and only if the answer 13
yesforA A,..n-1), A(x4...,z) andB(x*...
and, in addition, the type symbol of B(x,,.. . x) is inten-tionally equal to V.
5.8.4

b(x, ). The answer is yes if and only if the answer is
yes for A4*** AnX1 n-1), A(x1,...,X)and b(xj.n
5.8.5

The answer is yes if and only if the answer is yes for

A Anx n-1) and (Xz€a(x1,..)

A An1 n-1 and b(x1,...,X)a(xj...,n

A
A

An1 n-1) and a(xq1. .X,) as well as for
1 n-1) and b(x x), and, in addition, the

normal form of the type symbol of b{x,'-..,x,) is of the form
(TTxA(x,...,))B(¥1 3x) where A(x1,.. .,zn) is the
normal form of the type symbol of a(X1*n
5.9

pechanieally decided whether or not a éA is derivable. In parti-
eular, it can be mechanically decided whether or not a closed
term is a type symbol.

Corollary. For two closed terms a and A it can be

Proof. a EA is derivable if and only if the type
symbol of a is intentional ly equal to A, and, according to
corollary 5.7, it can be nechanically decided whether or not
this is so.
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The combinatorial model. It follows from the pre-5.10

geding three corollaries that the species of closed normal terms

is mechanically decidable and that it forms a model for the
theory of types. In this model definitional equality = is inter-
preted as syntactical identity neglecting differences in the
naming of bound variabl es, which is elearly a mechanical ly
decidable relation, and a EA is interpreted to mean that it is
derivable in the theory which is mechanically decidable by
corollary 5.9. Moreover, for every object in the model, that is,
for every closed normal term, it can be mechanically decided if
it is the interpretation of a type or a funetion.
latter case, given an arbitrary other object in the model,
it can be mechanically. decided if it is applicable to that objeet
in which case the result of the application is obtained by
Juxtaposition followed by reduction to normal form, which is
also amechanical operation .

And, in the

Although the theory of types that we are considering
has a combinatorial model of the kind just described, the insight
that this 1s so cannot be gained wi thout using abstract (non com-
binatorial) notions. This is in entire agreement with the
philosophioal position of Gödel's 1958 paper in Dialectica.
In our case the abstract notions used are essentially of the kind
that are formal ized in the theory itself .
5.11

Consider a tirst order formula C containing no other logical
constants than > and, and let f, .. and P, ... be the fune-
1on and predicate symbols which occur in it. Let C denote its
ranslation into the theory of types as defined in section 4.3,

Completeness of first order intuitionistic logic.
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thereby choosing the variable X with type syabol v as the trans-
lation of the type of individuals.

Theorem. There is a closed term zith type syabol

(TTxev)(TTex>... x>)...(Tp'e x>... >x+v)...c

i and ony 1 the formula
C is provable in Iirst order intuition-

istic predicate 10gie.
Since the type symbol mentioned in the theoren denotes

the proposition that the foraula C is true in all models, this
ay be regarded as an intuitionistie conpleteness theorem for
(a tragrent of) tirst order intuitionistie predicate logic.
More precisely, the theoren says that first order intuitionistie
predicate 1ogie is complete relative to the theory of types.
Kreisel 1968 has susgested to call this property faithfulness
rather than completeness in order to avoid aisunderstanding.

Proof. one way is simple. Suppose namely that C is
provable in first order intuitionistic logic and let c denote
its proo. In section 4.3.5.3 we sa how to obtain e and a

derivation ot "e c trom the assunptions Xev, f'ex>.. +X >X,
PEX... >X>v, ... Consequently,
(Axev)(Af'ex>... X>X)..(APex...X>v)...c*

is a closed term with type symbol

(TTXEV)(Tr'e x > ... >x>x)..(TTP°E I -... >X>v)...c.
Conversely, suppose there is a closed tem with this

Tpe sybo1. According to the Hauptsatz, it reduces to a normal
E,This normal termmust be of the form

(Axev)Ar'e1... x>X)...(APeX...Xv)...
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ere c is a normal term wi th type symbol c". That c" is the
translation of a derivation o of the formula C in first order
intuitionistic 1ogic, which is all that there remains for us to
prove, is a consequence of the following lemma.

5.11.1

that is a normal term with type symbol C which contains no

othervariables than with type symbol V, function variables
with type symbols of the form X...X>X, predicate variables
withtype symbols of the form X.X>V, individual
variables with type symbol X, and, finally, variables with type
symbols of the form A where

there is a derivation e of the formula in first order intuition-
istic Logie whose translation is .

Lemma. Let C be a first order formula and suppose

Thenis 2 first order formula

Proof. By induction on the construction of c.
Three cases have to be distingui shed.
5.11.1.1
(TTx &X)B(x), respecetively. By induction hypothesis there is
a derivation

are of the forn (hx6x)»(x) andand

B(x)

in first order 1ogic whose translation is b'(x). Consequently,
e can take c to be the derivation

B(x)

VxB(x)
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eand C" are of the form (Ax€Â )b"(x) and A>B",5.11.1.2
respectively. By induction hypothesis there is a derivation

A

in tirst order logio whose translation is b(x). Consequently,
we can take c to be the derivation

AJ

B

B

c is of the form 1 n This is not possible5.11.1.5

unless y has type symbol of the form B where B is a formula of
first order logic. But then the type symbol of a; must be
either X or of the form A, where A is a first order formula.
Being normal, a, must be the translation of, in the first case,
an individual term t and, in the second case, a derivation a
of the formula A, in first order logic. Consequently, c" is the
translation of the derivation c which is obtained by letting the
assumption B be fo1lowed by a sequence of elimination inferences,
in the first case, a Velimination with t in the conclusion
and, in the second case, an application of modus ponens with A,
as minor premise.
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