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Abstract

During the course of the previous chapters of the proseminar, we introduced and
quantized both the bosonic and fermionic strings and determined that the theory only
containing bosonic strings requires D = 26 dimensions, whereas if it contains fermionic
strings as well, the critical dimension is D = 10. We have also seen that the latter
is formulated such that it incorporates manifest worldsheet supersymmetry (Neveu–
Schwarz–Ramond formulation). By näıvely building up the spectrum of states using
the tools previously introduced, we will see that this theory in itself is inconsistent and
contains several unwanted features. To fix these, a procedure called the GSO projec-
tion is needed. We will first define and use it to obtain a spacetime supersymmetric
spectrum which is free from the mentioned inconsistencies. Then, we will justify the
seemingly arbitrary GSO conditions by requiring that the theory be modular invariant.
In the final part of this report, we take a completely different approach, and formulate
another theory with manifest spacetime supersymmetry (Green–Schwarz fomulation).
Spacetime supersymmetry is an elegant property, and so, many constraints and restric-
tions are imposed in both formulations merely for the sake of a supersymmetric result.
Without rigorous proof, we will show that with these constraints, the two formulations
are actually equivalent.
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1 Neveu–Schwarz–Ramond Formulation

1.1 Quick Revision

The Neveu–Schwarz–Ramond (NSR) formulation is what we have learned so far, so let us just
briefly recall the tools that we will need for creating and analysing the spectrum. Recall the
superstring action

SNSR = − 1

2π

∫
d2σ

(
∂αXµ∂

αXµ − iψ̄µρα∂αψµ
)
. (1.1)

Both Xµ and ψµ are spacetime vectors, meaning that they transform under the vector repre-
sentation of the SO(1,D − 1) Lorentz group, but while Xµ is just a scalar on the worldsheet, ψµ

is a Majorana 2-spinor (and thus carries two spinor indices). ρα are the two dimensional Dirac
matrices, and, as they can be chosen to be purely imaginary, the Majorana representation (i.e.
reality) for ψµ is indeed possible.

ρ0 =

(
0 −i
i 0

)
, ρ1 =

(
0 i
i 0

)
. (1.2)

This action is invariant under infinitesimal worldsheet supersymmetry transformations of the
form

δXµ = ε̄ψµ,

δψµ = −iρα∂αXµε.
(1.3)

Here, ε is an infinitesimal worldsheet Majorana 2-spinor.
We have seen that quantization in the light cone gauge is one option, and the procedure only keeps
the global Lorentz symmetry if we work in D = 10 spacetime dimensions. The light cone gauge
choice fixes the µ = 0, 9 components, and for the remaining eight transverse ones, we use the Latin
index i = 1, . . . , 8. The action in the light cone gauge is thus

Sl.c.NSR = − 1

2π

∫
d2σ

(
∂αX

i∂αX i − iψ̄iρα∂αψi
)
. (1.4)

This still has a global SO(8) rotational symmetry, so both X i and ψi are vector representations
of SO(8), for which we use the symbol 8v. As a side note, let us make an early mention that SO(8)
has two other fundamental representations: the spinor (8s) and the conjugate spinor (8c).

A closed string is just the tensor product of its right- and left-moving parts, which are separately
equivalent to an open string, up to a factor of two in their masses. For most of the time, we will
consider a closed string and just work with the right-moving part, but, of course, everything is
exactly the same for the left-moving part, and can be related to the open string.

As discussed previously, the boundary conditions on a closed string are strictly periodic for the
bosonic part: Xµ(0, τ) = Xµ(π, τ), leading to the oscillator expansion

Xµ
R(σ) =

∑
n∈Z

αne
−2in(σ−τ). (1.5)
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For the fermionic right-movers, we can impose both periodicity (R-sector) and antiperiodicity
(NS-sector), leading to two different oscillator expansions.

ψµ−(σ) =
∑
n∈Z

dne
−2in(σ−τ) R-sector, (1.6)

ψµ−(σ) =
∑
r∈Z+ 1

2

bre
−2ir(σ−τ) NS-sector. (1.7)

The reality condition for both Xµ and ψµ implies that

(αn)† = α−n, (dn)† = d−n, (br)
† = b−r. (1.8)

The oscillator ground state in both sectors is defined such that the positive-integer-valued
oscillators annihilate it.

αn |0〉 = dn |0〉 = br |0〉 = 0 ∀n, r > 0 (1.9)

Ergo, the positive-valued oscillators are annhilation operators and the negative-valued ones are
creation operators. These operators also satisfy the canonical (anti)commutation relations.

[αµm, α
ν
n] = mδm+nη

µν , {dµm, dνn} = δm+nη
µν , {bµr , bνs} = δr+sη

µν . (1.10)

The mass-squared operator basically just counts the number of oscillator excitations.

α′m2 =
∞∑
n=1

αi−nα
i
n︸ ︷︷ ︸

N(α)

+
∞∑
m=1

mdi−md
i
m︸ ︷︷ ︸

N(d)

−1

2
NS-sector, (1.11)

α′m2 =
∞∑
n=1

αi−nα
i
n︸ ︷︷ ︸

N(α)

+
∞∑

r=1/2

rbi−rb
i
r︸ ︷︷ ︸

N(b)

R-sector. (1.12)

1.2 The Näıve Spectrum

The field operators Xµ and ψµ in the NSR formulation are both spacetime vectors, so, natu-
rally, the oscillators must be spacetime vectors as well. No matter how many operators we apply
to a state, the property of whether it is a fermionic or bosonic state cannot be changed. The
entire spectrum of states is bosonic/fermionic if it is built on a bosonic/fermionic ground state,
respectively. Therefore, it is important to investigate the ground state in both the NS- and the
R-sector.
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1.2.1 The NS-Sector Ground State

The NS-sector encompasses spacetime bosons. We will label the scalar ground state here simply
by |0〉. Looking at (1.11), we see that, due to the anomaly term, even if there are no excitations,
we get a negative mass-squared value, i.e. the ground state in the NS-sector is tachyonic.

1.2.2 The R-Sector Ground State

The ground state in this sector is massless, as there is no anomaly in (1.12). This massless
ground state is degenerate, as the dµ0 operators map one ground state to another with the same
mass-squared eigenvalue1. The degeneracy is characterized by the fact that these dµ0 operators obey
the canonical anticommutation relation, which here is nothing but the SO(1,9) Clifford algebra

{dµ0 , dν0} = ηµν . (1.13)

If the operators that map between the ground states obey the SO(1,9) Clifford algebra, the
various ground states can be gathered into a spinor representation of SO(1,9). Therefore, the
ground state in the R-sector is a massless 10-dimensional spinor

|χ〉 = χc |c〉 , c = 1, . . . , 32. (1.14)

A spinor in D dimensions has 2[D/2] generally complex components, which now means 25 = 32.
But the story of this ground state does not end here. As we mentioned in the abstract, a

driving force in our arguments is often that we want the resulting spectrum to be spacetime
supersymmetric. We can take a step toward this goal by imposing several constraints on this
ground state. (Although the reason why this is necessary for spacetime supersymmetry will only
become apparent later in Chapter 3.) The three conditions the ground state has to satisfy are the
following:

• Majorana constraint,

• Weyl constraint,

• Dirac equation.

Each condition will reduce the initial 64 degrees of freedom (32 complex numbers) by a factor
of two, so, in the end, we will end up with only 8. We will now cover each of these conditions step
by step.

Majorana constraint: A simple reality condition for the spinor field χ. However, the fact that
this constraint is possible is not trivial. The spinor field also has to satisfy the massless2

Dirac equation3

iΓµ∂µχ = 0. (1.15)

1This is not the case the NS-sector, where there are no zero-valued oscillators.
2The full Dirac equation is (iΓµ∂µ −m)χ = 0, but the ground state is massless in the R-sector.
3Here, we do not cover how obeying the Dirac equation reduces the number of degrees of freedom, we just use

the fact that the spinor field obeys it.
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Γµ are generally ten complex 32-dimensional Dirac matrices obeying the Clifford algebra

{Γµ,Γν} = −2ηµν . (1.16)

If it is possible to find a representation of the Dirac matrices where all of them are purely real
or imaginary (“Majorana representation”), then the reality condition is possible (“Majorana
spinor”)4. In the following, we will construct purely imaginary Dirac matrices. For this, let
us investigate SO(8), the transverse subgroup of SO(1,9). This will not only help us construct
our 32-dimensional Dirac matrices (always denoted by Γµ), but will come in handy later as
well.

First, let us define eight 16-dimensionsal Dirac matrices, denoted by γi the following way:

γi =

(
0 γiaā
γiāa 0

)
16×16

. (1.17)

Where γiaā (and its transposed γiāa) are real, symmetric matrices defined as

γ1
aā = iσ2 ⊗ iσ2 ⊗ iσ2, γ2

aā = 1⊗ σ1 ⊗ iσ2,

γ3
aā = 1⊗ σ3 ⊗ iσ2, γ4

aā = σ1 ⊗ iσ2 ⊗ 1,
γ5
aā = σ3 ⊗ iσ2 ⊗ 1, γ6

aā = iσ2 ⊗ 1⊗ σ1,

γ7
aā = iσ2 ⊗ 1⊗ σ3, γ8

aā = 1⊗ 1⊗ 1.

(1.18)

σj are the regular Pauli matrices, and 1 is the 2-dimensional identity matrix. It is easy to
check that these matrices obey the Clifford algebra

{
γi, γj

}
= 2δij. (1.19)

Also, from these, one can construct the SO(8) transformation matrices for spinors5. It can
be checked that a 16-dimensional spinor λ under this transformation transforms reducibly.
The irreducible parts are called the spinor (8s) and the conjugate spinor (8c) representations
of SO(8). In the following, we will always use the symbol λ = (λas , λ

ā
c) for the reducible

16-spinor of 8s ⊕ 8c. λas is the spinor, λāc is the conjugate spinor part. Furthermore, we
denote the spinor index with a = 1, . . . , 8, the conjugate spinor index with ā = 1, . . . , 8, and
the vector index with i = 1, . . . , 8.

With the help of these 16-dimensional γi matrices, we can construct the 32-dimensional Γµ

matrices

Γ0 = σ2 ⊗ 116,

Γi = iσ1 ⊗ γi, i = 1, . . . , 8,

Γ9 = iσ3 ⊗ 116.

(1.20)

4The SO(1,9) Lorentz generators for spinors are i
4 [Γµ,Γν ].

5The SO(8) generators for spinors are i
4

[
γi, γj

]
.
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Again, it is easily checked that the Dirac matrices defined in this way obey the Clifford
algebra (1.16). Due to the definition of (1.17) and (1.18), the γi matrices are all real, so
by creating the Γµ matrices by means of (1.20), we obtain purely imaginary Dirac matrices.
Thus, the Majorana condition is possible6, χ is a real spinor, containing 32 real degrees of
freedom.

Weyl constraint: The spinor field has a definite chirality (“Weyl spinor”). First, let us define
the chirality operator Γ11 similar to γ5 in four dimensions.

Γ11 = Γ0Γ1 · · ·Γ9 = −σ1 ⊗
(
18

−18

)
. (1.21)

This operator has only eigenvalues +1 and −1, and, for each eigenvalue, the same number
of eigenvectors. Thus, requiring that the spinor should have definite chirality, i.e. satisfy

Γ11 |χ〉 = ± |χ〉 , (1.22)

will again eliminate half of the degrees of freedom7 (16s ⊕ 16c), resulting in 16 (8s ⊕ 8c).

Dirac equation: The spinor field should be propagating, i.e. satisfy the Dirac equation, so let
us repeat it again:

iΓµ∂µχ = 0. (1.23)

For Weyl spinors λ = (λs, λc), this reduces to (see Appendix A)

(∂0 ± ∂9)λas + γiaā∂iλ
ā
c = 0, a = 1, . . . , 8,

(∂0 ∓ ∂9)λāc + γiāa∂iλ
a
s = 0, ā = 1, . . . , 8,

(1.24)

for chirality Γ11 |χ〉 = ± |χ〉. These equations clearly relate the spinor and the conjugate
spinor representations; they are not independent anymore, so the number of independent
components reduces again, reaching 8. Conventionally, for positive chirality, we say that the
eight degrees of freedom form an 8s spinor λs, and, for negative chirality, an 8c conjugate
spinor λc.

Thus, the ground state in the R-sector forms an 8s ⊕ 8c multiplet.

6The possibility to impose the Majorana condition on spinors of SO(p,q) depends heavily on p and q. For
SO(1,D − 1), it is generally possible for D = 2, 3, 4 (mod 8) cases.

7Majorana and Weyl conditions for an SO(1,D − 1) spinor are only compatible in D = 2 (mod 8) dimensions.
For example, in four dimensions, it is not possible to impose both at the same time, as γ5 is imaginary in the
Majorana representation.

7



1.2.3 Building up the Spectrum

Now that the ground states have been clarified in both sectors, by applying creation operators
α−n, b−r in the NS-sector, and α−n, d−m in the R-sector, the higher massive states can be reached.
The first few can be seen in Table [1]. For a detailed explanation of the meaning of the represen-
tation contents, see Appendix B. The table also contains a middle column with the eigenvalues of
the operators G and Γ̄, about which we will soon talk.

1.3 The GSO Projection

So far, the NSR formulation looks nice, but it is actually inconsistent. This is still not apparent,
but the spectrum conflicts with modular invariance. Besides this, it also has several unflattering
features. First of all, the spectrum contains a tachyon, which is undesirable because it makes
the vacuum unstable. Secondly, we are not used to anticommuting operators that map bosons to
bosons, which is the case in the NS-sector. This is actually not in conflict with the spin statistics
theorem, but certainly it is something very unusual and unnerving. And finally, as we emphasized
before, we would like to obtain a spacetime supersymmetric result in the end, and one of the
necessary conditions for that is to have the same number of bosons and fermions on each mass
level. In the case of our spectrum, the problem is not only that, on the mass levels existing in
both the bosonic (NS) and the fermionic (R) sectors, the degrees of freedom are not equal, but
also that there are even mass levels in the bosonic sector that do not have a counterpart in the
fermionic one. Spacetime supersymmetry certainly is not possible this way.

To fix these problematic features, F. Gliozzi, J. Scherk, and D. I. Olive suggested the truncation
of the spectrum. After them, the procedure is called the GSO projection. Here we will first define
the GSO conditions, and then see how it helps us acquire a spacetime supersymmetric spectrum free
from the aforementioned unwanted properties. Deciding which part to discard from the spectrum
will seem a bit arbitrary at first, but in Chapter 2 we will prove that the GSO projection is actually
a consequence of modular invariance.

1.3.1 Truncation of the NS-Sector

Let |ϕ0〉 be a bosonic state. Act with a number of creation operators on this state:

|ϕ〉 = bi1−r1b
i2
−r2 · · · b

in
−rn |ϕ0〉 . (1.25)

Because all the operators in the NSR formulation are spacetime vectors, the state |ϕ〉 is a
bosonic state as well. If n is even, then the product of the oscillators is a commuting operator, and
there is nothing unusual in a commuting operator mapping between bosonic states. However, if n
is odd, the product is anticommuting, and this is one of the problematic features of this model,
as we really do not like anticommuting operators mapping between bosonic states. The GSO
projection for the NS-sector is thus the elimination of the states |ϕ〉, which are created using odd
number of creation oscillators. However, this is not well defined, as every state in the NS-sector is
bosonic, we are still free to choose the states of reference |ϕ0〉. We will thus choose these states such
that the result also appeals to some other requirements, namely that the tachyonic state should
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α′m2 states and their SO(8)
representation contents

G (NS)
Γ̄ (R)

little
group

representation contents with
respect to the little group

NS-sector (bosons)

−1
2

|0〉
1

−1 SO(9) 1

0
bi-1/2
|0〉

8v
+1 SO(8) 8v

+1
2

αi-1 |0〉
8v

bi-1/2
bj-1/2
|0〉

28
−1 SO(9) 36

+1

bi-1/2
bj-1/2

bk-1/2
|0〉

56v
+1 SO(9) 84⊕ 44

αi-1b
j
-1/2
|0〉

1⊕ 28⊕ 35v

bi-3/2
|0〉

8v

R-sector (fermions)

0

|a〉
8s

+1

SO(8)

8s

|ā〉
8c

−1 8c

+1

αi-1 |a〉
8c ⊕ 56c

di-1 |ā〉
8s ⊕ 56s

+1

SO(9)

128

αi-1 |ā〉
8s ⊕ 56s

di-1 |a〉
8c ⊕ 56c

−1 128

Table 1: The spectrum of the first few right-moving (open string) states.
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be eliminated, and also all the states of those massive levels which do not exist in the fermionic
sector.

Formally, we define a quantum number G as

G = − (−1)F , where F =
∞∑

r=1/2

bi−rb
i
r, (1.26)

and demand that for the states kept

G |ϕ〉 = + |ϕ〉 . (1.27)

The states with eigenvalue −1 are discarded. This is the GSO projection for the bosonic (NS)
sector.

1.3.2 Truncation of the R-Sector

After the NS-sector GSO projection, we still have not acquired the necessary conditions for a
supersymmetric spectrum. On the fermionic mass levels, there are twice as many states as the
bosonic levels. So the idea of the R-sector GSO projection is just to discard half of them. For this,
we first generalize the chirality operator Γ11 to massive levels:

Γ̄ = Γ11 (−1)F , here F =
∞∑
m=1

di−md
i
m. (1.28)

Similarly to the Weyl condition8, we demand that

Γ̄ |χ〉 = ± |χ〉 . (1.29)

Therefore, in the R-sector, two different GSO projections are possible. Either we keep the
spinor states with +1 eigenvalue for Γ̄ or those with −1. This will certainly eliminate half the
states due to

{
Γ̄, dµn

}
= 0, and for the ground state: Γ̄ = Γ11, so by anticommuting the operator

past all the creation operators, the GSO condition of a state in the R-sector reduces to the Weyl
condition of the ground state upon which it is built.

The middle column of Table [1] corresponds to the G (in the NS-sector) and Γ̄ (in the R-sector)
eigenvalues of the states. After applying the GSO projection, a necessary condition for a spacetime
supersymmetric spectrum is guaranteed, as there are now equal number of bosonic and fermionic
degrees of freedom on each of the mass levels. Also, we got rid of the tachyon, and now only
commuting operators can map between two bosonic states. But so far, we have only investigated
the right-moving spectrum of a closed string (or equivalently, the spectrum of an open string).

8This does not mean that the massive states are Weyl spinors, as massive states cannot have definite chirality.
This is because while the chirality operator Γ11 anticommutes with Γµ, in the Dirac equation now a mass term also
appears, which is just a commuting constant. Thus a massive spinor cannot have definite +1 or −1 eigenvalue for
Γ11, so it cannot have definite chirality.
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1.4 Type II Theories: Closed String Spectrum

A closed string state is formed by taking the tensor product of a right-moving state with a
left-moving one. The only restriction is that we can only tensor together states which belong to
the same mass levels9.

On a closed string, we thus have four different sectors: (NS,NS) and (R,R) for bosons, and
(NS,R) and (R,NS) for fermions. We apply the GSO projection separately for the right- and the
left-movers. While the GSO projection in the NS-sector for both movers is the same GL = GR =
+1, we obtain two different theories by demanding opposite or same eigenvalues of the Γ̄ operator
for the right- and left-movers.

• Type IIA theory: Γ̄L = −Γ̄R = 1

• Type IIB theory: Γ̄L = Γ̄R = 1

The reason why these theories are called type II will be clarified later in Chapter 3. Table [2]
shows the closed string spectrum before the GSO projection until the massless level.

Applying the GSO projection leads to the following massless spectrum for the type IIA theory:

Bosons: [1⊕ 28⊕ 35v] ⊕ [8v ⊕ 56v]

Fermions: [8c ⊕ 56c] ⊕ [8s ⊕ 56s]
(1.30)

In detail, the real scalar 1 corresponds to the dilaton, the 28 is a rank-2 antisymmetric tensor
without a specific name, the 35v is a rank-2 symmetric traceless tensor called the graviton, and
the 8v and 56v are a vector and a rank-3 antisymmetric tensor field, respectively, again without
specific names. This concludes the massless bosonic degrees of freedom, which together number
128. The theory is supersymmetric: the massless fermionic sector contains the same number of
degrees of freedom, which are two spin 3/2 gravitinos of opposite handedness (56s and 56c), and
two spin 1/2 dilatinos, again one for each chirality (8s and 8c). Both chiralities are present for the
fermions, there is no distinguished one, therefore the theory is called non-chiral.

The other possible GSO projection yields the following massless spectrum for the type IIB
theory:

Bosons: [1⊕ 28⊕ 35v] ⊕ [1⊕ 28⊕ 35s]

Fermions: [8c ⊕ 56c] ⊕ [8c ⊕ 56c]
(1.31)

The new 35s here is a rank-4 antisymmetric, self-dual tensor field, and in contrast to the type
IIA theory, there are two real scalars and two antisymmetric rank-2 tensors. Furthermore, this
theory is chiral, since both gravitinos and dilatinos have the same handedness. This theory is also
supersymmetric.

The NS-sector GSO projection takes care of the tachyon, so none of the type II theories have
it, and also, for the massive states, the two theories yield the same spectrum.

9The Virasoro generators have to be equal for the right- and the left-moving parts: L0 = L̃0, corresponding to
the fact, that there are no distinct points on a closed string. This implies m2

L = m2
R.
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α′m2 states and their SO(8)
representation contents

GL (NS)
Γ̄L (R)

GR (NS)
Γ̄R (R)

little
group

representation contents with
respect to the little group

(NS,NS)-sector (bosons)

−2
|0〉L ⊗ |0〉R

1⊗ 1
−1 −1 SO(9) 1

0
b̃i-1/2
|0〉L ⊗ b

j
-1/2
|0〉R

8v ⊗ 8v
+1 +1 SO(8) 1⊕ 28⊕ 35v

(R,R)-sector (bosons)

0

|a〉L ⊗ |b〉R
8s ⊗ 8s

+1 +1

SO(8)

1⊕ 28⊕ 35s

|ā〉L ⊗
∣∣b̄〉

R
8c ⊗ 8c

−1 −1 1⊕ 28⊕ 35c

|ā〉L ⊗ |b〉R
8c ⊗ 8s

−1 +1 8v ⊕ 56v

|a〉L ⊗
∣∣b̄〉

R
8s ⊗ 8c

+1 −1 8v ⊕ 56v

(R,NS)-sector (fermions)

0

|a〉L ⊗ bi-1/2
|0〉R

8s ⊗ 8v
+1 +1

SO(8)

8c ⊕ 56c

|ā〉L ⊗ bi-1/2
|0〉R

8c ⊗ 8v
−1 +1 8s ⊕ 56s

(NS,R)-sector (fermions)

0

b̃i-1/2
|0〉L ⊗ |a〉R
8v ⊗ 8s

+1 +1

SO(8)

8c ⊕ 56c

b̃i-1/2
|0〉L ⊗ |ā〉R
8v ⊗ 8c

+1 −1 8s ⊕ 56s

Table 2: The closed string spectrum up to the massless level before applying the GSO projection,
i.e. before specifying theory type IIA, or type IIB.
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ξ₁
ξ₂

Figure 1: A simple torus parametrized by ξ1 (space direction) and ξ2 (Euclidean time direction).

2 Modular Invariance

This chapter is dedicated to justifying the seemingly arbitrary GSO conditions of the previous
chapter, by requiring a basic geometrical symmetry: modular invariance. We will also see, that
this will ensure that the vacuum energy get the same contribution from the bosons and fermions,
so, all in all, it will vanish10. This is again a necessary condition for a spacetime supersymmetric
spectrum. Throughout the calculations, we will only consider closed strings, and work only on the
one-loop level in detail.

2.1 Spin Structures

A closed string vacuum energy (vacuum bubble) consists of several different loop contributions.
The worldsheet of a g-loop vacuum bubble can be conformally mapped to a class of Riemann
surfaces of genus g, i.e. a Riemann surface with g holes. This surface contains 2g uncontractable
loops, and as now our theory contains fermions, we can impose either periodic (+) or antiperiodic
(−) boundary conditions to our ψ field around each loop. One set of boundary conditions is
called a spin structure. Therefore, on a Riemann surface of genus g, there exist 22g different spin
structures. We also define the notion of even and odd spin structures: if the chiral Dirac operator
(∇z or ∇z̄) has even (or odd) number of zero modes, then the spin structure is called even (or
odd).

As we mentioned, we are only investigating the one-loop vacuum bubble in detail, whose
worldsheet is conformally equivalent to a class of tori11 (figure 1).

The torus can be parametrized by ξ1, ξ2 ∈ [0, 1], and conformally mapping it to the complex
plane yields the complex coordinates z = ξ1 + τξ2, and z̄ = ξ1 + τ̄ ξ2. If we consider our original
closed string which propagates in a time loop, then ξ1 corresponds to the σ1 space coordinate, and
ξ2 to the σ2 time coordinate of the worldsheet. However, we secretly performed a Wick rotation,

10Bosons and fermions contribute with the opposite sign, which comes from the fact that the bosonic oscillators
obey commutation relations, whereas the fermionic ones are anticommuting.

11A torus is a Riemann surface of genus 1.

13



so the time direction became a regular Euclidean direction as well. The τ is called the modular (or
Teichmüller) parameter of the torus and it classifies conformally equivalent tori. Those tori, whose
Teichmüller parameters can be transformed into each other by means of modular transformation
are considered locally conformally equivalent. Recall the general modular transformation

τ −→ aτ + b

cτ + d
, a, b, c, d ∈ R. (2.1)

Also recall the generators of modular transformations (Dehn twists), and how they transform
the coordinates (ξ1, ξ2):

S : τ −→ −1/τ =⇒
(
ξ1, ξ2

)
−→

(
−ξ2, ξ1

)
,

T : τ −→ τ + 1 =⇒
(
ξ1, ξ2

)
−→

(
ξ1 + ξ2, ξ2

)
.

(2.2)

Separately for the right- and left-movers, there are four different spin structures on the torus.
As usual, consider for now just the right-moving part.

(+,+) : ψ(ξ1, ξ2) = +ψ(ξ1 + 1, ξ2), ψ(ξ1, ξ2) = +ψ(ξ1, ξ2 + 1) NS-sector

(+,−) : ψ(ξ1, ξ2) = +ψ(ξ1 + 1, ξ2), ψ(ξ1, ξ2) = −ψ(ξ1, ξ2 + 1) NS-sector

(−,+) : ψ(ξ1, ξ2) = −ψ(ξ1 + 1, ξ2), ψ(ξ1, ξ2) = +ψ(ξ1, ξ2 + 1) R-sector

(−,−) : ψ(ξ1, ξ2) = −ψ(ξ1 + 1, ξ2), ψ(ξ1, ξ2) = −ψ(ξ1, ξ2 + 1) R-sector

(2.3)

The periodicity or antiperiodicity in the first coordinate (ξ1) corresponds to whether the right-
moving part of our closed string belongs to the NS- or the R-sector. Which of these are even and
which are odd? Fortunately, it is always possible to put a globally flat metric δαβ on the torus12.
In this metric the chiral Dirac operator is simply ∂z, and the only global zero mode for this is the
constant spinor. If the spinor is constant, the boundary condition can only be (+,+). So the only
Dirac zero mode belongs to the (+,+) spin structure, the others have none.

(+,+)→ 1 zero mode: odd

(+,−)→ 0 zero mode: even

(−,+)→ 0 zero mode: even

(−,−)→ 0 zero mode: even

(2.4)

Why is the distinction between even and odd spin structures important? As we will see imme-
diately in (2.5), the modular transformations (2.2) do not leave the spin structures invariant, they
transform them into each other. These transformations, however, are reducible, the even and odd
spin structures only transforming amongst themselves. See the Appendix C for further detail.

12Recall, that we did a Wick rotation, therefore we have the standard Euclidean metric, rather than the
Minkowski ηαβ .
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The spin structures on the torus transform in the following way under modular transformations:

S : (+,+) −→ (+,+),
(+,−) −→ (−,+)
(−,+) −→ (+,−)
(−,−) −→ (−,−)

T : (+,+) −→ (+,+),
(+,−) −→ (+,−)
(−,+) −→ (−,−)
(−,−) −→ (−,+)

(2.5)

These can be proven fairly easily; one example is shown in Appendix D.

2.2 Partition Function

The partition function is basically the contribution of the vacuum bubbles. Recall the bosonic
string one-loop partition function

Zbos(τ) = Tr e2πiτH . (2.6)

Consider the generalization of this for the different spin structures of the right-moving part

Z++(τ) = η++ Tr e2πiτHR (−1)F , Z+−(τ) = η+−Tr e2πiτHR ,

Z−+(τ) = η−+ Tr e2πiτHNS (−1)F , Z−−(τ) = η−−Tr e2πiτHNS .
(2.7)

Let us investigate step-by-step the differences compared to the bosonic string.

• Depending on the periodicity or antiperiodicity condition for ξ1, we have the NS- or the
R-sector, thus we need to use the corresponding light cone Hamiltonians

HNS =
∞∑

r=1/2

rbi−rb
i
r −

1

6
,

HR =
∞∑
m=1

mdi−md
i
m +

1

3
.

(2.8)

The normal ordering contributions follow from subtracting the bosonic part −d−2
24

= −1
3

from the total normal ordering constant of the NS-sector (a = −1
2
) or the R-sector (a = 0),

respectively.

• The (−1)F contributions are needed when we have periodicity along ξ2. It’s not difficult,
but quite lengthy to prove, that for anticommuting (Grassmann odd) variables the trace
automatically ensures antiperiodicity condition along the time loop. Thus if we want to have
periodic boundary conditions for states generated by odd number of fermionic creation os-
cillators, we need a (−1) multiplier. The product of even oscillators, however, is commuting,
so we do not need such a factor. The prefactor (−1)F does precisely the job.
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• In (2.5), we saw that modular transformations transform spin structures into each other.
However, we want our theory to be invariant under local and global worldsheet diffeomor-
phisms, so we have to find a modular invariant combination of the partition functions. That
is the purpose of the yet to be determined η±± phase factors.

Evaluation of the partition function contributions is now straightforward, although we have
to remember the definitions of the Jacobi theta functions and Dedekind’s eta function. As these
functions are quite important, a quick recap can be found in Appendix E. With q = e2πiτ ,

Z−−(τ) = η−−Tr qHNS = η−−q
− 1

6 Tr q
∑∞
r=1/2

bi−rb
i
r = η−−q

− 1
6

∞∏
r=1/2

[
1∑

Nr=0

qrNr

]8

=

= η−−q
− 1

6

 ∞∏
r=1/2

(qr + 1)

8

= η−−q
− 1

6

[
∞∏
n=1

(
1 + qn−

1/2
)]8

=

= η−−

[
q−

1
24

∞∏
n=1

(1− qn)−1

]
︸ ︷︷ ︸

η−1(τ)

4[ ∞∏
n=1

(1− qn)
(
1 + qn−

1/2
)2

]
︸ ︷︷ ︸

θ3(τ)

4

= η−−
θ4

3(τ)

η4(τ)
.

(2.9)

In the first line, we used the definition (2.7), and took the anomaly out of the trace. We also
made use of the fact that we have eight transverse modes, and, for each, the number operator
appearing in the exponent can only take 0 or 1 values, as we are considering fermionic oscillators.
The rest is just a shift in the product index r to integer values n, and then the identification of
the emerging Jacobi theta and Dedekind’s eta functions.

The partition functions for the other spin structure contributions can be evaluated similarly.
The result is as follows.

Z++(τ) = η++
θ4

1(τ)

η4(τ)
, Z+−(τ) = η+−

θ4
2(τ)

η4(τ)
,

Z−+(τ) = η−+
θ4

4(τ)

η4(τ)
, Z−−(τ) = η−−

θ4
3(τ)

η4(τ)
.

(2.10)

Examine what happens to the partition functions under modular transformations, using (E.9),
which describes the modular transformation properties for the θ and η functions.

Under T transformations:

Z+−(τ + 1) = η+−
θ4

2(τ + 1)

η4(τ + 1)
= η+−

θ4
2(τ)

η4(τ)
e
2iπ/3 ·e−2iπ/3

−−−−→ η+−
θ4

2(τ)

η4(τ)
e
2iπ/3 = Z+−(τ),

Z−+(τ + 1) = η−+
θ4

4(τ + 1)

η(τ + 1)
= η−+

θ4
3(τ)

η4(τ)
e
−iπ/3 ·e−2iπ/3

−−−−→ −η−+
θ4

3(τ)

η4(τ)
= −η−−

η−+

Z−−(τ),

Z−−(τ + 1) = η−−
θ4

3(τ + 1)

η(τ + 1)
= η−−

θ4
4(τ)

η4(τ)
e
−iπ/3 ·e−2iπ/3

−−−−→ −η−−
θ4

4(τ)

η4(τ)
= −η−+

η−−
Z−+(τ).

(2.11)
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Recall that the bosonic partition function Zbos(τ) ∝ 1/η8(τ). Therefore, during T transfor-
mations, it acquires an e−2iπ/3 prefactor. Naturally, we have to include this as well, because the
final partition function for a right-mover is the product of the bosonic and the fermionic partition
functions.

Z(τ) = Zferm(τ)Zbos(τ) =
[
Z++(τ) + Z+−(τ) + Z−+(τ) + Z−−(τ)

]
Zbos(τ) (2.12)

Under S transformations:

Z+−(−1/τ) = η+−
θ4

2(−1/τ)

η4(−1/τ)
= η+−

θ4
4(τ)

η(τ)
=
η−+

η+−
Z+−(τ),

Z−+(−1/τ) = η−+
θ4

4(−1/τ)

η4(−1/τ)
= η−+

θ4
2(τ)

η(τ)
=
η+−

η−+

Z+−(τ),

Z−−(−1/τ) = η−−
θ4

3(−1/τ)

η4(−1/τ)
= η−+

θ4
3(τ)

η(τ)
= Z−−(τ).

(2.13)

As Z++ transforms irreducibly under modular transformations, we have not included it in (2.11)
and (2.13) because requiring modular invariance would not help us determine the phase constant
η++. But for the other three, this is possible. For the odd spin structures, modular invariance
under both T and S transformations is satisfied if we set

−η+− = −η−+ = η−−
!

= 1. (2.14)

Only the relative phase matters between the constants, so we were free to set η−− to 1. The
unknown η++ can be determined to be ±1 by the following considerations. For Z++, the partition
function, to be interpreted as the sum over states, η++ can only take the values 0, 1, or−1. Consider
now the two-loop partition function, and especially the limit where the genus 2 Riemann surface
corresponding to it degenerates into two tori. In this limit, the genus 2 Jacobi theta functions
can be expressed as products of the genus 1 functions. The degeneration limit of an even theta
function of genus 2 is, for example, θ1(τ1)θ1(τ2), where τ1 and τ2 are the Teichmüller parameters of
the two tori, respectively. Even spin structures transform irreducibly under diffeomorphisms, and
a genus 2 Riemann surface has ten of them. Thus, if η++ were zero, we would not have any of the
even spin structures in the fermionic partition function, which is not possible. Therefore, the only
possibilities left for this phase constant are to be

η++ = ±1. (2.15)

We are now ready to write down the full partition function for the right-moving component of
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a closed string.

Zferm(τ) = Tr e2πiτHNS
1

2

(
1− (−1)F

)
︸ ︷︷ ︸

GSO projection in the NS-sector

− Tr e2πiτHR
1

2

(
1± (−1)F

)
︸ ︷︷ ︸

GSO projection in the R-sector

=

=
1

2η4(τ)

θ4
3(τ)− θ4

4(τ)− θ4
2(τ)︸ ︷︷ ︸

(E.8) Jacobi identity = 0

± θ4
1(τ)︸ ︷︷ ︸

θ1≡ 0
15

 = 0.

(2.16)

Therefore,

Z(τ) = Zferm(τ)Zbos(τ) = 0 (2.17)

We notice that carefully considering the boundary conditions for Grassmann odd variables and
requiring modular invariance yield precisely the GSO projection. Furthermore, we also see that, in
the end, the partition function vanishes; the NS-sector (bosons) has the exact same contribution—
albeit with opposite signs—as the R-sector (fermions). This is equivalent to saying that on each
mass level we have the same number of bosons and fermions, which is a necessary condition
for spacetime supersymmetry. The simple property of modular invariance justifies the seemingly
arbitrary GSO conditions and provides us with a supersymmetric spectrum.

As a side note, we mention that only by requiring modular invariance separately for the right-
and the left-movers do we get back the correct GSO projection. There is, however, another
modular invariant choice, where the right- and left-movers are not separately modular invariant.
This, however, does not interest us, as that theory only contains bosons, and even a tachyon.

15It is not surprising that that θ1 is zero. From the physical point of view, we can understand it because the
Dirac operator has a zero mode in the case of odd spin structure, so the path integral Z++ ∝

∫
Dψeψ/Dψ = 0.
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3 Green–Schwarz Formulation

In this chapter, we take a completely different approach and formulate a theory in a manifestly
spacetime supersymmetric manner. After imposing some restrictions on the initial formulation,
we will find that, thanks to the special property of the SO(8) group called triality, this manifest
spacetime supersymmetric formulation is actually equivalent to the NSR formulation with the GSO
projection.

As the Green–Schwarz (GS) formulation is quite complicated and requires a lot of meticulous
and long calculations, we will not be as detailed in this chapter as in previous ones. Our main goal
will be to understand the similarities and differences when compared to the NSR formulation and
how the generated spectra of both theories are identical.

3.1 Spacetime Supersymmetry

Let us first briefly introduce what the concept of spacetime supersymmetry is. Basically, it
is the generalization of the two-dimensional worldsheet supersymmetry introduced before to D
spacetime dimensions. However, we will encounter some complications.

3.1.1 Point Particle

Consider first the following action of a point particle:

S =
1

2

∫
dτ e−1(ẋµ − iθ̄AΓµθ̇A)2. (3.1)

Compared to the regular bosonic contribution of ẋ2, we introduced a term similar to the
fermionic part of the NSR action (1.1). We say that our theory has N supersymmetries if it
contains N Grassmann odd spinor variables θAa, where A = 1, . . . , N , and a = 1, . . . , 2[D/2].

Besides the global Lorentz, the local reparametrization, and Weyl symmetries, this action is
also invariant under three additional types of transformations.

Global supersymmetry: The symmetry transformation that relates the bosonic and the fermionic
parts. With the anticommuting, infinitesimal spinor parameters εA, independent of position,
these transformations take the form

δθA = εA,

δxµ = iε̄AΓµθA,

δe = 0.

(3.2)

This is very similar to (1.3) of the NSR formulation.

The action (3.1) is, in fact, the simplest supersymmetric point particle action that we can
come up with, as the quantity pµ = ẋµ − iθ̄AΓµθ̇A is invariant under these transformations
in itself.
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Local fermionic symmetry: A local symmetry transformation with the help of the anticom-
muting, infinitesimal spinor κA(τ). It is a local symmetry, as now we allow the infinitesimal
parameter to depend on the worldline position.

θA = iΓ · pκA,
δxµ = iθ̄AΓµδθA,

δe = 4e ˙̄θAκA.

(3.3)

Local bosonic symmetry: A third additional local symmetry with the scalar parameter λ(τ).

δθA = λθ̇A,

δxµ = iθ̄AΓµδθA,

δe = 0.

(3.4)

3.1.2 Strings

The generalization of the point particle action (3.1) is far from trivial.

S = S1 + S2,

S1 =− 1

2π

∫
d2σ
√
hhαβΠα · Πβ, where Πµ

α = ∂αX
µ − iθ̄AΓµ∂αθ

A,

S2 =
1

π

∫
d2σ

{
−iεαβ∂αXµ(θ̄1Γµ∂βθ

1 − θ̄2Γµ∂βθ
2) + εαβ θ̄1Γµ∂αθ

1θ̄2Γµ∂βθ
2
}
.

(3.5)

The obvious generalization would only consist of the S1 part, but it can be calculated that it no
longer carries the local κ symmetry, which we would like to keep. This symmetry can be restored
by the addition of the term S2, but only for N = 0, 1, 2 superymmetries16.

However, now it is not obvious at all that S2 separately carries all the symmetries that S1

does. In fact, it generally does not. It clearly has the global Lorentz, the local reparametrization
symmetries, and, as it does not even depend on hαβ, the Weyl scaling invariance is obviously
satisfied as well. On the other hand, requiring global supersymmetry of S2 constrains our theory
to the following four cases:

• D = 3 and θ is Majorana,

• D = 4 and θ is Majorana or Weyl,

• D = 6 and θ is Weyl,

• D = 10 and θ is Majorana–Weyl.

16We will always show the formulas for the N = 2 case; the others are easily achieved by setting one or both θ
coordinates to zero.
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Our interest lies only in the last case, because we have already seen that the quantization of a
supersymmetric string theory will restrict the spacetime dimensions to D = 10.

By investigating the algebra of the local κ transformations, one will find that its closure requires
another local bosonic symmetry to be present. Thus, our generalized superstring action also bears
all the symmetries found for the point particle.

3.2 Supersymmetric Theories

As we have previously discussed, the Majorana and the Weyl coniditions both halve the number
of independent components for θ1 and θ2, reducing it from the original 32 complex to 16 real, for
both of them. Furthermore, the Weyl condition implies definite chirality for both θ fields, so the
relation between them will give rise to different theories.

Type I theory: This theory involves only open superstrings. We will see a bit later that to keep
as many supersymmetries as possible, one has to equate the two θ fields at the end of the
string. If θ1 = θ2 at any point of the string, they cannot have different chiralities. Therefore,
for open strings, there is only one theory, where θ1 and θ2 has the same handedness. Even
with this, the maximum supersymmetry that we can keep is N = 1, hence the naming type I.

Type IIA theory: A closed superstring theory where θ1 and θ2 have opposite handedness. In
this case, it is possible to keep N = 2 supersymmetry, i.e. this is a type II theory.

Type IIB theory: A closed superstring theory where θ1 and θ2 have the same chirality. As the
naming suggests, it also has N = 2 supersymmetry.

Heterotic string theory: A closed string theory where we only use one θ coordinate. The right-
moving part is a superstring whereas the left-moving part is a bosonic string.

Our focus will mainly lie on the type II theories, and it is not a coincidence that these theories
bear the same name as those of the NSR formulation. At the end of the day, we will find that the
GS and the NSR formulations are equivalent.

3.2.1 Equivalence of the GS and NSR Formulations

Using the Weyl and reparameztrization invariances, we can fix hαβ = ηαβ as usual and, without
discussing it in much detail, we can enforce the light cone gauge with the help of the remaining
symmetries. In the end we are left with eight degrees of freedom for both θ1 and θ2, which can
be viewed as a spinor of SO(8), due to the light cone gauge still posessing global SO(8) rotational
symmetry.

We use a new symbol for the remaining eight degrees of freedom of θ1 and θ2: S1 and S2. As
these spinors are Weyl, conventionally, we say that S1 belongs to 8s. So, for type I and type IIB
theories, S2 is also 8s, but for the type IIA theory, S2 is a 8c conjugate spinor.
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Skipping the details, it can be shown that from the lengthy and complicated action (3.5), the
following equations of motion can be derived after gauge fixing:(

∂2

∂σ2
− ∂2

∂τ 2

)
X i = 0,(

∂

∂σ
+

∂

∂τ

)
S1a = 0,(

∂

∂σ
− ∂

∂τ

)
S2a = 0.

(3.6)

These equations of motion can also be derived from a much simpler looking action, which we
will call the Green–Schwarz action in light cone gauge.

Sl.c.GS = − 1

2π

∫
d2σ (∂αX

i∂αX i − iS̄aρα∂αSa). (3.7)

Here, S1 and S2 were combined into a two-component Majorana worldsheet spinor S. Sep-
arately, they are one-component Majorana–Weyl spinors on the worldsheet, describing right- or
left-movers. This action is extremely similar to the light cone gauge NSR action (1.4). There is no
difference in the bosonic part: X i is an 8v representation of SO(8) in both cases. However, while
the fermionic parts, ψi and Sa, are both two-component Majorana worldsheet spinors, they are of
different SO(8) representations. ψi is an 8v (just like X i) for both movers, but S1a is an 8s for the
right-movers and S2a is an 8s/c for the left-movers (depending on which theory we are discussing).

This is the fundamental difference between the NSR and the GS formulations and, as mentioned
before, there exists a special relation unique to SO(8) called triality, which can permute these
representations. This results in the fact that the NSR formulation (with the GSO projection)
and the GS formulation are equivalent. ψi and Sa can be transformed into each other by means
of bosonization, shuffling of the acquired bosonic coordinates, and finally refermionizing them, as
shown below.

1√
π
εαβ∂βφ1 = ψ̄1ραψ2, σ1 =

1

2
(φ1 + φ2 + φ3 + φ4),

1√
π
εαβ∂βσ1 = S̄1ραS2,

1√
π
εαβ∂βφ2 = ψ̄3ραψ4, σ2 =

1

2
(φ1 + φ2 − φ3 − φ4),

1√
π
εαβ∂βσ2 = S̄3ραS4,

1√
π
εαβ∂βφ3 = ψ̄5ραψ6, σ3 =

1

2
(φ1 − φ2 + φ3 − φ4),

1√
π
εαβ∂βσ3 = S̄5ραS6,

1√
π
εαβ∂βφ4 = ψ̄7ραψ8, σ4 =

1

2
(φ1 − φ2 − φ3 + φ4),

1√
π
εαβ∂βσ4 = S̄7ραS8.

(3.8)

3.2.2 Quantization and the Spectrum

Quantization is exactly the same for the bosonic part (so we shall not repeat it) and the
fermionic part is very similar to that of the NSR formulation, only using spinor indices a (or ā)
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instead of vector ones. The anticommutation relation reads{
SAa(σ, τ), SBb(σ′, τ)

}
= πδabδABδ(σ − σ′). (3.9)

However, if we are not careful, the boundary conditions can destroy the manifest spacetime su-
persymmetries, something that we would not want. Therefore, we do not have as much freedom as
in the NSR formulation, where we could define NS- and R-sectors depending on different boundary
conditions. Here, we always have to equate the right- and left-moving parts at the boundaries for
open strings, and can only impose periodicity for both movers for closed strings. For closed strings,
we can keep N = 2, but for open strings, the maximal supersymmetry we can keep is N = 117.

Open strings (type I)

S1a(0, τ) = S2a(0, τ),

S1a(π, τ) = S2a(π, τ).

Closed strings (type II)

S1a(σ, τ) = S1a(σ + π, τ),

S2a(σ, τ) = S2a(σ + π, τ).
(3.10)

Therefore the oscillator expansions read

S1a =
1√
2

∑
Sane

−in(τ−σ),

S1a =
1√
2

∑
Sane

−in(τ+σ).

S1a(σ, τ) =
∑

Sane
−2in(τ−σ),

S2a(σ, τ) =
∑

S̃ane
−2in(τ+σ).

(3.11)

Reality (Majorana) condition implies

Sa−m = (Sam)† . (3.12)

Also, the canonical anticommutation relation is{
Sam, S

b
n

}
= δabδm+n. (3.13)

The mass-squared operator is defined as

α′m2 =
∞∑
n=1

αi−nα
i
n︸ ︷︷ ︸

N(α)

+
∞∑
n=1

nSa−nS
a
n︸ ︷︷ ︸

N(S)

. (3.14)

We have no normal ordering constant in (3.14), which implies that the ground state is massless.
Also, as seen in the R-sector of the NSR formulation, due to the presence of S0, we have a ground
state degeneracy. Because of (3.13), S0 satisfies an algebra similar to the Clifford algebra. The
difference is that we have now spinor instead of vector indices:{

Sa0 , S
b
0

}
= δab. (3.15)

17The boundary condition will imply that the supersymmetry transformation of S1 and S2 will require the same
infinitesimal δε parameter for open strings.
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α′m2 states and their SO(8)
representation contents

little
group

representation contents with
respect to the little group

0

|i〉
8v

SO(8)

8v (boson)

|ā〉
8c

8c (fermion)

+1

αj-1 |i〉
1⊕ 28⊕ 35v

Sb-1 |ā〉
8v ⊕ 56v

SO(9)

84⊕ 44 (bosons)

αi-1 |ā〉
8s ⊕ 56s

Sb-1 |i〉
8c ⊕ 56c

128 (fermions)

Table 3: The spectrum until the first massive level in the GS formulation, built on a 8v ⊕ 8c

ground state.

Fortunately, as also mentioned in Appendix B, triality helps us. The construction of the ground
state in the GS formulation is exactly the same as in the R-sector of the NSR formulation, but
with 8v ↔ 8s/c. This means that we can just redefine the Dirac matrices with indices i and a (or
ā) exchanged.

Sa0 ∝ γa =

(
0 γai ā
γaāi 0

)
, or S ā0 ∝ γā =

(
0 γāi a
γāai 0

)
. (3.16)

Correspondingly, the ground state is now not an 8s ⊕ 8c multiplet, but an 8v ⊕ 8c/s one.

|φ0〉8v⊕8c
= |i〉 ζ i(k) + |ā〉λāc(k), or |φ0〉8v⊕8s

= |i〉 ζ i(k) + |a〉λas(k). (3.17)

The right-mover (open string) spectrum built on this ground state until the first massive level
is shown in Tables [3] and [4].

The equivalence of the NSR and GS formulations can also be seen in practice by comparing
Tables [3] and [4] with Table [1]. The two different tables, built on two different ground state
multiplets in the GS formulation, correspond to the two choices we have in the GSO projection in
the NSR formulation (Γ̄ = +1 or −1).

Closed superstring states are again tensor products of right- and left-movers.

Type IIA: Opposite chirality for right- and left-movers.

(8v ⊕ 8c)⊗ (8v ⊕ 8s) = (1⊕ 28⊕ 35v ⊕ 8v ⊕ 56v)bosonic

⊕ (8s ⊕ 8c ⊕ 56s ⊕ 56c)fermionic.
(3.18)
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α′m2 states and their SO(8)
representation contents

little
group

representation contents with
respect to the little group

0

|i〉
8v

SO(8)

8v (boson)

|a〉
8s

8s (fermion)

+1

αj-1 |i〉
1⊕ 28⊕ 35v

S b̄-1 |a〉
8v ⊕ 56v

SO(9)

84⊕ 44 (bosons)

αi-1 |a〉
8c ⊕ 56c

S b̄-1 |i〉
8s ⊕ 56s

128 (fermions)

Table 4: The spectrum until the first massive level in the GS formulation, built on a 8v ⊕ 8s

ground state.

Type IIB: Same chirality for the right- and left-movers.

(8v ⊕ 8c)⊗ (8v ⊕ 8c) = (1⊕ 28⊕ 35v ⊕ 1⊕ 28⊕ 35c)bosonic

⊕ (8s ⊕ 8s ⊕ 56s ⊕ 56s)fermionic.
(3.19)

Comparing formulas (3.18) with (1.30), and (3.19) with (1.31), we see that both formulations
give the same spectrum for closed strings as well.
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Appendices

A Dirac Equation for Weyl Spinors

Let us derive how we can obtain (1.24) just for positive chirality (the negative one can be done
analogously). As we saw in (1.21), the chirality operator takes the form

Γ11 = −σ1 ⊗
(
18

−18

)
. (A.1)

We will start with the spinor χ = α⊗ λ, where α is two-component vector, and λ = (λas , λ
ā
c) is

an SO(8) spinor. In the calculations, we absorb all worldsheet coordinate dependencies into the λ
part.

Γ11χ =

[
−σ1 ⊗

(
18

−18

)]
χ = σ1α⊗

(
18

−18

)
λ. (A.2)

To obtain +1 eigenvalue for the chirality operator (positive chirality), we have two possibilities.

Either α and λ are both positive-eigenvalued eigenvectors for −σ1 and

(
18

−18

)
, respectively,

or they are both negative. The eigenvectors are:

(++) : − σ1

(
1
−1

)
=

(
1
−1

)
,

(
18

−18

)(
λs
0

)
=

(
λs
0

)
.

(−−) : − σ1

(
1
1

)
= −

(
1
1

) (
18

−18

)(
0
λc

)
= −

(
0
λc

)
.

(A.3)

χ is the linear combination of these two cases.

χ =

(
1
−1

)
⊗
(
λs
0

)
+

(
1
1

)
⊗
(

0
λc

)
. (A.4)

The Dirac equation thus reads:

0 = iΓµ∂µχ = iΓ0∂0χ+ iΓi∂iχ+ iΓ9∂9χ = iσ2 ⊗ 116∂0χ+ iiσ1 ⊗ γi∂iχ+ iiσ3 ⊗ 116∂9χ =

=
{

(iσ2 ⊗ 116) ∂0 −
(
σ1 ⊗ γi

)
∂i − (σ3 ⊗ 116) ∂9

}[( 1
−1

)
⊗
(
λs
0

)
+

(
1
1

)
⊗
(

0
λc

)]
=

=

[
−
(

1
1

)
⊗
(
∂0λs

0

)
+

(
1
−1

)
⊗
(

0
∂0λc

)]
−
[
−
(

1
−1

)
⊗
(

0
γiāa∂iλ

a
s

)
+

(
1
1

)
⊗
(
γiaā∂iλ

ā
c

0

)]
+

−
[(

1
1

)
⊗
(
∂9λs

0

)
+

(
1
−1

)
⊗
(

0
∂9λc

)]
= −

(
1
1

)
⊗
(

(∂0 + ∂9)λs
0

)
−
(

1
1

)
⊗
(
∂iγ

i
aāλ

ā
c

0

)
+

+

(
1
−1

)
⊗
(

0
(∂0 − ∂9)λc

)
+

(
1
−1

)
⊗
(

0
γiāaλ

a
s

)
.
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As (1, 1) and (1,−1) are linearly independent, the expressions belonging to those vectors must
equal zero separately, thereby reaching (1.24).

B Representation Contents

This appendix helps in explaining what the meanings of the numbers and their small indices
in Tables [1–4] are.

B.1 SO(8) Representation Contents

SO(8) has three fundamental representations: vector (8v), spinor (8s), and conjugate spinor
(8c), as mentioned before. The number tells us about the number of degrees of freedom we have
in each. When applying a creation operator to a certain state, we reach another one with different
representation contents. In the NSR formulation, with the light cone gauge fixed, all operators
belong to the 8v representation of SO(8). Thus, in terms of representation theory, applying these
operators means taking the tensor product of an 8v vector with the corresponding state. In the GS
formulation, there are operators belonging to each of the three fundamental SO(8) representations.
Thus, it is useful to see how the bilinears belonging to the tensor product of these representations
can be decomposed into irreducible parts, because they correspond to fundamentally different
objects/particles.18

First, let us start with the easy one. A bilinear of two vectors is a rank-2 tensor, which
decomposes into a trace part, an antisymmetric part, and a symmetric traceless part. Each of
these transform irreducibly under SO(8) rotations.

8v ⊗ 8v = 1⊕ 8 · 7
2
⊕
(

8 · 9
2
− 1

)
= 1⊕ 28⊕ 35v. (B.1)

Not all of these are always present. For example, in the NSR formulation, the α oscillators obey
commutation, and the b and d oscillators obey anticommutation relations, so the bilinears formed
from the same oscillators keep the symmetric or the antisymmetric parts, respectively. When a
bilinear is formed from two different oscillators, however, there are no restrictions: all parts are
present.

Next, consider the bilinear formed by a spinor and a conjugate spinor. This is a bit more
complicated. First, let us note that for 16×16 matrices, the following combinations of the Dirac
matrices form a complete basis:

116, γijklmnop,

γi, γijklmno,

γij, γijklmn,

γijk, γijklm,

γijkl,

(B.2)

18Lorentz transformation, or, more precisely, just the SO(8) rotation cannot transform these parts into each other.
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where γi1i2...in = γ[i1γi2 . . . γin], the antisymmetrized product of gamma matrices. Therefore,
any bilinear can be decomposed on this basis.

λaωā =
∑
p

(
γi1i2...ip

)
aā
ϕi1i2...ip , (B.3)

where ϕi1i2...ip are just coefficients. Recall the expression (1.17) for the gamma matrices, and
especially the fact that they are off-diagonal. The product of even gamma matrices is, there-
fore, diagonal, and the product of odd ones becomes off-diagonal again. When trying to find
the decomposition of a spinor–conjugate spinor bilinear, we are only interested in the off-diagonal
elements, due to the index structure, as the index pair aā clearly refers to the off-diagonal ele-
ments. Therefore, we only have to consider the product of odd number of gamma matrices in the
decomposition.

We are always considering Weyl spinors, which will simplify things slightly, as, for Weyl spinors,
it is not difficult to prove that the following duality relations hold amongst the gamma matrices:

116 ∝ εijklmnopγijklmnop,

γi ∝ εijklmnopγjklmnop,

γij ∝ εijklmnopγklmnop,

γijk ∝ εijklmnopγlmnop,

γijkl ∝ εijklmnopγmnop. (self-duality!)

(B.4)

Therefore, the only relevant degrees of freedom come from γi and γijk. For the latter, the num-
ber of independent components can be easily calculated by the fact that it is fully antisymmetric.

8s ⊗ 8c = 8v ⊕
8 · 7 · 6

2 · 3
= 8v ⊕ 56v. (B.5)

For a spinor–spinor bilinear, the procedure is the same, but we need the diagonal elements of
the product of gamma matrices, as both indices now are spinor indices, which correspond to the
diagonal positions. Therefore, the only relevant matrices in the decomposition are now 116, γij,
and γijkl, the even products. The number of degrees of freedom for γijkl is reduced by a factor of
two because it is self-dual.

8s ⊗ 8s = 1⊕ 8 · 7
2
⊕ 1

2
· 8 · 7 · 6 · 5

2 · 3 · 4
= 1⊕ 28⊕ 35v. (B.6)

For a conjugate spinor–conjugate spinor bilinear, this is done exactly the same way. All that is
left now is to examine the decomposition of the spinor/conjugate spinor–vector bilinear. We can
make use of the special concept called triality unique to SO(8). Without much detail, triality states
that all three fundemental representations of the SO(8) group are “equally good” or, more precisely,
there exists a group of automorphisms that permute these representations. So the procedure in
examining the remaining bilinears is basically again the same, we just redefine the gamma matrices
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used in the decomposition to have their indices i ↔ a or i ↔ ā exchanged. The results are very
similar to the ones discussed above19.

So let us summarize the decomposition rules.

8v ⊗ 8v = 1⊕ 28⊕ 35v, 8s ⊗ 8c = 8v ⊕ 56v,

8s ⊗ 8s = 1⊕ 28⊕ 35s, 8v ⊗ 8s = 8c ⊕ 56c,

8c ⊗ 8c = 1⊕ 28⊕ 35c, 8v ⊗ 8c = 8s ⊕ 56s.

(B.7)

If a state belongs to a vector representation, then it is a boson; if it belongs to a spinor or a
conjugate spinor representation, it is a fermion. Looking at (B.7), it is clear now why operators
that belong to the vector representation of SO(8) can only map bosons to bosons and fermions to
fermions. This is why, in the NSR formulation, the ground state determines whether the entire
spectrum built on it is fermionic or bosonic. However, in the GS formulation, the operator of
the fermionic part belongs to the spinor or conjugate spinor representation of SO(8), so it maps
between bosons and fermions.

B.2 SO(9) Representation Contents

For massive states, the SO(8) representations can be uniquely assembled into SO(9) represen-
tations. Again, without detailed proof, we will just give examples corresponding to Table [1] so
that the numbers in the last column make sense.

NS-sector: Form a bilinear (rank-2 tensor) of two vector representations of SO(9). Just as we
have seen for the SO(8) case, this decomposes into the trace, the antisymmetric, and the
symmetric traceless parts.

9v ⊗ 9v = 1⊕ 36⊕ 44. (B.8)

The trace corresponds to the ground state of the NS-sector. The antisymmetric and the
symmetric traceless part contain some of the SO(8) representations.

AIJ : (I, J = 1, . . . , 9) 36

{
Ai9 : (i = 1, . . . , 8) 8v

Aij : (i, j = 1, . . . , 8) 28
(B.9)

SIJ : (I, J = 1, . . . , 9) 44


S99 : 1
Si9 : (i = 1, . . . , 8) 8v

Sij : (i, j = 1, . . . , 8) 35v

(B.10)

Also look at the decomposition of a vector–vector–vector trilinear (rank-3 tensor):

9v ⊗ 9v ⊗ 9v = 1⊕ 84⊕ 644. (B.11)

19In fact, we can also get the decomposition of a vector–vector bilinear this way, though the previous considerations
are much simpler.
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AIJK : (I, J,K = 1, . . . , 9) 84

{
Aij9 : (i, j = 1, . . . , 8) 28
Aijk : (i, j, k = 1, . . . , 8) 56

(B.12)

These are exactly the numbers we indicated in the NS-sector of the open string spectrum in
Table [1].

R-sector: A spinor of SO(9) can also be represented by an array of 24 = 16 complex elements20,
which again consists of a spinor (8s) and a conjugate spinor (8c) part. Majorana condition is
possible21, so let us impose it, reducing the number of degrees of freedom to 16 real. Take an
SO(9) vector ζI (I = 1, . . . , 9), and a spinor λ = (λas , λ

ā
c), and examine the bilinear formed

from these two.

9v ⊗ (8s ⊕ 8c) = 16⊕ 128. (B.13)

The tensor product decomposes into two irreducible parts. The 16 corresponds to the spinor
trace defined as τc = ΓIcdζIλ

d, and the 128 part is just the rest, which also appears in
Table [1].

C Spin Structures in Higher Genus Riemann Surfaces

Consider the following two statements without proof:

1. For a given spin structure, the number of chiral Dirac zero modes is a topological invariant
modulo two.

2. The number of chiral Dirac zero modes is additive modulo two when gluing together two
Riemann surfaces.

First of all, the consequence of the first statement is that the even and odd spin structures trans-
form separately (in fact, irreducibly) under modular transformations, just as we said in Chapter
2.1. The second statement, and our result for the torus (1 odd, 3 even spin structures), is enough
to find the number of even and odd spin structures for higher genus Riemann surfaces.

#odd =
∑
m odd

(
g

m

)
1m3g−m = 2g−1(2g − 1),

#even =
∑
m even

(
g

m

)
1m3g−m = 2g−1(2g + 1).

(C.1)

20Recall that a spinor in D dimensions has 2[D/2] components.
21Here we are talking about a spinor of SO(D) and not of SO(1,D − 1), so there is no conflict with our previous

statement on the possible dimensions where the reality condition can be imposed.
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D Spin Structures under Modular Transformations

Here, we will examine as an example, how the spin structure (−,+) on the torus transforms
under the generators of modular transformations. The transformation rules for the others can be
derived analogously.

(−,+) means the following:

ψ(ξ1, ξ2) = −ψ(ξ1 + 1, ξ2), (D.1)

ψ(ξ1, ξ2) = +ψ(ξ1, ξ2 + 1). (D.2)

The coordinates transform according to (2.2), so we can easily derive the change in the boundary
conditions.

Under S transformations:

ψ(ξ1, ξ2)
(D.1)
= − ψ(ξ1 + 1, ξ2)

ψ(−ξ2, ξ1)
(D.2)
= + ψ(−ξ2, ξ1 + 1)

ψ(ξ1, ξ2)
(D.2)
= + ψ(ξ1, ξ2 + 1)

ψ(−ξ2, ξ1)
(D.1)
= − ψ(−ξ2 − 1, ξ1)

(D.3)

Under T transformations:

ψ(ξ1, ξ2)
(D.1)
= − ψ(ξ1 + 1, ξ2)

ψ(ξ1 + ξ2, ξ2)
(D.1)
= − ψ(ξ1 + ξ2 + 1, ξ2)

ψ(ξ1, ξ2)
(D.2)
= + ψ(ξ1, ξ2 + 1)

ψ(ξ1 + ξ2, ξ2)
(D.1)
=

(D.2)
− ψ(ξ1 + ξ2 + 1, ξ2 + 1)

(D.4)

The change in the signs is apparent.

S : (−,+) −→ (+,−), and T : (−,+) −→ (−,−)
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E Jacobi Theta Functions

The general form of the Jacobi theta function is the following (q = e2πiτ ):

θ

[
ϑ

ϕ

]
(0|τ) = η(τ)e2πiϑϕq

ϑ2

2
− 1

24

∞∏
n=1

(
1 + qn+ϑ−1/2e2πiϕ

) (
1 + qn−ϑ−

1/2e−2πiϕ
)

=

=
∞∑

n=−∞

exp
[
iπ(n+ ϑ)2τ + 2πi(n+ ϑ)ϕ

]
.

(E.1)

We will only use those where ϑ = ϕ = 0, 1
2
.

θ

[
1/2

1/2

]
(0|τ) = θ1(τ) ≡ 0, (E.2)

θ

[
1/2

0

]
(0|τ) = θ2(τ) = 2q

1
8

∞∏
n=1

(1− qn) (qn)2 =
∞∑

n=−∞

q(n+1/2)2/2, (E.3)

θ

[
0

0

]
(0|τ) = θ3(τ) =

∞∏
n=1

(1− qn)
(
1 + qn−

1/2
)2

=
∞∑

n=−∞

q
n2

2 , (E.4)

θ

[
0

1/2

]
(0|τ) = θ4(τ) =

∞∏
n=1

(1− qn)
(
1− qn−1/2

)2
=

∞∑
n=−∞

(−1)n q
n2

2 . (E.5)

Dedekind’s eta function is defined as

η(τ) = q
1
24

∞∏
n=1

(1− qn) . (E.6)

The following identities are satisfied by the Jacobi theta functions:

2η3(τ) = θ2(τ)θ3(τ)θ4(τ), (E.7)

θ4
2(τ)− θ4

3(τ) + θ4
4(τ) = 0. (E.8)

Under modular transformations, these change according to

θ2 (−1/τ) = (−iτ)
1/2θ4(τ), θ2(τ + 1) = e

iπ/4θ2(τ),

θ3 (−1/τ) = (−iτ)
1/2θ3(τ), θ3(τ + 1) = θ4(τ),

θ4 (−1/τ) = (−iτ)
1/2θ2(τ), θ4(τ + 1) = θ3(τ),

η (−1/τ) = (−iτ)
1/2η(τ), η(τ + 1) = e

iπ/12η(τ).

(E.9)
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